Articles | Volume 22, issue 2
https://doi.org/10.5194/hess-22-1001-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-22-1001-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Effects of microarrangement of solid particles on PCE migration and its remediation in porous media
Ming Wu
Key Laboratory of Surficial Geochemistry, Ministry of Education, Department of Hydrosciences, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
Institute of Groundwater and Earth Sciences, Jinan University, Guangzhou 510632, China
Jianfeng Wu
CORRESPONDING AUTHOR
Key Laboratory of Surficial Geochemistry, Ministry of Education, Department of Hydrosciences, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
Jichun Wu
CORRESPONDING AUTHOR
Key Laboratory of Surficial Geochemistry, Ministry of Education, Department of Hydrosciences, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
Bill X. Hu
Institute of Groundwater and Earth Sciences, Jinan University, Guangzhou 510632, China
Related authors
Ming Wu, Jianfeng Wu, Jichun Wu, and Bill X. Hu
Hydrol. Earth Syst. Sci., 24, 5903–5917, https://doi.org/10.5194/hess-24-5903-2020, https://doi.org/10.5194/hess-24-5903-2020, 2020
Short summary
Short summary
A new criterion (χi) is proposed to estimate representative elementary volume (REV) of a translucent material based on light transmission techniques. This study is essential for quantitative investigation of the scale effect of porous media and contaminant transformation. The fluid and contaminant migration and transform in porous media can be simulated accurately according to the REV estimation results using the light transmission technique and the appropriate criterion χi.
Jian Song, Yun Yang, Xiaomin Sun, Jin Lin, Ming Wu, Jianfeng Wu, and Jichun Wu
Hydrol. Earth Syst. Sci., 24, 2323–2341, https://doi.org/10.5194/hess-24-2323-2020, https://doi.org/10.5194/hess-24-2323-2020, 2020
Short summary
Short summary
We proposed a novel many-objective simulation-optimization framework for conjunctive use of surface water and groundwater in Yanqi Basin, northwest China. The management model involving socioeconomic and environmental objectives was constructed to explore optimal water-use schemes. Three runoff scenarios were then specified to quantify the effect of runoff reduction related to climate change on water management. Results provide Pareto-optimal solutions for basin-scale water management.
Chuan-An Xia, Xiaodong Luo, Bill X. Hu, Monica Riva, and Alberto Guadagnini
Hydrol. Earth Syst. Sci., 25, 1689–1709, https://doi.org/10.5194/hess-25-1689-2021, https://doi.org/10.5194/hess-25-1689-2021, 2021
Short summary
Short summary
Our study shows that (i) monitoring wells installed with packers provide the (overall) best conductivity estimates; (ii) conductivity estimates anchored on information from partially and fully screened wells are of similar quality; (iii) inflation of the measurement-error covariance matrix can improve conductivity estimates when a simplified flow model is adopted; and (iv) when compared to the MC-based EnKF, the MEs-based EnKF can efficiently and accurately estimate conductivity and head fields.
Ming Wu, Jianfeng Wu, Jichun Wu, and Bill X. Hu
Hydrol. Earth Syst. Sci., 24, 5903–5917, https://doi.org/10.5194/hess-24-5903-2020, https://doi.org/10.5194/hess-24-5903-2020, 2020
Short summary
Short summary
A new criterion (χi) is proposed to estimate representative elementary volume (REV) of a translucent material based on light transmission techniques. This study is essential for quantitative investigation of the scale effect of porous media and contaminant transformation. The fluid and contaminant migration and transform in porous media can be simulated accurately according to the REV estimation results using the light transmission technique and the appropriate criterion χi.
Haifan Liu, Heng Dai, Jie Niu, Bill X. Hu, Dongwei Gui, Han Qiu, Ming Ye, Xingyuan Chen, Chuanhao Wu, Jin Zhang, and William Riley
Hydrol. Earth Syst. Sci., 24, 4971–4996, https://doi.org/10.5194/hess-24-4971-2020, https://doi.org/10.5194/hess-24-4971-2020, 2020
Short summary
Short summary
It is still challenging to apply the quantitative and comprehensive global sensitivity analysis method to complex large-scale process-based hydrological models because of variant uncertainty sources and high computational cost. This work developed a new tool and demonstrate its implementation to a pilot example for comprehensive global sensitivity analysis of large-scale hydrological modelling. This method is mathematically rigorous and can be applied to other large-scale hydrological models.
Jian Song, Yun Yang, Xiaomin Sun, Jin Lin, Ming Wu, Jianfeng Wu, and Jichun Wu
Hydrol. Earth Syst. Sci., 24, 2323–2341, https://doi.org/10.5194/hess-24-2323-2020, https://doi.org/10.5194/hess-24-2323-2020, 2020
Short summary
Short summary
We proposed a novel many-objective simulation-optimization framework for conjunctive use of surface water and groundwater in Yanqi Basin, northwest China. The management model involving socioeconomic and environmental objectives was constructed to explore optimal water-use schemes. Three runoff scenarios were then specified to quantify the effect of runoff reduction related to climate change on water management. Results provide Pareto-optimal solutions for basin-scale water management.
