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Abstract. Accurate global gridded estimates of evapotran-
spiration (ET) are key to understanding water and energy
budgets, in addition to being required for model evalua-
tion. Several gridded ET products have already been de-
veloped which differ in their data requirements, the ap-
proaches used to derive them and their estimates, yet it is
not clear which provides the most reliable estimates. This
paper presents a new global ET dataset and associated uncer-
tainty with monthly temporal resolution for 2000–2009. Six
existing gridded ET products are combined using a weight-
ing approach trained by observational datasets from 159
FLUXNET sites. The weighting method is based on a tech-
nique that provides an analytically optimal linear combina-
tion of ET products compared to site data and accounts for
both the performance differences and error covariance be-
tween the participating ET products. We examine the perfor-
mance of the weighting approach in several in-sample and
out-of-sample tests that confirm that point-based estimates
of flux towers provide information on the grid scale of these
products. We also provide evidence that the weighted prod-
uct performs better than its six constituent ET product mem-
bers in four common metrics. Uncertainty in the ET estimate
is derived by rescaling the spread of participating ET prod-
ucts so that their spread reflects the ability of the weighted
mean estimate to match flux tower data. While issues in ob-
servational data and any common biases in participating ET
datasets are limitations to the success of this approach, future
datasets can easily be incorporated and enhance the derived
product.

1 Introduction

Improving the accuracy and understanding of uncertainties
in the spatial and temporal variations of evapotranspiration
(ET) globally is key to a number of endeavours in climate,
hydrological and ecological research. Its estimation is crit-
ical to water resource, heatwave and ecosystem stress pre-
diction and it provides constraint on the energy, water and
carbon cycles. For these reasons, it is also useful for eval-
uating the performance of land surface models (LSMs). To
identify LSM performance issues and diagnose their proba-
ble causes, the observed values of LSM inputs and outputs
need to be known with sufficient accuracy and precision. On
the site scale, FLUXNET (Baldocchi et al., 2001; Baldoc-
chi, 2008), a global group of tower sites that measures the
exchange of energy, water and carbon between the land sur-
face and the atmosphere, provides direct observations of ET
and most of the drivers and outputs of LSMs with soundly
quantifiable uncertainty and sufficient accuracy to make di-
agnostic evaluation possible. This fact has led to a range
of model evaluation, comparison and benchmarking studies
using FLUXNET data (e.g. Abramowitz, 2005, 2012; Best
et al., 2015; Chen et al., 1997; Stöckli et al., 2008; Wang
et al., 2007). Haughton et al. (2016) clearly showed that the
flux tower data quality is good enough to provide diagnos-
tic constraint on LSMs on the site scale. However, the point
scale is not the spatial scale at which these models are typi-
cally used. In either climate projections or weather forecast
applications, gridded model estimates are required on the re-
gional or global scale, with grid cell surface areas of order
25–40 000 km2. The relevance of model diagnostic informa-
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tion on the site scale to broader-scale gridded simulations re-
mains unclear.

The advancement of remote sensing technology and satel-
lite image processing techniques has dramatically improved
the estimation of many components of LSM forcing (e.g. sur-
face air temperature, precipitation, radiation components and
vegetation properties) (Loew et al., 2016). These datasets to-
gether with in situ surface observations have provided con-
straint on the reanalysis products that provide the basis of
global gridded LSM forcing products. On the other hand,
very few LSM outputs (such as evapotranspiration or sensi-
ble heat flux) can be directly observed by remote sensing,
and the only currently available way to derive them is by
the use of modelling schemes or empirical formulations that
use satellite-based datasets (Jung et al., 2011; Fisher et al.,
2008; Miralles et al., 2011; Martens et al., 2016; Mu et al.,
2007, 2011; Su, 2002; K. Zhang et al., 2016, 2010). This
approach leads to large and usually unquantifiable uncertain-
ties. As a result, gridded LSM evaluation products show con-
siderable differences (Ershadi et al., 2014; Jiménez et al.,
2011; McCabe et al., 2016; Michel et al., 2016; Vinukollu
et al., 2011). If an accurate description of these uncertainties
was available, then it might be possible to evaluate gridded
LSM simulations in certain circumstances, but until now very
few studies quantify LSM uncertainties on regional or global
scales (Badgley et al., 2015; Loew et al., 2016; Zhang et al.,
2016).

Several gridded ET products have already been developed
(see Table 1). These ET products differ in their data require-
ments, the approaches used to derive them and their esti-
mates (Wang and Dickinson, 2012). So far, it is not at all
clear which product provides the most reliable estimates. Re-
cently, inter-comparison studies have aimed to evaluate and
compare the available gridded ET products. For instance,
Vinukollu et al. (2011) ran simulations of the surface energy
balance system (SEBS), Penman–Monteith scheme by Mu
(PM-Mu) and modified Priestley–Taylor (PT–JPL) forced by
a compiled gridded dataset. The monthly model ET estimates
were then compared with ET observations from 12 eddy-
covariance towers. The root mean square deviation (RMSD)
and biases for all the models fell within a small range with
the highest correlation with tower data for PT–JPL and the
lowest for SEBS. These results somewhat disagree with the
work of Ershadi et al. (2014), who inspected the performance
of SEBS, the single-source Penman–Monteith, advection–
aridity (AA) complementary method (Brutsaert and Stricker,
1979) and PT–JPL using a high-quality forcing dataset from
20 FLUXNET stations and found that the models can be
ranked from the best to the worst model as PT–JPL fol-
lowed closely by SEBS then PM and finally AA. In the
same study, a more detailed analysis revealed that no sin-
gle model was consistently the best across all landscapes.
More recently, in the Global Energy and Water Cycle Exper-
iment (GEWEX) LandFlux project, McCabe et al. (2016) ran
simulations of the algorithms in SEBS, PT–JPL, PM-Mu and

the Global Land Evaporation Amsterdam Model (GLEAM)
from common global-scale gridded forcing data, as well as
site-based forcing data, and assessed their response relative
to ET measurements from 45 globally distributed FLUXNET
towers. The results indicated that PT–JPL achieved the high-
est statistical performance, followed closely by GLEAM,
whereas PM-Mu and SEBS tended to under- and overesti-
mate fluxes respectively. Furthermore, in the Water Cycle
Multi-mission Observation Strategy for Evapotranspiration
(WACMOS-ET) project part 1, Michel et al. (2016) carried
out validation experiments for PT–JPL, PM-Mu, SEBS and
GLEAM against in situ measurements from 85 FLUXNET
towers and found that there was no single best performing
model.

In each of the evaluation studies described above, tower
data from FLUXNET provide ground truth for gridded ET
datasets by comparing grid cell values to those measured on
the site scale. Most gridded ET products have a 0.5◦ resolu-
tion, so that each grid cell can represent an area of around
2500 km2. The fetch of flux tower measurements varies de-
pending on terrain, vegetation and weather but is typically
under 1 km2 (Burba and Anderson, 2010). None of these
studies directly address this obvious scale mismatch and the
degree to which surface heterogeneity might nullify any in-
formation that flux towers provide about fluxes on these
larger scales. Indeed, all the evaluation studies that compared
gridded estimates against flux tower observations highlighted
this point as a limitation in the evaluation approach.

