Articles | Volume 22, issue 2
Hydrol. Earth Syst. Sci., 22, 1033–1050, 2018
https://doi.org/10.5194/hess-22-1033-2018

Special issue: Coupled terrestrial-aquatic approaches to watershed-scale...

Hydrol. Earth Syst. Sci., 22, 1033–1050, 2018
https://doi.org/10.5194/hess-22-1033-2018

Research article 07 Feb 2018

Research article | 07 Feb 2018

The river absorption capacity determination as a tool to evaluate state of surface water

Paweł Wilk et al.

Related subject area

Subject: Water Resources Management | Techniques and Approaches: Modelling approaches
Assessing the value of seasonal hydrological forecasts for improving water resource management: insights from a pilot application in the UK
Andres Peñuela, Christopher Hutton, and Francesca Pianosi
Hydrol. Earth Syst. Sci., 24, 6059–6073, https://doi.org/10.5194/hess-24-6059-2020,https://doi.org/10.5194/hess-24-6059-2020, 2020
Short summary
From skill to value: isolating the influence of end user behavior on seasonal forecast assessment
Matteo Giuliani, Louise Crochemore, Ilias Pechlivanidis, and Andrea Castelletti
Hydrol. Earth Syst. Sci., 24, 5891–5902, https://doi.org/10.5194/hess-24-5891-2020,https://doi.org/10.5194/hess-24-5891-2020, 2020
Short summary
The value of citizen science for flood risk reduction: cost–benefit analysis of a citizen observatory in the Brenta-Bacchiglione catchment
Michele Ferri, Uta Wehn, Linda See, Martina Monego, and Steffen Fritz
Hydrol. Earth Syst. Sci., 24, 5781–5798, https://doi.org/10.5194/hess-24-5781-2020,https://doi.org/10.5194/hess-24-5781-2020, 2020
Short summary
Risk assessment in water resources planning under climate change at the Júcar River basin
Sara Suárez-Almiñana, Abel Solera, Jaime Madrigal, Joaquín Andreu, and Javier Paredes-Arquiola
Hydrol. Earth Syst. Sci., 24, 5297–5315, https://doi.org/10.5194/hess-24-5297-2020,https://doi.org/10.5194/hess-24-5297-2020, 2020
Short summary
Interplay of changing irrigation technologies and water reuse: example from the upper Snake River basin, Idaho, USA
Shan Zuidema, Danielle Grogan, Alexander Prusevich, Richard Lammers, Sarah Gilmore, and Paula Williams
Hydrol. Earth Syst. Sci., 24, 5231–5249, https://doi.org/10.5194/hess-24-5231-2020,https://doi.org/10.5194/hess-24-5231-2020, 2020
Short summary

Cited articles

Abbaspour, K. C.: SWAT-CUP2: SWAT Calibration and Uncertainty Programs – A User Manual, Department of Systems Analysis, Integrated Assessment and Modelling (SIAM), Eawag, Swiss Federal Institute of Aquatic Science and Technology, Switzerland, 2008. 
Alansi, A. W., Amin, M. S. M., Abdul Halim, G., Shafri, H. Z. M., and Aimrun, W.: Validation of SWAT model for stream flow simulation and forecasting in Upper Bernam humid tropical river basin, Malaysia, Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-6-7581-2009, 2009. 
Arnold, J. G., Kiniry, J. R., Srinivasan, R., Williams, J. R., Haney, E. B., and Neitsch, S. L.: Soil and Water Assessment Tool input/output file documentation: Version 2009, Texas Water Resources Institute Technical Report No. 365, 2011. 
Boeuf, B. and Fritsch, O.: Studying the implementation of the Water Framework Directive in Europe: a meta-analysis of 89 journal articles, Ecol. Soc., 21, 19, https://doi.org/10.5751/ES-08411-210219, 2016. 
Download
Short summary
Polish Institute of Meteorology and Water Management – State Research Institute (IMGW-PIB) has been conducting research on the use of river absorption capacity (RAC) for 5 years. The research focuses on combining mathematical modelling with traditional RAC calculations. For this purpose, the Macromodel DNS (discharge–nutrient–sea) was developed in the IMGW-PIB, along with the Soil Water Assessment Tool (SWAT). The study was conducted on a selected fragment of one of the largest rivers in Poland.