Yun Zhang, Guofeng He, Jichun Wu, Zhiduo Zhu, Xuexin Yan, and Tianliang Yang
Proc. IAHS, 382, 387–390, https://doi.org/10.5194/piahs-382-387-2020, https://doi.org/10.5194/piahs-382-387-2020, 2020
Short summary
Short summary
Groundwater pumping can cause severe land subsidence and decrease ground surface level. A physical model test were conducted to mimic this process. An interesting phenomenon is that, due to their low permeability, aquitard units may expand in a period when groundwater is withdrawn from the neighboring aquifer units, and they may compact when groundwater is recharged into the neighbor aquifer units.
Pengcheng Xu, Dong Wang, Vijay P. Singh, Yuankun Wang, Jichun Wu, Huayu Lu, Lachun Wang, Jiufu Liu, and Jianyun Zhang
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-358, https://doi.org/10.5194/hess-2019-358, 2019
Revised manuscript not accepted
Short summary
Short summary
In this study, a multivariate nonstationary risk analysis of annual extreme rainfall events, extracted from daily precipitation data observed at six meteorological stations in Haihe River basin, China, was done in three phases: (1) Several statistical tests, were applied to both the marginal distributions and the dependence structures to decipher different forms of nonstationarity; (2) Time-dependent copulas were adopted to model the distribution structure.
Haifan Liu, Heng Dai, Jie Niu, Bill X. Hu, Han Qiu, Dongwei Gui, Ming Ye, Xingyuan Chen, Chuanhao Wu, Jin Zhang, and William Riley
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-246, https://doi.org/10.5194/hess-2019-246, 2019
Manuscript not accepted for further review
Guoping Lu and Bill X. Hu
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-624, https://doi.org/10.5194/hess-2018-624, 2019
Manuscript not accepted for further review
Short summary
Short summary
It has been postulated that deep faults are well channeled and networked in the crust. The Xinzhou geothermal field presents a deep fault zone with dome-shaped surface of equilibrium hydraulic heads. Thermal fluid flows are strongly regulated by gravity, buoyancy and viscosity as well. This paper showed that the deep fault is as permeable as clean sands and lower end of gravels. Fluid-flowing faults implicate propagation of pressure/porosity waves and lower limit of groundwater circulations.
Dan Yu, Ping Xie, Xiaohua Dong, Xiaonong Hu, Ji Liu, Yinghai Li, Tao Peng, Haibo Ma, Kai Wang, and Shijin Xu
Hydrol. Earth Syst. Sci., 22, 5001–5019, https://doi.org/10.5194/hess-22-5001-2018, https://doi.org/10.5194/hess-22-5001-2018, 2018
Peng-Fei Han, Xu-Sheng Wang, Xiaomei Jin, and Bill X. Hu
Proc. IAHS, 379, 433–442, https://doi.org/10.5194/piahs-379-433-2018, https://doi.org/10.5194/piahs-379-433-2018, 2018
Chuanhao Wu, Bill X. Hu, Guoru Huang, Peng Wang, and Kai Xu
Hydrol. Earth Syst. Sci., 22, 1971–1991, https://doi.org/10.5194/hess-22-1971-2018, https://doi.org/10.5194/hess-22-1971-2018, 2018
Short summary
Short summary
China has suffered some of the effects of global warming, and one of the potential implications of climate warming is the alteration of the temporal–spatial patterns of water resources. In this paper, the Budyko-based elasticity method was used to investigate the responses of runoff to historical and future climate variability over China at both grid and catchment scales. The results help to better understand the hydrological effects of climate change and adapt to a changing environment.
Zexuan Xu, Bill X. Hu, and Ming Ye
Hydrol. Earth Syst. Sci., 22, 221–239, https://doi.org/10.5194/hess-22-221-2018, https://doi.org/10.5194/hess-22-221-2018, 2018
Short summary
Short summary
This study helps hydrologists better understand the parameters in modeling seawater intrusion in a coastal karst aquifer. Local and global sensitivity studies are conducted to evaluate a density-dependent numerical model of seawater intrusion. The sensitivity analysis indicates that karst features are critical for seawater intrusion modeling, and the evaluation of hydraulic conductivity is biased in continuum SEAWAT model. Dispervisity is no longer important in the advection-dominated aquifer.
Xiujie Wu, Xu-Sheng Wang, Yang Wang, and Bill X. Hu
Hydrol. Earth Syst. Sci., 21, 4419–4431, https://doi.org/10.5194/hess-21-4419-2017, https://doi.org/10.5194/hess-21-4419-2017, 2017
Short summary
Short summary
It is critical to identify the origins of water in arid and semiarid regions for management and protection of the water resources. The D, 18O, 3H and 14C in water samples from the Badain Jaran Desert, China, were analyzed. The results show that groundwater supplies the lakes and originates from local precipitation and adjacent mountains. Negative d-excess values of water in the area were the result of evaporation. The 14C ages do not represent the residence time of local groundwater.