Zhang et al. (2016) pointed out that merging an ensem-
ble of gridded ET products using a sophisticated data fusion
method is likely to generate a better ET product with reduced
uncertainty. Ershadi et al. (2014) and McCabe et al. (2016)
noted in their studies that the multi-product mean produces
improved estimates relative to individual ET products. Sim-
ilarly, the analysis result of the LandFlux-EVAL project
(Mueller et al., 2013) suggested that deriving ET values us-
ing the mean of multiple datasets outperforms the ET val-
ues from individual datasets. These results do suggest that
flux towers likely provide some information on the gridded
scale, since there are solid theoretical reasons to expect the
mean to outperform individual estimates (Annan and Harg-
reaves, 2010; Bishop and Abramowitz, 2013), although this
fact was not noted in these studies. That is, we would expect
that the mean of a range of relatively independent approaches
– whose errors are somewhat uncorrelated – would provide
a better estimate to observations if those observations were
of the same system being simulated. In this study, we provide
an even stronger vindication of this relationship in Sect. 2.3
below.

This paper introduces a new method for deriving glob-
ally gridded ET as well as its spatiotemporal uncertainty
by combining existing gridded ET estimates. The method
is based on the ensemble weighting and rescaling technique
suggested by Bishop and Abramowitz (2013). The technique
provides an analytically optimal linear combination of en-
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Table 1. Gridded ET products used in this paper. NDVI is the normalized difference vegetation index; ISLSCP II is the International Satellite
Land-Surface Climatology Project, Initiative II; AVHRR is the Advanced Very High Resolution Radiometer; MPIBGC is the Max Planck
Institute for Biogeochemistry.

ET product and
reference

Abbreviation Time period and
spatial resolution

Forcing data source Calculation method(s)

CSIRO global
(K. Zhang, et al., 2010)

CS 1983–2006,
0.5◦,
also available at
8 km and 1◦

Meteorological observations from
flux tower distributed across all
global biome types,
remote sensing inputs

An extended ET product of CSIRO
(Y. Zhang, et al., 2010) that covers
a global domain,
NDVI-based PM model,
PT equation for open water evaporation

GLEAM V2A
(Miralles et al., 2011)

G2A 1980–2011,
0.25◦

Remote-sensing-based
observations,
gauge-based precipitation

PT equation,
canopy interception model, soil water
module and stress module

GLEAM V2B
(Miralles et al., 2011)

G2B 2000–2011,
0.25◦

Remote-sensing-based
observations

PT equation,
canopy interception module, soil water
module and stress module

GLEAM V3A
(Martens et al., 2016)

G3A 1980–2014,
0.25◦

Satellite-based inputs,
multi-source precipitation

A revised version of GLEAM V2A in
which new satellite-observed geophys-
ical variables have been incorporated
and the representation of the surface
soil moisture and evaporation has been
improved

LandFlux-EVAL-Diag
(Mueller et al., 2011,
2013)

LFD 1989–2005,
1◦

Simple mean of five diagnostic ET datasets

LandFlux-EVAL-All
(Mueller et al., 2011,
2013)

LFA Simple mean of 14 diagnostics, LSM and reanalysis datasets

MOD16
MODIS global ET
products
(Mu et al., 2011)

MOD 2000–2014,
0.5◦,
also available at
0.05◦

Global Modeling and Assimilation
Office (GMAO) meteorological
reanalysis data,
remote sensing inputs from
MODIS 8-day retrievals

PM formula (Monteith, 1965)

MPIBGC
(Jung et al., 2011)

MPI 1982–2011,
0.5◦

FLUXNET data from 253 sites,
remote sensing datasets from
SeaWiFS

Empirical methods: model tree en-
semble (MTE) machine-learning tech-
niques

PML
PM–Leuning model
(Zhang et al., 2015)

PML 1981–2012,
0.5◦

GMAO reanalysis products PM–Leuning method

PT–JPL
(Fisher et al., 2008)

PT 1984–2006,
1◦

Meteorological reanalysis data
from ISLSCP II,
remote-sensing-based observations
from monthly AVHRR data

PT equation

semble members that minimises mean square error when
compared to an observational dataset and so accounts for
both the performance differences and error covariance be-
tween the participating ET products (for example, caused by
the fact that different ET datasets might share a forcing prod-
uct). In this way, at least in sample, the optimal linear combi-
nation is insensitive to the addition of redundant information.
We use a broad collection of FLUXNET sites as the observa-
tional constraint.

We examine the performance of the weighting approach
in several in-sample and out-of-sample tests that confirm

flux towers do indeed provide information on the grid scale
of these products. Having confirmed this, we note that
this Derived Optimal Linear Combination Evapotranspira-
tion (DOLCE) is more observationally constrained than the
individual participating gridded ET estimates and therefore
provides a valuable addition to currently available gridded
ET estimates.

Section 2.1 and 2.2 present the gridded ET datasets and the
flux tower ET used to derive the weighted ET product. Sec-
tion 2.3 describes the weighting approach used to calculate
the linear combination ET and its uncertainty. In Sect. 2.4 we
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explain our methods for testing the weighting approach and
the representativeness of the point scale to the grid scale. We
then present and discuss our results in Sects. 3 and 4 before
concluding.

2 Methods, data and experimental setup

To build the DOLCE product, six global gridded ET prod-
ucts, all classified as diagnostic datasets based on Mueller
et al. (2011), are weighted based on their ability to match
site-level data from 159 globally distributed flux tower sites.
DOLCE is derived at 0.5◦ spatial resolution and monthly
temporal resolution for 2000–2009.

2.1 ET datasets

This study employs monthly values from 10 existing gridded
ET datasets (Table 1). Only six of these datasets – referred to
in this study as the diagnostic ensemble – are used for build-
ing DOLCE, while all of the 10 are used to evaluate its per-
formance (we will refer to these as the reference ensemble).
The reasons for restricting the diagnostic ensemble are (a) to
maximise the time period covered by DOLCE (see Table 1);
(b) to avoid temporal discontinuities in the derived product
that can result from using different component products in
different time periods; (c) to maximise the number of flux
tower sites that can inform the weights (noting that datasets
have different spatial coverage); and (d) to avoid LSM-based
estimates in the final DOLCE product, so that its validity for
LSM evaluation is clearer. For these reasons, CSIRO global,
LandFlux-EVAL-ALL, LandFlux-EVAL-DIAG and PT–JPL
were removed from the diagnostic ensemble.

The weighting approach becomes increasingly effective as
more products are included in the weighted mean, but, since
different products have different spatial coverage, there is
a need to strike a balance between maximising the number of
products included in DOLCE and maximising spatial cover-
age of DOLCE. To resolve this issue, three different subsets
of the diagnostic ensemble were chosen to derive DOLCE
“tiers”. The three DOLCE tiers differ in their spatial cover-
age of ET and uncertainty, the number of ET products in-
cluded and the number of flux towers employed to compute
them. DOLCE tier 1 was derived by employing all the prod-
ucts in the diagnostic ensemble and 138 sites and has a spa-
tial coverage equal to the intersection of the global land cov-
ered by these products, as shown in red in Fig. 1. In DOLCE
tier 2, GLEAM V2B was excluded and the remaining prod-
ucts were used to compute ET and uncertainty, increasing the
spatial coverage and allowing 151 observational flux tower
sites. The newly added regions in DOLCE tier 2 are shown in
orange in Fig. 1. Finally, ET and uncertainties in the regions
shown in yellow were computed using only two ET products,
GLEAM V2A and GLEAM V3A, to create DOLCE tier 3,
using 159 flux sites. With this approach, we manage to create

a global product without sacrificing data quality in regions
where more information is available.

