Articles | Volume 22, issue 2
Hydrol. Earth Syst. Sci., 22, 1317–1336, 2018
https://doi.org/10.5194/hess-22-1317-2018
Hydrol. Earth Syst. Sci., 22, 1317–1336, 2018
https://doi.org/10.5194/hess-22-1317-2018
Research article
21 Feb 2018
Research article | 21 Feb 2018

Derived Optimal Linear Combination Evapotranspiration (DOLCE): a global gridded synthesis ET estimate

Sanaa Hobeichi et al.

Related authors

Linear Optimal Runoff Aggregate (LORA): a global gridded synthesis runoff product
Sanaa Hobeichi, Gab Abramowitz, Jason Evans, and Hylke E. Beck
Hydrol. Earth Syst. Sci., 23, 851–870, https://doi.org/10.5194/hess-23-851-2019,https://doi.org/10.5194/hess-23-851-2019, 2019

Related subject area

Subject: Global hydrology | Techniques and Approaches: Mathematical applications
Projecting end-of-century climate extremes and their impacts on the hydrology of a representative California watershed
Fadji Z. Maina, Alan Rhoades, Erica R. Siirila-Woodburn, and Peter-James Dennedy-Frank
Hydrol. Earth Syst. Sci., 26, 3589–3609, https://doi.org/10.5194/hess-26-3589-2022,https://doi.org/10.5194/hess-26-3589-2022, 2022
Short summary
Integrating process-related information into an artificial neural network for root-zone soil moisture prediction
Roiya Souissi, Mehrez Zribi, Chiara Corbari, Marco Mancini, Sekhar Muddu, Sat Kumar Tomer, Deepti B. Upadhyaya, and Ahmad Al Bitar
Hydrol. Earth Syst. Sci., 26, 3263–3297, https://doi.org/10.5194/hess-26-3263-2022,https://doi.org/10.5194/hess-26-3263-2022, 2022
Short summary
Coherence of global hydroclimate classification systems
Kathryn L. McCurley Pisarello and James W. Jawitz
Hydrol. Earth Syst. Sci., 25, 6173–6183, https://doi.org/10.5194/hess-25-6173-2021,https://doi.org/10.5194/hess-25-6173-2021, 2021
Short summary
Design flood estimation for global river networks based on machine learning models
Gang Zhao, Paul Bates, Jeffrey Neal, and Bo Pang
Hydrol. Earth Syst. Sci., 25, 5981–5999, https://doi.org/10.5194/hess-25-5981-2021,https://doi.org/10.5194/hess-25-5981-2021, 2021
Short summary
Attributing correlation skill of dynamical GCM precipitation forecasts to statistical ENSO teleconnection using a set-theory-based approach
Tongtiegang Zhao, Haoling Chen, Quanxi Shao, Tongbi Tu, Yu Tian, and Xiaohong Chen
Hydrol. Earth Syst. Sci., 25, 5717–5732, https://doi.org/10.5194/hess-25-5717-2021,https://doi.org/10.5194/hess-25-5717-2021, 2021
Short summary

Cited articles

Abramowitz, G.: Towards a benchmark for land surface models, Geophys. Res. Lett., 32, L22702, https://doi.org/10.1029/2005GL024419, 2005. 
Abramowitz, G.: Towards a public, standardized, diagnostic benchmarking system for land surface models, Geosci. Model Dev., 5, 819–827, https://doi.org/10.5194/gmd-5-819-2012, 2012. 
Abramowitz, G. and Bishop, C. H.: Climate model dependence and the ensemble dependence transformation of CMIP projections, J. Climate, 28, 2332–2348, https://doi.org/10.1175/JCLI-D-14-00364.1, 2015. 
Alemohammad, S. H., Fang, B., Konings, A. G., Aires, F., Green, J. K., Kolassa, J., Miralles, D., Prigent, C., and Gentine, P.: Water, Energy, and Carbon with Artificial Neural Networks (WECANN): a statistically based estimate of global surface turbulent fluxes and gross primary productivity using solar-induced fluorescence, Biogeosciences, 14, 4101–4124, https://doi.org/10.5194/bg-14-4101-2017, 2017. 
Annan, J. D. and Hargreaves, J. C.: Reliability of the CMIP3 ensemble, Geophys. Res. Lett., 37, L02703, https://doi.org/10.1029/2009GL041994, 2010. 
Download
Short summary
We present a new global ET dataset and associated uncertainty with monthly temporal resolution for 2000–2009 and 0.5 grid cell size. Six existing gridded ET products are combined using a weighting approach trained by observational datasets from 159 FLUXNET sites. We confirm that point-based estimates of flux towers provide information at the grid scale of these products. We also show that the weighted product performs better than 10 different existing global ET datasets in a range of metrics.