Chuanhao Wu, Pat J.-F. Yeh, Kai Xu, Bill X. Hu, Guoru Huang, and Peng Wang
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-441, https://doi.org/10.5194/hess-2017-441, 2017
Manuscript not accepted for further review
Z. Wang, Y. Zhang, J. Wu, J. Yu, and X. Gong
Proc. IAHS, 372, 395–398, https://doi.org/10.5194/piahs-372-395-2015, https://doi.org/10.5194/piahs-372-395-2015, 2015
S. Ye, Y. Wang, J. Wu, P. Teatini, J. Yu, X. Gong, and G. Wang
Proc. IAHS, 372, 249–253, https://doi.org/10.5194/piahs-372-249-2015, https://doi.org/10.5194/piahs-372-249-2015, 2015
S. Ye, Y. Luo, J. Wu, P. Teatini, H. Wang, and X. Jiao
Proc. IAHS, 372, 443–448, https://doi.org/10.5194/piahs-372-443-2015, https://doi.org/10.5194/piahs-372-443-2015, 2015
W. Tian, X. Li, G.-D. Cheng, X.-S. Wang, and B. X. Hu
Hydrol. Earth Syst. Sci., 16, 4707–4723, https://doi.org/10.5194/hess-16-4707-2012, https://doi.org/10.5194/hess-16-4707-2012, 2012
Related subject area
Subject: Groundwater hydrology | Techniques and Approaches: Theory development
Technical note: Analytical solution for well water response to Earth tides in leaky aquifers with storage and compressibility in the aquitard
Solutions for Thermally-driven Reactive Transport and Porosity Evolution in Geothermal Systems (“Reactive Lauwerier Problem”)
Identification, Mapping and Eco-hydrological Signal Analysis for Groundwater-dependent Ecosystems (GDEs) in Langxi River Basin, North China
Flow recession behavior of preferential subsurface flow patterns with minimum energy dissipation
Towards a hydrogeomorphological understanding of proglacial catchments: an assessment of groundwater storage and release in an Alpine catchment
Effect of topographic slope on the export of nitrate in humid catchments: a 3D model study
Transit Time index (TTi) as an adaptation of the humification index to illustrate transit time differences in karst hydrosystems: application to the karst springs of the Fontaine de Vaucluse system (southeastern France)
In situ estimation of subsurface hydro-geomechanical properties using the groundwater response to semi-diurnal Earth and atmospheric tides
The Thiem team – Adolf and Günther Thiem, two forefathers of hydrogeology
Effects of aquifer geometry on seawater intrusion in annulus segment island aquifers
Depth to water table correction for initial carbon-14 activities in groundwater mean residence time estimation
Preferential pathways for fluid and solutes in heterogeneous groundwater systems: self-organization, entropy, work
Statistical characterization of environmental hot spots and hot moments and applications in groundwater hydrology
Technical note: Disentangling the groundwater response to Earth and atmospheric tides to improve subsurface characterisation
Flowing wells: terminology, history and role in the evolution of groundwater science
Asymmetric impact of groundwater use on groundwater droughts
New model of reactive transport in a single-well push–pull test with aquitard effect and wellbore storage
HESS Opinions: The myth of groundwater sustainability in Asia
Groundwater salinity variation in Upazila Assasuni (southwestern Bangladesh), as steered by surface clay layer thickness, relative elevation and present-day land use
Changes in groundwater drought associated with anthropogenic warming
Application of environmental tracers for investigation of groundwater mean residence time and aquifer recharge in fault-influenced hydraulic drop alluvium aquifers
HESS Opinions: Linking Darcy's equation to the linear reservoir
Hydrological connectivity from glaciers to rivers in the Qinghai–Tibet Plateau: roles of suprapermafrost and subpermafrost groundwater
Temporal variations of groundwater tables and implications for submarine groundwater discharge: a 3-decade case study in central Japan
Consequences and mitigation of saltwater intrusion induced by short-circuiting during aquifer storage and recovery in a coastal subsurface
Understanding groundwater – students' pre-conceptions and conceptual change by means of a theory-guided multimedia learning program
The referential grain size and effective porosity in the Kozeny–Carman model
Approximate analysis of three-dimensional groundwater flow toward a radial collector well in a finite-extent unconfined aquifer
Technical Note: The use of an interrupted-flow centrifugation method to characterise preferential flow in low permeability media
Shallow groundwater thermal sensitivity to climate change and land cover disturbances: derivation of analytical expressions and implications for stream temperature modeling
Confronting the vicinity of the surface water and sea shore in a shallow glaciogenic aquifer in southern Finland
Residence times and mixing of water in river banks: implications for recharge and groundwater–surface water exchange
Using 14C and 3H to understand groundwater flow and recharge in an aquifer window
Hydrogeology of an Alpine rockfall aquifer system and its role in flood attenuation and maintaining baseflow
Mobilisation or dilution? Nitrate response of karst springs to high rainfall events
Transferring the concept of minimum energy dissipation from river networks to subsurface flow patterns
Spectral induced polarization measurements for predicting the hydraulic conductivity in sandy aquifers
Transient analysis of fluctuations of electrical conductivity as tracer in the stream bed
Teaching hydrogeology: a review of current practice
Transient flow between aquifers and surface water: analytically derived field-scale hydraulic heads and fluxes
Influence of initial heterogeneities and recharge limitations on the evolution of aperture distributions in carbonate aquifers
Impact of climate change on groundwater point discharge: backflooding of karstic springs (Loiret, France)
Stream depletion rate with horizontal or slanted wells in confined aquifers near a stream
Tidal propagation in an oceanic island with sloping beaches
Rémi Valois, Agnès Rivière, Jean-Michel Vouillamoz, and Gabriel C. Rau
Hydrol. Earth Syst. Sci., 28, 1041–1054, https://doi.org/10.5194/hess-28-1041-2024, https://doi.org/10.5194/hess-28-1041-2024, 2024
Short summary
Short summary
Characterizing aquifer systems is challenging because it is difficult to obtain in situ information. They can, however, be characterized using natural forces such as Earth tides. Models that account for more complex situations are still necessary to extend the use of Earth tides to assess hydromechanical properties of aquifer systems. Such a model is developed in this study and applied to a case study in Cambodia, where a combination of tides was used in order to better constrain the model.