2.2 Flux tower data

The flux tower data used in this work are a composite of daily
values from the FLUXNET 2015 tier 1 (FN) and LaThuile
2007 (LT) free fair use databases (Baldocchi, 2008; Baldoc-
chi et al., 2001; Papale et al., 2012; FluxData, 2016). We ap-
plied quality control and filtering to the site data as follows:

1. Omit the observations that do not fall within the tempo-
ral coverage of DOLCE.

2. Omit the daily ET observations if less than 50 % of half-
hourly ET was observed on that day (as opposed to gap
filled).

3. Omit the monthly ET aggregates that have been calcu-
lated from less than 15 daily mean ET values.

4. Correct the remaining records of ET observations from
the LT dataset for energy balance non-closure on a site-
by-site basis (energy-closure-corrected FN daily data
were used).

5. Keep only the sites that are located within the spatial
coverage of products in any of the three tiers of the di-
agnostic ensemble (Fig. 2).

6. Exclude irrigated sites or those that have only one
monthly record.

Applying (1), (2) and (3) reduced the number of tower
sites that were available at the beginning of the analysis from
246 to 172 sites and produced a total of 7891 records (out of
a possible 18 468). Applying (5) and (6) reduced the number
of sites against which the weighting is tested to 138 sites in
DOLCE tier 1, increasing to 151 sites in DOLCE tier 2 and
159 in DOLCE tier 3. In (4), two different correction tech-
niques were applied for energy balance non-closure at LT
sites. Both involve ensuring that Rn−G=H +LE, where
Rn is the net radiation and G, H and LE are the ground heat
flux, sensible heat flux and latent heat flux respectively, on
either the monthly timescale or over the length of the entire
site record. Applying a correction technique for energy im-
balance at LT sites required applying (2) and (3) for the other
components of energy imbalance (i.e. Rn, G and H ), which
means that the sites that had to undergo a correction for the
energy imbalance should have monthly estimates for all the
fluxes of the energy budgets, where each monthly value has
been calculated from at least 15 daily mean flux values. Be-
cause of this constraint, many sites were disregarded from
the analysis. One of the two correction methods for energy
imbalance at LT sites distributes the residual errors in heat
fluxes according to the Bowen ratio (BR) (Bowen, 1926;
Sumner and Jacobs, 2005; Twine et al., 2000) such that

BR=
Huncorrected

LEuncorrected
(1)
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Figure 1. Spatial coverage of DOLCE tier 1 (red); regions added in tier 2 (orange) and tier 3 (yellow). Spatial coverage varies temporally;
May 2000 is shown here as a representative example.

Figure 2. Location of the 159 flux tower sites involved in building DOLCE, classified by vegetation type given by IGBP: croplands (CRO),
closed shrublands (CSH), deciduous broadleaf forest (DBF), evergreen broadleaf forest (EBF), evergreen needleleaf forest (ENF), grasslands
(GRA), mixed forests (MF), open shrublands (OSH), savannas (SAV), cropland/natural vegetation mosaic (VEG), wetlands (WET), and
woody savannas (WSA).

is applied using

Fcorrected =
Rn−G

Huncorrected+LEuncorrected
×Funcorrected, (2)

where F is eitherH or LE, so that BR is unchanged between
corrected and uncorrected fluxes. At first, the Bowen ratio
technique was applied on a monthly basis, but this occasion-
ally seemed to give erratic results in the corrected flux val-
ues. However, when a single correction per site was applied
across all the monthly records, the results were more consis-
tent.

The second approach calculates ET as the residual term in
the energy balance equation LEcorrected = Rn−H −G. The
two correction methods were tested separately but no quali-
tative differences were noticed. All results below use the BR
technique. In (6), we expect that some of the weighting mod-
els will largely underestimate the flux at irrigated sites, which

is a result of a missing irrigation module in their scheme
(Jung et al., 2011; Miralles et al., 2011). Because of this, the
error bias of these models at the irrigated sites will modify
the mean error bias (i.e. mean bias across all the sites) signif-
icantly, which will affect the weighting in favour of the prod-
ucts that can represent better irrigation. We excluded these
sites as we do not want the products to be weighted for their
inclusion or non-inclusion of physical processes.

We used daily averages of latent heat flux represented by
“LE_CORR” in the FN dataset. In the LT dataset, we em-
ployed the components of energy imbalance and their asso-
ciated flags (in brackets), represented by G_f (G_fqcOK) for
soil heat flux, H_f (HFqcOK) for sensible heat flux, Rn_f
(Rn_fqcOK) for surface net radiation and LE_f (LE_fqcOK)
for latent heat flux.
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2.3 Weighting approach

The weighting approach presented here was suggested by
Bishop and Abramowitz (2013). Given an ensemble of ET
estimates and a corresponding observational dataset across
time and space, the weighting builds a linear combination of
the ensemble members that minimises the mean square dif-
ference (MSD) with respect to the observational dataset such
that if xjk is the j th time–space step of the kth bias-corrected
ET product (i.e. after subtracting the mean error from the
product) and a linear combination of the ET estimates is ex-
pressed as

µ
j
e = w

T xj =

K∑
k=1

wkx
j
k , (3)

then the weights wT provide an analytical solution to the
minimisation of

J∑
j=1
(µ
j
e − y

j )2 (4)

subject to the constraint that
∑K
k=1wk = 1, where j ∈ [1,J ]

are the time–space steps, k ∈ [1,K] represent the ET prod-
ucts and yj is the j th observed time–space step.

The solution is expressed as

w =
A−11

1TA−11
, (5)

where 1T =

kelements︷ ︸︸ ︷
[1,1, . . .,1] and A is the k× k error covari-

ance matrix of the gridded products. Further details are in
Abramowitz et al. (2015), Bishop and Abramowitz (2013),
and Zeller and Hehn (1996).

As noted above, this weighting approach has two key ad-
vantages. (1) It provides an optimal solution to minimising
mean square error differences between the weighted ET es-
timates and the observational tower data in sample. (2) It
accounts for the error covariance between the participating
datasets (e.g. caused by the fact that single datasets may share
ET schemes or forcing); that is, they may not provide in-
dependent estimates. The analytical solution guarantees that
the weighted mean will perform as well or better than the un-
weighted mean or any individual estimate included in the lin-
ear combination, at least on the data used to train the weights
(that is, in sample). Moreover, the addition of a new gridded
ET product to the ensemble will not degrade the performance
of the weighted product, even if it consists of a duplicate
product or a poor performing product. In order to confirm
this in-sample weighting improvement, we performed an in-
sample test presented in the Supplement (Fig. S1). However,
there is no guarantee that the weighted product will neces-
sarily perform well out of sample at a collection of sites not
used for training. We explore this more below.

We use the ensemble dependence transformation process
presented in Bishop and Abramowitz (2013) to calculate the
spatiotemporal uncertainty of DOLCE. This involves first
quantifying the discrepancy between our weighted ET es-
timate, µe, and the flux tower data, expressed as an error
variance, s2

e , over time and space. We then transform our di-
agnostic ensemble so that its variance about µe at a given
time–space step, σ 2j

e , averaged over all time and space steps
where we have flux tower data, is equal to s2

e . This process
ensures that the spread of the transformed diagnostic ensem-
ble provides a better uncertainty estimate than simply using
the spread of all products in the original diagnostic ensemble,
since the spread of the transformed ensemble now accurately
reflects uncertainty in those grid cells where flux tower data
are available.

We calculate the discrepancy between observations and
our weighted mean as

s2
e =

∑J
j=1(µ

j
e − y

j )2

J − 1
. (6)

Next, we wish to ensure that

1
J

J∑
j=1

σ
2j
e = s

2
e , (7)

but the variance of our existing diagnostic ensemble will not,
in general, satisfy this equation. To transform it so that it
does, we first modify the coefficients from Eq. (3), so that
they are guaranteed to all be positive:

w̃ =
wT + (α− 1) 1T

K

α
, (8)

where α = 1−Kmin(wk) and min(wk) is the smallest nega-
tive weight (and α is set 1 if all wk are non-negative). We
then transform the ensemble using

x̃
j
k = µ

j
e +β

(
xj +α

(
x
j
k − x

j
)
−µ

j
e

)
, (9)

where

β =

√√√√√ s2
e

1
J

∑J
j=1

∑K
k=1w̃k

(
xj +α

(
x
j
k − x

j
)
−µ

j
e

)2 . (10)

If we then define the weighted variance estimate

σ
2j
e =

K∑
k=1

w̃k

(
x̃
j
k −µ

j
e

)2
, (11)

we ensure that both Eq. (6) above holds and also that µje =∑K
k=1wkx

j
k =

∑K
k=1w̃k x̃

j
k (see Bishop and Abramowitz,

2013, for proofs). We then use
√
σ

2j
e as the spatially and tem-

porally varying estimate of uncertainty SD, which we will
refer to below as uncertainty.
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2.4 Experimental setup

We employed four statistical metrics that reflect
how well a gridded ET product represents the
quality-controlled flux tower observations: mean
square error (MSE)=mean(dataset− observation)2,
mean bias=mean|dataset− observation|, correlation
(COR)= corr(observation, dataset) and modified relative
standard deviation (MRSD)= σdataset or observation

max(mean(observation),q) .
We use a modified relative SD metric MRSD that mea-

sures the variability of latent heat flux relative to the mean
of the flux measured at each site. This ensures that a com-
parison between MRSD for a product and observations can
tell us whether a product’s variability is too large or too
small (unlike relative SD). The term q is a threshold rep-
resenting the second percentile of the distribution of ob-
served mean flux (i.e. temporal mean ET) across all sites (≈
13 Wm−2), which guarantees that MRSD calculated across
many sites is not dominated by sites where the mean flux
(denominator in the MRSD equation above) approaches
zero. We looked at the bias in MRSD for each product con-
sidered – i.e. |MRSDdataset−MRSDobservation| – and showed
the performance improvement of the weighted mean.

In every test, we split the available sites into in-sample and
out-of-sample sites (that is, calibration and validation sites).
First, we applied the weighting process at the in-sample sites
to weight the individual datasets of the diagnostic ensemble
and derive a weighted product. Then, we calculated the four
metrics above using the out-of-sample sites and displayed re-
sults by showing the following:

a. the percentage performance improvement of the derived
weighted product compared to the equally weighted
mean (Dmean) of the diagnostic ensemble;

b. the percentage performance improvement of the derived
weighted product compared to each individual product
in the reference ensemble, yielding 10 different values
of performance improvement;

c. the aggregate (Ragg) of the values of performance im-
provement calculated across all 10 products in the ref-
erence ensemble.

We display the results of performance improvement
datasets calculated in (a–c) above in 12 box and whisker
plots. In each box plot, the lower and upper hinges represent
the first (Q1) and third (Q3) quartiles respectively of the per-
formance improvement datasets and the line located inside
the box plot represents the median value. The extreme of the
lower whisker represents the minimum of (1) max(dataset)
and (2) (Q3+IQR), while the extreme of the upper whisker is
the maximum of (1) min(dataset) and (2) (Q3+ IQR), where
IQR is the interquartile range of the performance improve-
ment dataset. If the median performance improvement is pos-
itive, this indicates that the weighting offers an improvement
in more than half of the data presented in the box plot.

We first divide sites between the in-sample and out-of-
sample groups by randomly selecting 25 % of the sites as out
of sample. The remaining sites form the in-sample training
set and are used to calculate a scalar bias correction term and
a weight for each participating gridded ET product. These
bias correction terms and the weights are then applied to the
products at the out-of-sample sites. The test was repeated
5000 times with different random selection of sites being out
of sample.

Next, we repeat the process with just one site in the out-
of-sample testing group. The bias corrections and weights
are therefore derived on all sites except one and tested on the
single out-of-sample site. The same test was repeated for all
the participating sites.

3 Results

The results for the 25 % out-of-sample test are displayed in
the box and whisker plots presented in Fig. 3a–d.

The MSE plot in Fig. 3a indicates that, across most of
the random selections of the 25 % out-of-sample sites (57 %
of random selections), the MSE of the weighted product
is slightly better (with maximum 12 % improvement) than
the equally weighted mean of the diagnostic ensemble. The
weighting also improved results for almost all random selec-
tions of sites when compared to each individual dataset in
the reference ensemble. The MRSD plot in Fig. 3b shows
that the weighting succeeded in improving MRSD relative to
Dmean and PT–JPL by no more than 4 and 36 % respectively
across the majority of the combinations of sites but did not
improve MRSD relative to the other reference products. This
is perhaps unsurprising, given that both the weighted and un-
weighted mean should have decreased variability when the
variations in individual products are not temporally coinci-
dent. The COR plot in Fig. 3c shows that, despite the ex-
pected drop in variability in the weighted product, the corre-
lation with site data has in fact improved across most of the
different random selections of the 25 % out-of-sample sites
relative to all of the reference ensemble datasets. The im-
provement was minimal relative to Dmean (maximum 2 %)
and MPI (maximum 3 %). Similarly, the mean bias plot
(Fig. 3d) shows a clear improvement relative to Dmean and
the reference ensemble datasets across most combinations of
sites. It is important to reinforce that these results are for
sites that were not used to train the weights. As detailed in
Sect. 2.3, performance improvement at training sites is ex-
pected, but the fact that the weighting delivers improvements
at sites that were not included in training data indicates that
there is indeed information content about the larger scales in
site data.

The results of the one-site out-of-sample tests are dis-
played in Fig. 4a–d. These box plots indicate that across three
metrics (MSE, MRSD and mean bias) the weighted mean
clearly outperformed all the products in the reference en-
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Figure 3. Box and whisker plots displaying the percentage improve-
ment that the weighted product provides in the 25 % out-of-sample
sites test for four metrics: MSE (a), MRSD (b), COR (c) and mean
bias (d), when compared to the equally weighted mean of the di-
agnostic ensemble (Dmean), aggregated reference ensemble (Ragg)
and each member of the reference ensemble. Box and whisker plots
represent 5000 entries; each entry is generated through randomly
selecting 25 % of sites to be out of sample.

semble. However, when the performance improvement of the
weighted product is compared against Dmean the improve-
ment was marginal. In MSE, an improvement was achieved
at more than half (53 %) of the sites (Fig. 4a). In MRSD,
51 % of the sites showed a small improvement relative to
Dmean (Fig. 4b). In COR, the performance decreased at 57 %
of the sites, and a minimal improvement over the reference
ensemble was shown at more than half of sites (Fig. 4c). Fi-
nally, in mean bias, 58 % of the sites showed performance
improvement over Dmean (Fig. 4d). Part of the success of
the weighting approach relative to the multi-product mean is
due to the bias correction applied before the weighting. Fig-
ure S3 in Supplement separates the effect of each step, and
Fig. S4 shows examples of time series of merged products
before and after bias correction with the resultant weighted

product at five tower locations. We also note that the bias cor-
rection terms were calculated from the temporal mean of the
monthly bias at all the flux tower sites across the time period
2000–2009. As a result, the individual bias-corrected prod-
ucts may show unphysical ET estimates especially in loca-
tions of strong seasonal cycle and at high latitudes especially
when ET values are close to zero. However, after applying
the weights to the component products, the produced values
in the merged product were all realistic.