Roi Roded, Einat Aharonov, Piotr Szymczak, Manolis Veveakis, Boaz Lazar, and Laura E. Dalton
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-307, https://doi.org/10.5194/hess-2023-307, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
Common practices in water resources management and geothermal applications involve the injection of hot or cold water into aquifers. The resulting thermal changes may lead to chemical disequilibrium and consequent mineral dissolution/precipitation in the rock void-space. A mathematical model is developed to study the effects of such thermal-fluid injection on the evolution of water composition, aquifer porosity and permeability. The model is then applied to two important case studies.
Mingyang Li, Fulin Li, Shidong Fu, Huawei Chen, Kairan Wang, Xuequn Chen, and Jiwen Huang
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-151, https://doi.org/10.5194/hess-2023-151, 2023
Revised manuscript accepted for HESS
Short summary
Short summary
The research on GDEs started earlier, but because there is no good identification and classification method, most of the related research is also concentrated in Europe and Australia. In this study, the lower Yellow River basin in northern China with well-developed karst was selected as the study area, and a four-diagnostic criteria framework for identifying the GDEs based on remote sensing, GIS data dredging and hydrogeological surveys was proposed on the basis of previous studies.
Jannick Strüven and Stefan Hergarten
Hydrol. Earth Syst. Sci., 27, 3041–3058, https://doi.org/10.5194/hess-27-3041-2023, https://doi.org/10.5194/hess-27-3041-2023, 2023
Short summary
Short summary
This study uses dendritic flow patterns to analyze the recession behavior of aquifer springs. The results show that the long-term recession becomes slower for large catchments. After a short recharge event, however, the short-term behavior differs strongly from the exponential recession that would be expected from a linear reservoir. The exponential component still accounts for more than 80 % of the total discharge, much more than typically assumed for karst aquifers.
Tom Müller, Stuart N. Lane, and Bettina Schaefli
Hydrol. Earth Syst. Sci., 26, 6029–6054, https://doi.org/10.5194/hess-26-6029-2022, https://doi.org/10.5194/hess-26-6029-2022, 2022
Short summary
Short summary
This research provides a comprehensive analysis of groundwater storage in Alpine glacier forefields, a zone rapidly evolving with glacier retreat. Based on data analysis of a case study, it provides a simple perceptual model showing where and how groundwater is stored and released in a high Alpine environment. It especially points out the presence of groundwater storages in both fluvial and bedrock aquifers, which may become more important with future glacier retreat.
Jie Yang, Qiaoyu Wang, Ingo Heidbüchel, Chunhui Lu, Yueqing Xie, Andreas Musolff, and Jan H. Fleckenstein
Hydrol. Earth Syst. Sci., 26, 5051–5068, https://doi.org/10.5194/hess-26-5051-2022, https://doi.org/10.5194/hess-26-5051-2022, 2022
Short summary
Short summary
We assessed the effect of catchment topographic slopes on the nitrate export dynamics in terms of the nitrogen mass fluxes and concentration level using a coupled surface–subsurface model. We found that flatter landscapes tend to retain more nitrogen mass in the soil and export less nitrogen mass to the stream, explained by the reduced leaching and increased potential of degradation in flat landscapes. We emphasized that stream water quality is potentially less vulnerable in flatter landscapes.
Leïla Serène, Christelle Batiot-Guilhe, Naomi Mazzilli, Christophe Emblanch, Milanka Babic, Julien Dupont, Roland Simler, Matthieu Blanc, and Gérard Massonnat
Hydrol. Earth Syst. Sci., 26, 5035–5049, https://doi.org/10.5194/hess-26-5035-2022, https://doi.org/10.5194/hess-26-5035-2022, 2022
Short summary
Short summary
This work aims to develop the Transit Time index (TTi) as a natural tracer of karst groundwater transit time, usable in the 0–6-month range. Based on the fluorescence of organic matter, TTi shows its relevance to detect a small proportion of fast infiltration water within a mix, while other natural transit time tracers provide no or less sensitive information. Comparison of the average TTi of different karst springs also provides consistent results with the expected relative transit times.
Gabriel C. Rau, Timothy C. McMillan, Martin S. Andersen, and Wendy A. Timms
Hydrol. Earth Syst. Sci., 26, 4301–4321, https://doi.org/10.5194/hess-26-4301-2022, https://doi.org/10.5194/hess-26-4301-2022, 2022
Short summary
Short summary
This work develops and applies a new method to estimate hydraulic and geomechanical subsurface properties in situ using standard groundwater and atmospheric pressure records. The estimated properties comply with expected values except for the Poisson ratio, which we attribute to the investigated scale and conditions. Our new approach can be used to cost-effectively investigate the subsurface using standard monitoring datasets.