The results of the one-site out-of-sample test suggest that
spatial heterogeneity – the discrepancy between site and grid-
scale estimates – is significant, as the spread of these box
plots is large. These sites are more likely to be where the
fetch of the flux site observations cannot represent the data
of the entire grid (estimates). A further analysis (not shown
here) has indicated that sites that show poor improvement
in Fig. 4a–d have a consistently high bias against all of the
gridded products.

To investigate the effect this spatial heterogeneity is having
on the out-of-sample tests, we also repeat the one-site out-
of-sample experiments using a subset of the sites within grid
cells that are deemed to be relatively homogeneous (Fig. 4e–
h). Homogeneity is defined in this case by using only those
sites that have the same IGBP vegetation type as the grid
cell that contains them. Almost all the gridded ET prod-
ucts use the dominant land cover type for computing ET,
yet this is not always the same as the land cover type sur-
rounding the flux site. Since this mismatch occurs in het-
erogeneous terrains, we will denote the sites that have this
property as “HET-case” sites, whereas the sites that show
agreement with the underlying grid cell vegetation type are
denoted as “HOM-case” sites. We retrieve the International
Geosphere–Biosphere Programme (IGBP) vegetation cover
data of the grid cells from MODIS Land Cover for year 2009
at 0.5◦ spatial resolution (http://glcf.umd.edu/data/lc/; Friedl
et al., 2010). The vegetation type of individual sites is taken
from metadata on the FLUXNET website. We show the dis-
tribution of HET-case and HOM-case sites by biome type in
Table S2 in the Supplement. There is some expectation that
the weighting will show better performance if it is trained
with HOM-case sites only, although HOM-case sites con-
sist of about one-third of the total number of sites used in
this study. To further investigate this idea, we carried out the
one-site out-of-sample test training and testing on HOM-case
sites data only. Figure 4e–h show that the HOM-case sub-
set of tower sites does indeed improve the result marginally
at least in terms of MSE, COR and mean bias when com-
pared to the original dataset (HOM and HET case; Fig. 4a–
d). We did not investigate the 25 % out-of-sample tests with
HOM-case sites, since the number of in-sample sites would
become too small and likely lead to overfitting. In both cases
it is important to note that many individual sites agree poorly
with the weighted product compared to some other products.
The distinction between the results shown in Fig. 3 vs. Fig. 4
serves to highlight that DOLCE, and indeed any other large-
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Figure 4. In (a–d), as for Fig. 3 but showing the one-site out-of-sample test. Box and whisker plots are generated through selecting one
site to be out of sample and are repeated for all 138 sites. Products marked with * have limited spatiotemporal availability relative to the
diagnostic ensemble, and testing against the LFA, LFD, CS and PT products was limited to 110, 108, 108 and 72 sites respectively. In (e–h),
the one-site out-of-sample test is trained by HOM-case sites data only.

scale gridded ET product, is not suitable for estimation of
an individual site’s fluxes, even if prediction over many sites
shows notable improvement.

On the basis of the aggregate out-of-sample improvement
that this approach offers over existing gridded ET products,
in terms of MSE, MRSD, COR and mean bias against site
data, we now present details of the DOLCE product, which is
trained using all site data and derived from the combination
of the six diagnostic products. The three GLEAM products

were resampled to 0.5◦ using bilinear interpolation to match
the spatial resolution of DOLCE.

We calculated four statistics – mean bias, RMSE, stan-
dard deviation (SD) difference (i.e. σDOLCE−σobservation) and
correlation – to see how well DOLCE performs at each
site. The results are displayed in Fig. 5a–d. At about half
of sites, DOLCE had values between −6 and 6 Wm−2, −5
and 5 Wm−2 in the mean bias and SD difference metrics re-
spectively, and values greater than 0.93 Wm−2 and less than
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Table 2. Four metrics (RMSE, mean bias, SD difference and correlation) of DOLCE at three irrigated sites, and the number of available
monthly records for each site.

Site code Longitude Latitude Description RMSE Mean bias SD difference Correlation Number of
months

US-Ne1 −96.4766 41.1651 Rice paddy 16.6 −7.41 −9.25 0.96 103
US-Ne2 −96.4701 41.1649 Mead irrigated

continuous maize site
15.8 −5.05 −7.44 0.95 103

US-Twt −121.6521 38.1055 Mead irrigated maize–
soybean rotation site

91.9 −67.39 −55.23 0.49 9

14 Wm−2 in correlation and RMSE respectively. DOLCE
metrics vary in the range (−43.4–30.1 Wm−2) for mean bias,
(−25.8–23.5 Wm−2) for SD difference, (0.09–0.99 Wm−2)
for correlation and (4.2–60.9 Wm−2) for RMSE.

We also calculated the on-site metrics (i.e. RMSE, mean
bias, SD difference and correlation) for DOLCE separately
at each subset of sites (i.e. HOM case and HET case) and we
displayed the results in two box plots (Fig. 5, left column).
These box plots show that most of the sites at which DOLCE
showed low performance are HET sites, since the end of the
whiskers is larger for the HET-case sites.

We tested the performance of DOLCE at three irrigated
sites that were excluded from the weighting for reasons ex-
plained earlier (Sect. 2.2), by computing the four statistics.
A description of these sites and the results is shown in Ta-
ble 2. The results show that the performance of DOLCE is
reasonable at US-Ne1 and US-Ne2 and low at US-Twt. These
results are discussed further below.

We now look at the differences between DOLCE and two
widely used ET products. Figures 6 and 7 show the seasonal
mean difference ET between MPIBGC (Max Planck Institute
for Biogeochemistry) and DOLCE and between LandFlux-
EVAL-DIAG and DOLCE respectively. The differences were
computed from seasonal means using the same spatial mask
over the period 2000–2009 for MPIBGC and 2000–2005 for
LandFlux-EVAL-DIAG. The seasonal plots in Fig. 6 show
that, overall, DOLCE has lower ET than MPIBGC. DOLCE
tends to have higher ET values in the Asian and Australian
tropics during the austral summer and autumn. DOLCE has
higher ET values in the Sahel during September–November
and in the high plateau of Madagascar during December–
May. In the Amazon, DOLCE exhibits higher ET values be-
tween June and November. Higher values of DOLCE are
seen in the Guiana highlands throughout the year. The Brazil-
ian highlands show higher values for MPIBGC from June
to November. The mid-latitudes of the Northern Hemisphere
show higher values for MPIBGC between March and August
but no significant differences are seen in this area between
September and February.