Georg J. Houben and Okke Batelaan
Hydrol. Earth Syst. Sci., 26, 4055–4091, https://doi.org/10.5194/hess-26-4055-2022, https://doi.org/10.5194/hess-26-4055-2022, 2022
Short summary
Short summary
Unbeknown to most hydrologists, many methods used in groundwater hydrology today go back to work by Adolf and Günther Thiem. Their work goes beyond the Dupuit–Thiem analytical model for pump tests mentioned in many textbooks. It includes, e.g., the development and improvement of isopotential maps, tracer tests, and vertical well constructions. Extensive literature and archive research has been conducted to identify how and where the Thiems developed their methods and how they spread.
Zhaoyang Luo, Jun Kong, Chengji Shen, Pei Xin, Chunhui Lu, Ling Li, and David Andrew Barry
Hydrol. Earth Syst. Sci., 25, 6591–6602, https://doi.org/10.5194/hess-25-6591-2021, https://doi.org/10.5194/hess-25-6591-2021, 2021
Short summary
Short summary
Analytical solutions are derived for steady-state seawater intrusion in annulus segment aquifers. These analytical solutions are validated by comparing their predictions with experimental data. We find seawater intrusion is the most extensive in divergent aquifers, and the opposite is the case for convergent aquifers. The analytical solutions facilitate engineers and hydrologists in evaluating seawater intrusion more efficiently in annulus segment aquifers with a complex geometry.
Dylan J. Irvine, Cameron Wood, Ian Cartwright, and Tanya Oliver
Hydrol. Earth Syst. Sci., 25, 5415–5424, https://doi.org/10.5194/hess-25-5415-2021, https://doi.org/10.5194/hess-25-5415-2021, 2021
Short summary
Short summary
It is widely assumed that 14C is in contact with the atmosphere until recharging water reaches the water table. Unsaturated zone (UZ) studies have shown that 14C decreases with depth below the land surface. We produce a relationship between UZ 14C and depth to the water table to estimate input 14C activities for groundwater age estimation. Application of the new relationship shows that it is important for UZ processes to be considered in groundwater mean residence time estimation.
Erwin Zehe, Ralf Loritz, Yaniv Edery, and Brian Berkowitz
Hydrol. Earth Syst. Sci., 25, 5337–5353, https://doi.org/10.5194/hess-25-5337-2021, https://doi.org/10.5194/hess-25-5337-2021, 2021
Short summary
Short summary
This study uses the concepts of entropy and work to quantify and explain the emergence of preferential flow and transport in heterogeneous saturated porous media. We found that the downstream concentration of solutes in preferential pathways implies a downstream declining entropy in the transverse distribution of solute transport pathways. Preferential flow patterns with lower entropies emerged within media of higher heterogeneity – a stronger self-organization despite a higher randomness.
Jiancong Chen, Bhavna Arora, Alberto Bellin, and Yoram Rubin
Hydrol. Earth Syst. Sci., 25, 4127–4146, https://doi.org/10.5194/hess-25-4127-2021, https://doi.org/10.5194/hess-25-4127-2021, 2021
Short summary
Short summary
We developed a stochastic framework with indicator random variables to characterize the spatiotemporal distribution of environmental hot spots and hot moments (HSHMs) that represent rare locations and events exerting a disproportionate influence over the environment. HSHMs are characterized by static and dynamic indicators. This framework is advantageous as it allows us to calculate the uncertainty associated with HSHMs based on uncertainty associated with its contributors.
Gabriel C. Rau, Mark O. Cuthbert, R. Ian Acworth, and Philipp Blum
Hydrol. Earth Syst. Sci., 24, 6033–6046, https://doi.org/10.5194/hess-24-6033-2020, https://doi.org/10.5194/hess-24-6033-2020, 2020
Short summary
Short summary
This work provides an important generalisation of a previously developed method that quantifies subsurface barometric efficiency using the groundwater level response to Earth and atmospheric tides. The new approach additionally allows the quantification of hydraulic conductivity and specific storage. This enables improved and rapid assessment of subsurface processes and properties using standard pressure measurements.
Xiao-Wei Jiang, John Cherry, and Li Wan
Hydrol. Earth Syst. Sci., 24, 6001–6019, https://doi.org/10.5194/hess-24-6001-2020, https://doi.org/10.5194/hess-24-6001-2020, 2020
Short summary
Short summary
The gushing of water from flowing wells is a natural phenomenon of interest to the public. This review demonstrates that this spectacular phenomenon also instigated the science of groundwater and can be considered a root of groundwater hydrology. Observations of flowing wells not only led to the foundation of many principles of traditional groundwater hydrology but also played a vital role in the paradigm shift from aquitard-bound flow to cross-formational flow driven by topography.
Doris E. Wendt, Anne F. Van Loon, John P. Bloomfield, and David M. Hannah
Hydrol. Earth Syst. Sci., 24, 4853–4868, https://doi.org/10.5194/hess-24-4853-2020, https://doi.org/10.5194/hess-24-4853-2020, 2020
Short summary
Short summary
Groundwater use changes the availability of groundwater, especially during droughts. This study investigates the impact of groundwater use on groundwater droughts. A methodological framework is presented that was developed and applied to the UK. We identified an asymmetric impact of groundwater use on droughts, which highlights the relation between short-term and long-term strategies for sustainable groundwater use.