In Fig. 7, there are large differences in ET showing higher
values in LandFlux-EVAL-DIAG ET over the Amazon, the
rainforests of Southeast Asia and in the high plateau of

Madagascar throughout the year. DOLCE tends to exhibit
higher ET values in the Ethiopian highlands and Myanmar
between June and November.

Figure S5 displays the seasonal mean difference ET be-
tween (a) MPIBGC and DOLCE tier 1 and (b) MPIBGC and
the simple mean of the six component products of DOLCE
tier 1. The same spatial mask was applied in the plots and the
differences were computed as in Fig. 6. The plots show that
the differences exhibit similar patterns with stronger magni-
tude in the simple mean case.

The spatial distribution of DOLCE mean ET and its sea-
sonal variability (SD) over the austral Summer (December–
February) and Winter (June–August) from 2000 to 2009 is
shown in Fig. 8a and b respectively. The seasonal variabil-
ity of ET is larger in the warm season but is always small
over Antarctica, Greenland and the deserts in North Africa
(Sahara), the middle east (the Arabian Peninsula desert) and
Asia (i.e. the Gobi, Taklamakan and Thar deserts). The aver-
age uncertainty shown in if Fig. 8c is bigger in the warm sea-
son; this is in agreement with the relatively large size of the
flux in the warm season, and its seasonal variability shown
in Fig. 8d is also in agreement with the seasonal variabil-
ity of the flux. Figure 8e is intended to give some indica-
tion of the reliability of DOLCE. Regions in blue show grid
cells that satisfy uncertainty SD

mean ET ≤ 1. Those shown in green have
|mean ET|< 5 and uncertainty SD< 10 but do not satisfy
uncertainty SD

mean ET ≤ 1, so that the uncertainty estimates are higher
than their associated ET, but both the uncertainty and the
ET estimates are very small. All the remaining grid cells,
perhaps those least reliable, are shown in red. The global
maps in Fig. 8e show that most of the non-reliable uncer-
tainty values are located in the land added in tier 3 (Fig. 2
in yellow). This is not surprising, because uncertainty values
have been derived using only two gridded ET datasets that
are also not observationally constrained due to the lack of the
sites representing the terrestrial ecosystems and environmen-
tal conditions in these areas. Some regions show unreliable
uncertainty estimates during the cold season only, located in
the plateau of Tibet, over the Andes, the Australian deserts,
the South-African deserts, the American Great Basin and the
Rocky Mountains.

Hydrol. Earth Syst. Sci., 22, 1317–1336, 2018 www.hydrol-earth-syst-sci.net/22/1317/2018/



S. Hobeichi et al.: Derived Optimal Linear Combination Evapotranspiration (DOLCE) 1327

Figure 5. The global maps in the right column show the performance of DOLCE against in situ measurements at each of the 142 sites by
calculating four statistics: (a) RMSE, (b) mean bias, (c) SD difference and (d) correlation. The box plots on the left display the results of
these four metrics calculated separately for the sites that are satisfying the HOM case and the HET case.

4 Discussion

Many studies have analysed the systematic and random
errors of latent heat flux in FLUXNET measurements
(Dirmeyer et al., 2016; Göckede et al., 2008; Richardson

et al., 2006). These studies have detected errors of magni-
tudes that cannot be neglected. A recent study (Cheng et al.,
2017) showed that the computed eddy-covariance fluxes have
errors in the applied turbulence theory that lead to the under-
estimation of fluxes, and that this is likely to be one of the
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Figure 6. Difference between the seasonal global ET from MPIBGC and DOLCE calculated over the period 2000–2009.

Figure 7. Difference between the seasonal average ET from LandFlux-EVAL-DIAG and DOLCE calculated over the period 2000–2005.

causes of the lack of surface energy closure. In this study, we
(1) used the flag assigned to the observed flux to filter out
the low-quality data and (2) used energy-balance-corrected
FLUXNET data which have higher per-site mean values than
the raw data at most of the sites (85 % of them). We expect
that filtering together with the use of corrected data will re-
duce the magnitude of the uncertainty in the observational

data used here and compensate to a certain extent for the un-
derestimation due to the systematic errors. However, we have
not formally explored a range of approaches to addressing
this. The possibility of systematic biases in FLUXNET data
remains, and this could clearly lead to systematic biases in
DOLCE.
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Figure 8. Seasonal (a) global ET and (b) its variability (SD); (c) time average of uncertainty (the SD uncertainty
√
σ 2

e shown in Eq. 11);

(d) SD of uncertainty over time; and (e) reliability, defined as high ( uncertaint SD
mean ET ≤ 1 in blue), medium (|mean ET| ≤ 5, uncertainty SD< 10

and uncertainty SD
mean ET ≥ 1 in green) and low (in red). DJF is shown in the left column and JJA in the right column. The global mean values in

(a–d) are area weighted.

We have also assumed that error across sites is uncorre-
lated, which, given the distribution of sites, is unlikely to be
true, meaning that the effective number of sites is probably
somewhat smaller than those shown in Fig. 2. Given this de-
pendence is likely to vary depending on a range of time vary-

ing factors, we have left the job of attempting to disentangle
this issue for future work.

Nevertheless, the results of the one-site out-of-sample and
25 % out-of-sample tests above suggest that the weighting of
gridded ET products in this way produces a more capable
ET product overall. Critically, the fact that the weighting im-
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proves out-of-sample performance suggests that, while the
representativeness of point-scale measurement for the grid
scale may not exist at every single site, it does exist across
all these sites as a whole. We also investigated using bilinear
interpolation instead of direct grid cell to tower comparison
(not shown), but found no qualitative differences.

It might be reasonable to assume that eliminating sites that
poorly represent grid cell properties might further improve
these results, yet the results of categorising sites into HOM-
case and HET-case subsets suggested that this is not neces-
sarily a simple process. Our characterisation was based on
a relatively simple vegetation characterisation, yet there are
a range of soil–vegetation interactions that likely affect ET
in each location that are not captured in this classification.
Among HET-case sites, for example, the worst performance
occurred at AU-Fog. This poor performance is a reflection of
the large discrepancy between the land cover seen by the flux
tower which is a wetland landscape in a monsoonal climate
and thus characterised by high evaporation rates throughout
the year and the savanna land cover seen by the satellite prod-
ucts where the vegetation dries or dies in the dry season.
Also, we note that none of the six diagnostic products was
able to reproduce the flux measured at this site. Perhaps un-
surprisingly, DOLCE scored the worst values for correlation,
RMSE and mean bias in AU-Fog.