Quanrong Wang, Junxia Wang, Hongbin Zhan, and Wenguang Shi
Hydrol. Earth Syst. Sci., 24, 3983–4000, https://doi.org/10.5194/hess-24-3983-2020, https://doi.org/10.5194/hess-24-3983-2020, 2020
Franklin W. Schwartz, Ganming Liu, and Zhongbo Yu
Hydrol. Earth Syst. Sci., 24, 489–500, https://doi.org/10.5194/hess-24-489-2020, https://doi.org/10.5194/hess-24-489-2020, 2020
Short summary
Short summary
We are concerned about the sad state of affairs around groundwater in the developing countries of Asia and the obvious implications for sustainability. Groundwater production for irrigated agriculture has led to water-level declines that continue to worsen. Yet in the most populous countries, China, India, Pakistan, and Iran, there are only token efforts towards evidence-based sustainable management. It is unrealistic to expect evidence-based groundwater sustainability to develop any time soon.
Floris Loys Naus, Paul Schot, Koos Groen, Kazi Matin Ahmed, and Jasper Griffioen
Hydrol. Earth Syst. Sci., 23, 1431–1451, https://doi.org/10.5194/hess-23-1431-2019, https://doi.org/10.5194/hess-23-1431-2019, 2019
Short summary
Short summary
In this paper, we postulate a possible evolution of the groundwater salinity around a village in southwestern Bangladesh, based on high-density fieldwork. We identified that the thickness of the surface clay layer, the surface elevation and the present-day land use determine whether fresh or saline groundwater has formed. The outcomes show how the large groundwater salinity variation in southwestern Bangladesh can be understood, which is valuable for the water management in the region.
John P. Bloomfield, Benjamin P. Marchant, and Andrew A. McKenzie
Hydrol. Earth Syst. Sci., 23, 1393–1408, https://doi.org/10.5194/hess-23-1393-2019, https://doi.org/10.5194/hess-23-1393-2019, 2019
Short summary
Short summary
Groundwater is susceptible to drought due to natural variations in climate; however, to date there is no evidence of a relationship between climate change and groundwater drought. Using two long groundwater level records from the UK, we document increases in frequency, magnitude and intensity and changes in duration of groundwater drought associated with climate warming and infer that, given the extent of shallow groundwater globally, warming may widely effect changes to groundwater droughts.
Bin Ma, Menggui Jin, Xing Liang, and Jing Li
Hydrol. Earth Syst. Sci., 23, 427–446, https://doi.org/10.5194/hess-23-427-2019, https://doi.org/10.5194/hess-23-427-2019, 2019
Short summary
Short summary
Groundwater supplies the most freshwater for industrial and agricultural production and domestic use in the arid northwest of China. This research uses environmental tracers to enhance one's understanding of groundwater, including aquifer recharge sources and groundwater mean residence times in the alluvium aquifers. The results provide valuable implications for groundwater resources regulation and sustainable development and have practical significance for other arid areas.
Hubert H. G. Savenije
Hydrol. Earth Syst. Sci., 22, 1911–1916, https://doi.org/10.5194/hess-22-1911-2018, https://doi.org/10.5194/hess-22-1911-2018, 2018
Short summary
Short summary
This paper provides the connection between two simple equations describing groundwater flow at different scales: the Darcy equation describes groundwater flow at pore scale, the linear reservoir equation at catchment scale. The connection between the two appears to be very simple. The two parameters of the equations are proportional, depending on the porosity of the subsoil and the resistance for the groundwater to enter the surface drainage network.
Rui Ma, Ziyong Sun, Yalu Hu, Qixin Chang, Shuo Wang, Wenle Xing, and Mengyan Ge
Hydrol. Earth Syst. Sci., 21, 4803–4823, https://doi.org/10.5194/hess-21-4803-2017, https://doi.org/10.5194/hess-21-4803-2017, 2017
Short summary
Short summary
The roles of groundwater flow in the hydrological cycle within the alpine area characterized by permafrost or seasonal frost are poorly known. We investigated the role of permafrost in controlling groundwater flow and hydrological connections between glaciers and river. The recharge, flow path and discharge of permafrost groundwater at the study site were explored. Two mechanisms were proposed to explain the significantly seasonal variation in interaction between groundwater and surface water.
Bing Zhang, Jing Zhang, and Takafumi Yoshida
Hydrol. Earth Syst. Sci., 21, 3417–3425, https://doi.org/10.5194/hess-21-3417-2017, https://doi.org/10.5194/hess-21-3417-2017, 2017
Short summary
Short summary
Since groundwater is the linkage between climate changes and fresh submarine groundwater discharge, the variations of and relationships among monthly groundwater table, rainfall, snowfall, and climate change events from 1985 to 2015 were analyzed by wavelet coherence to discuss the implications for climate changes. The results show the increase in precipitation and the groundwater table, indicating that fresh submarine groundwater discharge flux may increase under climate change.
Koen Gerardus Zuurbier and Pieter Jan Stuyfzand
Hydrol. Earth Syst. Sci., 21, 1173–1188, https://doi.org/10.5194/hess-21-1173-2017, https://doi.org/10.5194/hess-21-1173-2017, 2017
Short summary
Short summary
The subsurface is increasingly perforated for exploitation of water and energy. This has increased the risk of leakage between originally separated aquifers. It is shown how this leakage can have a very negative impact on the recovery of freshwater during aquifer storage and recovery (ASR) in brackish-saline aquifers. Deep interception of intruding brackish-saline water can mitigate the negative effects and buoyancy of freshwater to some extent, but not completely.
Ulrike Unterbruner, Sylke Hilberg, and Iris Schiffl
Hydrol. Earth Syst. Sci., 20, 2251–2266, https://doi.org/10.5194/hess-20-2251-2016, https://doi.org/10.5194/hess-20-2251-2016, 2016
Short summary
Short summary
Studies show that young people have difficulties with correctly understanding groundwater. We designed a multimedia learning program about groundwater and tested its learning efficacy with pupils and teacher-training students. A novelty is the theory-guided designing of the program on the basis of hydrogeology and science education. The pupils and students greatly benefited from working through the multimedia learning program.
Kosta Urumović and Kosta Urumović Sr.
Hydrol. Earth Syst. Sci., 20, 1669–1680, https://doi.org/10.5194/hess-20-1669-2016, https://doi.org/10.5194/hess-20-1669-2016, 2016
Short summary
Short summary
Calculation of hydraulic conductivity of porous materials is crucial for further use in hydrogeological modeling. The Kozeny–Carman model is theoretically impeccable but has not been properly used in recent scientific and expert literature. In this paper, proper use of the Kozeny-Carman formula is given through presentation of geometric mean grain size in the drilled-core sample as the referential mean grain size. Also, procedures for identification of real effective porosity of porous media are presented.
C.-S. Huang, J.-J. Chen, and H.-D. Yeh
Hydrol. Earth Syst. Sci., 20, 55–71, https://doi.org/10.5194/hess-20-55-2016, https://doi.org/10.5194/hess-20-55-2016, 2016
Short summary
Short summary
Existing solutions for the problem of pumping at a radial collector well (RCW) in unconfined aquifers either require laborious calculation or predict divergent results at a middle period of pumping. This study relaxes the above two limitations to develop a new analytical solution for the problem. The application of the solution is convenient for those who are not familiar with numerical methods. New findings regarding the responses of flow to pumping at RCW are addressed.
R. A. Crane, M. O. Cuthbert, and W. Timms
Hydrol. Earth Syst. Sci., 19, 3991–4000, https://doi.org/10.5194/hess-19-3991-2015, https://doi.org/10.5194/hess-19-3991-2015, 2015
Short summary
Short summary
We present an interrupted-flow centrifugation technique to characterise the vertical hydraulic properties of dual porosity, low permeability media. Use of large core samples (100mm diameter) enables hydraulic-conductivity-scale issues in dual porosity media to be overcome. Elevated centrifugal force also enables simulating in situ total stress conditions. The methodology is an important tool to assess the ability of dual porosity aquitards to protect underlying aquifer systems.
B. L. Kurylyk, K. T. B. MacQuarrie, D. Caissie, and J. M. McKenzie
Hydrol. Earth Syst. Sci., 19, 2469–2489, https://doi.org/10.5194/hess-19-2469-2015, https://doi.org/10.5194/hess-19-2469-2015, 2015
Short summary
Short summary
Changes in climate and land cover are known to warm streams by altering surface heat fluxes. However, the influence of these disturbances on shallow groundwater temperature are not as well understood. In small streams, groundwater discharge may also exert a control on stream temperature, and thus groundwater warming may eventually produce additional stream warming not considered in most existing models. This study investigates these processes and suggests stream temperature model improvements.
S. Luoma, J. Okkonen, K. Korkka-Niemi, N. Hendriksson, and B. Backman
Hydrol. Earth Syst. Sci., 19, 1353–1370, https://doi.org/10.5194/hess-19-1353-2015, https://doi.org/10.5194/hess-19-1353-2015, 2015
N. P. Unland, I. Cartwright, D. I. Cendón, and R. Chisari
Hydrol. Earth Syst. Sci., 18, 5109–5124, https://doi.org/10.5194/hess-18-5109-2014, https://doi.org/10.5194/hess-18-5109-2014, 2014
Short summary
Short summary
Periodic flooding of rivers should result in increased groundwater recharge near rivers and thus - younger and fresher groundwater near rivers. This study found the age and salinity of shallow groundwater to increase with proximity to the Tambo River in South East Australia. This appears to be due to the upwelling of older, regional groundwater closer the river. Other chemical parameters are consistent with this. This is a process that may be occurring in other similar river systems.
A. P. Atkinson, I. Cartwright, B. S. Gilfedder, D. I. Cendón, N. P. Unland, and H. Hofmann
Hydrol. Earth Syst. Sci., 18, 4951–4964, https://doi.org/10.5194/hess-18-4951-2014, https://doi.org/10.5194/hess-18-4951-2014, 2014
Short summary
Short summary
This research article uses of radiogenic isotopes, stable isotopes and groundwater geochemistry to study groundwater age and recharge processes in the Gellibrand Valley, a relatively unstudied catchment and potential groundwater resource. The valley is found to contain both "old", regionally recharged groundwater (300-10,000 years) in the near-river environment, and modern groundwater (0-100 years old) further back on the floodplain. There is no recharge of the groundwater by high river flows.