Aside from AU-Fog, three sites showed low correlation
(less than 0.5) between DOLCE and observations. These
include ID-Pag, ES-LgS and IL-Yat (see Supplement Ta-
ble S1). The IL-Yat site is an evergreen needleleaf forest site
located over a desert (bare) grid cell and therefore belongs to
the HET case, which might be the reason for the discrepancy
between the satellite-derived ET and the observed ET. ID-
Pag belongs to the HOM case, but a burning event occurred
in a nearby forest between mid-August and late October 2002
and caused the site to be covered with a dense smoke haze.
Although these 3 months were excluded from the analysis, it
is very likely that the burned region produced extremely dif-
ferent ET compared to the surrounding unburned landscape,
making it a HET-case site until the regeneration of the vege-
tation, and might be the reason why the weighting products
could not reproduce ET in the following couple of months.
ES-LgS is an open shrubland site that belongs to the HOM
case. This site operated from 2007 to 2009 and is currently
inactive. The reason of the low correlation of DOLCE with
the observed fluxes is not clear; however, previous studies
(Ershadi et al., 2014; McCabe et al., 2016) stated that the
complexity of shrubland landscape is the cause of the poor
performance of many models (PM, GLEAM and PT–JPL).
In the case of DOLCE, the poor performance was revealed
in one metric only (i.e. correlation). These results neverthe-
less lead us to expect that, if we construct DOLCE by incor-
porating HOM-case sites only, we might get a better prod-
uct, but the small number of sites satisfying this property,
the fact that the separation of sites into HOM case and HET
case can lead to a separation of land covers, and the difficulty

in defining a meaningful definition for expected flux homo-
geneity are limiting factors. Determining whether DOLCE
performs better at HOM-case sites or HET-case sites is in-
conclusive. Even though the worst performance of DOLCE
was achieved in HET-case sites, the box plots in Fig. 5a, d
show that the value of the median, lower and upper quartiles
are better in the HET case for two metrics (i.e. RMSE and
COR). While we expect that calibrating the weighting with
HOM case could lead to a better product, we do not expect
to see DOLCE overall performing better in any of the two
groups.

Figure 9 shows that DOLCE performs differently for dif-
ferent vegetation types, at least as sampled by the flux tow-
ers we use here. Previous studies have shown that different
ET estimation approaches perform differently over different
biomes. For example, Ershadi et al. (2014) found that the
PM models outperform PT–JPL across grasslands, croplands
and deciduous broadleaf forests, but PT–JPL has higher per-
formance than PM models over shrublands and evergreen
needleleaf forest biomes. McCabe et al. (2016) observed
poor performance of GLEAM, PM models and PT–JPL over
shrublands and low performance over the forest biomes and
higher performance over short canopies. The number of sites
for each vegetation type in our case varies, with 4 for open
shrublands (OSH), 39 for evergreen needleleaf forest (ENF),
9 for evergreen broadleaf forest (EBF), 18 for deciduous
broadleaf forest (DBF), 10 for mixed forests (MF), 4 for
woody savannas (WSA), 4 for savannas (SAV), 42 for grass-
land (GRA), 8 for wetland (WET), 1 for cropland/natural
vegetation mosaic (VEG) and 19 for croplands (CRO). Of
the 159 sites that are used to weight the tier 3 products
(GLEAM V2A and GLEAM V3A), only 142 sites are within
the spatial coverage of DOLCE. This decrease is caused
by the coarser resolution of DOLCE compared to GLEAM
products. The remaining 17 sites were located on grids that
were identified as land grid cells in GLEAM’s spatial reso-
lution (0.25◦) but water body in DOLCE’s spatial resolution
(0.5◦). The EBF box and whisker plot in Fig. 9d shows the
correlation of DOLCE at eight EBF sites, out of which two
sites are located in the tropics. The lowest correlation seen in
this biome type is at the tropical sites ID-Pag (0.26) and BR-
Sa3 (0.62). This suggests that DOLCE tends to represent ET
at the extratropical sites better than the tropics, and this is not
surprising since most of the sites that were used to calibrate
DOLCE were extratropical sites.

DOLCE has also shown a weak performance at US-Twt,
which is an irrigated rice paddy. This site gets flooded in
spring and drains in early fall, then the rice is harvested. Only
9 months were available for this site, which coincide with
the flood and drain period between spring and fall. DOLCE
could not depict the flooding and draining event, probably
because none of the weighting products can represent such
phenomena, so it is expected that the effects of seasonal
flooding are not represented in DOLCE.
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Figure 9. Four statistics – (a) RMSE, (b) mean bias, (c) SD differ-
ence and (d) correlation – calculated for DOLCE at 142 flux tower
sites and displayed by biome types. See Fig. 2 for biome abbrevia-
tions.

In this study, we sought a single weight for each product
to apply globally. But we have reason to believe that differ-
ent products are likely to perform better in different envi-
ronments, so that different weights in different climatic cir-
cumstances might well improve the result of weighting over-
all. A similar suggestion was made in the studies of Ershadi
et al. (2014) and Michel et al. (2016), who highlighted the
need to develop a composite model, where individual models
are assigned weights based on their performance across par-
ticular biome types and climate zones. We therefore tried to
cluster flux tower sites into groups (such as vegetation type)
so that each group maintains enough members to allow the
in- and out-of-sample testing approach used above. We tried

clustering by vegetation type, climate zone and aridity index
and implemented the same one-site out-of-sample testing ap-
proach as above, but, this time, in each cluster different sets
of weights will be assigned to the weighting products. The
motivation for this approach was to try to reduce the num-
ber of sites that did not show improvement as a result of
the weighting, and ideally improve performance of DOLCE
overall, yet none of these clustering approaches delivered any
improvement, possibly due to the considerably reduced sam-
ple size in each cluster (increasing the likelihood of over-
fitting). It might also be a result of grid cell heterogeneity
within the small sample that constitutes each vegetation type.
Finally, as noted above, we have no guarantee that vegetation
type is necessarily a good proxy for surface flux behaviour.
A summary of this investigation and a plot showing the re-
sults of the clustered weighting by vegetation type (Fig. S2)
are included in the Supplement.

There are relatively few towers located in the Southern
Hemisphere and the tropics (14 out of 159 sites) and none
located in the dry climates over southwest Asia and North
Africa. The weighting was therefore mostly driven by the
ability of products to match sites located in the temperate
and cold zones of the Northern Hemisphere, so that perfor-
mance in climate zones with low FLUXNET site density
was under-represented when deriving DOLCE. This might
raise questions about the performance of DOLCE in the
tropics and the Southern Hemisphere. To evaluate DOLCE
in these areas we calculated the four site metrics (RMSE,
mean bias, SD difference and correlation) separately for two
groups of sites: (1) those located in the Northern Hemi-
sphere excluding tropics and (2) sites located in the trop-
ics and/or Southern Hemisphere. We excluded the two sites
ID-Pag and AU-Fog in this exercise since both are wetland
sites and so would complicate a determination of whether
these two groups had notable behavioural differences. If sys-
tematic behavioural differences did exist between these two
groups, we would expect relatively poorer performance of
DOLCE at group 2 sites compared to group 1 sites. The re-
sults, shown in Fig. 10, appear inconclusive. DOLCE per-
formed marginally worse at group 2 sites overall; however,
with the limited number of sites in group 2, the validation
of the performance of DOLCE in the tropics and South-
ern Hemisphere remains somewhat uncertain. The uneven
distribution of eddy-covariance sites between the Northern
and Southern Hemisphere and across the different climates
might also explain why much of the largest seasonal differ-
ences DOLCE–MPI and DOLCE–LandFlux-EVAL shown in
Figs. 6 and 7 reside in the low latitudes (tropics) and the
Southern Hemisphere and the persistent differences between
DOLCE and LandFlux-EVAL in the tropics throughout the
year. The expansion of the FLUXNET network into these
areas that are lacking observations is clearly something that
would improve DOLCE and LSM evaluation more broadly.

The limitations of the weighting approach presented here
arise from issues in the observational data and limitations
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Figure 10. Four statistics – (a) RMSE, (b) mean bias, (c) SD dif-
ference and (d) correlation – calculated for DOLCE separately at
129 flux towers located at the Northern Hemisphere excluding the
tropics (NH) and at 11 towers in the Southern Hemisphere and the
tropics (SH and tropics).

in the weighted datasets that are employed. FLUXNET
data inevitably have some instrumentation-related problems
(Göckede et al., 2008) that affect the data quality of the
measured flux in some terrains and under some environmen-
tal conditions. Moreover, FLUXNET sites are not globally-
representative of all terrestrial ecosystems and not evenly dis-
tributed across the biome types, which might lead to biases
when computing the weights of the products in favour of the
product that outperforms over the most frequent cover types.
Also, in some areas where tower density is relatively high,
the information from different towers is not necessarily inde-
pendent. Finally, a common imperfection in all the weighted
products due to for example anthropogenic water manage-
ment will of course lead to the same imperfection in the de-
rived product.

In this study, DOLCE was derived by combining re-
mote sensing products that use an empirical approach (i.e.
MPIBGC) and a more physical approach (i.e. MOD16,
GLEAM V2A, GLEAM V2B, and GLEAM V3A and PML).
Constructing an ET product by combining different ap-
proaches can take advantage of their desirable features and
reduce their limitations (Zhang et al., 2016). This is indeed

Figure 11. Box and whisker plots displaying the percentage im-
provement that the weighting provides when MPIBGC is excluded
from the weighting ensemble in the 25 % out-of-sample sites test
for four metrics: MSE (a), MRSD (b), COR (c) and mean bias (d),
when compared to the equally weighted mean (Dmean) of the di-
agnostic ensemble, aggregated reference ensemble (Ragg) and each
member of the reference ensemble. Box and whisker plots represent
5000 entries; each entry is generated through randomly selecting
25 % of sites to be out of sample.

reflected by the enhanced performance of DOLCE over all
the biome types against the reference products. Table 3 shows
that the weights were attributed almost equally to each ap-
proach (i.e. ≈ 0.5 for both MPIBGC and the physical en-
semble in tier 1 and tier 2), which indicates that the two
approaches contributed equally in deriving DOLCE; it is
not surprising that MPIBGC was the most weighted product
since it is highly calibrated with flux tower data. In a fur-
ther analysis, we left MPIBGC out and we performed the
out-of-sample tests using the five remaining products. We
wanted here to test how the weighting will perform with-
out MPIBGC. The plots in Fig. 11 and 12 show the results
of the 25 % out-of-sample test and one-site out-of-sample
test respectively. Overall, without including MPIBGC, the
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Table 3. (1) Bias of weighting products and (2) weights assigned to the bias-corrected products in the case of each of the three DOLCE tiers,
and the number of flux tower sites used to feed the weighting.

DOLCE tier 1 DOLCE tier 2 DOLCE tier 3
138 sites 151 sites 159 sites

Product Weight Bias Weight Bias Weight Bias
Wm−2 Wm−2 Wm−2

MOD16 0.041 3.756 0.05 4.0
MPIBGC 0.495 3.837 0.537 3.882
GLEAM V2A −0.026 6.180 0.123 6.098 0.44 5.735
GLEAM V2B 0.192 −3.571
GLEAM V3A 0.171 −5.483 0.151 −5.221 0.56 −6.344
PML 0.127 4.982 0.139 4.668

Figure 12. Box and whisker plots displaying the percentage im-
provement that the weighting provides when MPIBGC is excluded
from the weighting ensemble in the one-site out-of-sample test for
four metrics: MSE (a), MRSD (b), COR (c) and mean bias (d),
when compared to the equally weighted mean (Dmean) of the di-
agnostic ensemble, aggregated reference ensemble (Ragg) and each
member of the reference ensemble. Products marked with ∗ have
limited spatiotemporal availability relative to the diagnostic ensem-
ble, and testing against the LFA, LFD, CS and PT products was
limited to 110, 108, 108 and 72 sites respectively.

weighting offers a smaller performance improvement than
that offered when MPIBGC is a member of weighting ensem-
ble (Figs. 3 and 4a–d). The distribution of the weights when
MPIBGC is absent from the weighting is 0.3 for both PML
and GLEAM V3A, 0.2 for GLEAM V2B, 0.13 for MOD16
and 0.07 for GLEAM V2A.

It is important to mention that the weighting approach of-
fers the possibility of enhancing DOLCE in the future by
incorporating any ET dataset that becomes available, for ex-
ample, WECANN (Water, Energy, and Carbon with Artificial
Neural Networks; Alemohammad et al., 2017) and HOLAPS
V1.0 (high-resolution land surface fluxes from satellite and
reanalysis data; Loew et al., 2016).

The uncertainty estimate presented here is firmly grounded
in the spread of existing gridded ET products but is better
than this spread alone, since this spread has been recalibrated
so that the uncertainty of DOLCE where flux tower data exist
is precisely the spread of the recalibrated products.

5 Conclusions

In this study, we presented a new global ET product with
monthly temporal resolution for 2000–2009 at 0.5◦ spatial
resolution and a calibrated estimate of its uncertainty. The
approach used to weight existing gridded ET products ac-
counted for both the performance differences and error co-
variance between the participating ET products. The DOLCE
product performs better than any of its six constituent mem-
bers overall, in addition to outperforming other well-known
gridded ET products (CSIRO global, LandFlux-EVAL-ALL,
LandFlux-EVAL-DIAG and PT–JPL) across a range of met-
rics. The weighting applied here adds only a slight improve-
ment to the simple mean of the merged products. This might
raise the question of whether it is worth applying a weighted
approach to merge ET. There are however at least three com-
pelling reasons to use this approach: (a) it removes the possi-
bility of similar component products with redundant infor-
mation biasing the mean, (b) it allows us to confirm that
point-scale flux tower measurements do indeed contain in-
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formation about fluxes at the grid box scale and (c) it allows
us to create an uncertainty estimate that better utilises the in-
formation in the component products than simply using their
range. In this work, we used six latent heat products that have
different spatial coverage and we managed to create a global
product by deriving DOLCE tiers that differ in the compo-
nent products used to derive them. This might have resulted
in spatial discontinuities that we have not explored in great
detail. We might also expand the time coverage of DOLCE
by incorporating different component products in different
time periods; however, doing so could lead to large tempo-
ral discontinuities in the derived product. Merging a variety
of different ET products is not straightforward and requires
subjective decision-making, but we aim to explore extending
temporal coverage using different combinations of compo-
nent products in future iterations of DOLCE. It was shown
that, despite the scale mismatch between the flux tower and
the grid cell, the ensemble of flux towers as a whole does
provide information about the grid cells that contain them,
since the improvements delivered by the weighting approach
were evident in sites not used to derive the weights. While
the representativeness of the point scale for the grid scale is
enhanced by only considering sites that lie within homoge-
neous grid cells, we suggest that an optimal definition of ho-
mogeneity for flux behaviour be the subject of future investi-
gation. Nevertheless, DOLCE appears to outperform existing
gridded ET products overall and offers the opportunity for
improvement as more flux tower data and new gridded ET
products become available. Expanding DOLCE over longer
time periods and incorporating more diagnostic ET datasets
(such as PT–JPL, CSIRO global, GLEAM V3B, SEBS, WE-
CANN and HOLAPS) will be carried out in future versions.

Data availability. DOLCE V1.0 can be downloaded from http:
//geonetwork.nci.org.au and its DOI is https://doi.org/10.4225/41/
58980b55b0495 (Hobeichi et al., 2017).

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/hess-22-1317-2018-supplement.
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