U. Lauber, P. Kotyla, D. Morche, and N. Goldscheider
Hydrol. Earth Syst. Sci., 18, 4437–4452, https://doi.org/10.5194/hess-18-4437-2014, https://doi.org/10.5194/hess-18-4437-2014, 2014
M. Huebsch, O. Fenton, B. Horan, D. Hennessy, K. G. Richards, P. Jordan, N. Goldscheider, C. Butscher, and P. Blum
Hydrol. Earth Syst. Sci., 18, 4423–4435, https://doi.org/10.5194/hess-18-4423-2014, https://doi.org/10.5194/hess-18-4423-2014, 2014
S. Hergarten, G. Winkler, and S. Birk
Hydrol. Earth Syst. Sci., 18, 4277–4288, https://doi.org/10.5194/hess-18-4277-2014, https://doi.org/10.5194/hess-18-4277-2014, 2014
M. Attwa and T. Günther
Hydrol. Earth Syst. Sci., 17, 4079–4094, https://doi.org/10.5194/hess-17-4079-2013, https://doi.org/10.5194/hess-17-4079-2013, 2013
C. Schmidt, A. Musolff, N. Trauth, M. Vieweg, and J. H. Fleckenstein
Hydrol. Earth Syst. Sci., 16, 3689–3697, https://doi.org/10.5194/hess-16-3689-2012, https://doi.org/10.5194/hess-16-3689-2012, 2012
T. Gleeson, D. M. Allen, and G. Ferguson
Hydrol. Earth Syst. Sci., 16, 2159–2168, https://doi.org/10.5194/hess-16-2159-2012, https://doi.org/10.5194/hess-16-2159-2012, 2012
G. H. de Rooij
Hydrol. Earth Syst. Sci., 16, 649–669, https://doi.org/10.5194/hess-16-649-2012, https://doi.org/10.5194/hess-16-649-2012, 2012
B. Hubinger and S. Birk
Hydrol. Earth Syst. Sci., 15, 3715–3729, https://doi.org/10.5194/hess-15-3715-2011, https://doi.org/10.5194/hess-15-3715-2011, 2011
E. Joigneaux, P. Albéric, H. Pauwels, C. Pagé, L. Terray, and A. Bruand
Hydrol. Earth Syst. Sci., 15, 2459–2470, https://doi.org/10.5194/hess-15-2459-2011, https://doi.org/10.5194/hess-15-2459-2011, 2011
P.-R. Tsou, Z.-Y. Feng, H.-D. Yeh, and C.-S. Huang
Hydrol. Earth Syst. Sci., 14, 1477–1485, https://doi.org/10.5194/hess-14-1477-2010, https://doi.org/10.5194/hess-14-1477-2010, 2010
Y.-C. Chang, D.-S. Jeng, and H.-D. Yeh
Hydrol. Earth Syst. Sci., 14, 1341–1351, https://doi.org/10.5194/hess-14-1341-2010, https://doi.org/10.5194/hess-14-1341-2010, 2010
Cited articles
Ahn, K. J. and Seferis, J. C.:
Simultaneous measurements of permeability and capillary pressure of thermosetting matrices in woven fabric reinforcements,
Polym. Composite.,
12, 146–152, 1991.
An, C. J., McBean, E., Huang, G. H., Yao, Y., Zhang, P., Chen, X. J., and
Li, Y. P.: Multi-soil-layering systems for wastewater treatment in small and
remote communities, J. Environ. Inform., 27, 131–144, 2016.
Bakshevskaia, V. A. and Pozdniakov, S. P.:
Simulation of hydraulic heterogeneity and upscaling permeability and dispersivity in sandy-clay foormations,
Math. Geosci., 48, 45–64, 2016.
Bear, J.:
Dynamics of Fluids in Porous Media,
Dover, New York, 1972.
Bob, M. M., Brooks, M. C., Mravik, S. C., and Wood, A. L.:
A modified light transmission visualization method for DNAPL saturation measurements in 2-D models,
Adv. Water Resour.,
31, 727–742, 2008.
Boswinkel, J. A.: Information Note, International Groundwater Resources
Assessment Centre (IGRAC), Netherland Institute of Applied Geoscience,
Netherlands, in: UNEP (2002), Vital Water Graphics – An Overview of the
State of the World's Fresh and Marine Waters, UNEP, Nairobi, Kenya, 2000.
Carroll, K. C., McDonald, K., Marble, J., Russo, A. E., and Brusseau, M. L.:
The impact of transitions between two-fluid and three-fluid phases on fluid
configuration and fluid-fluid interfacial area in porous media, Water Resour.
Res., 51, 7189–7201, 2015.
Cai, J. C., Yu, B. M., Zou, M. Q., and Mei, M. F.: Fractal analysis of
invasion depth of extraneous fluids in porous media, Chem. Eng. Sci., 65,
5178–5186, 2010.
Cui, Q. L., Wu, H. N., Shen, S. L., Yin, Z. Y., and Horpibulsuk, S.:
Protection of neighbour buildings due to construction of shield tunnel in
mixed ground with sand over weathered granite, Environ. Earth Sci., 75, 458,
https://doi.org/10.1007/s12665-016-5300-7, 2016.
Dagan, G., Fiori, A., and Jankovic, I.: Upscaling of flow in heterogeneous
porous formations: critical examination and issues of principle, Adv. Water
Resour., 51, 67–85, 2013.
Dawson, H. E. and Roberts, P. V.:
Influence of viscous, gravitational, and capillary forces on DNAPL saturation,
Groundwater,
35, 261–269, 1997.
Delshad, M., Pope, G. A., and Sepehrnoori, K.: A compositional simulator for
modeling surfactant enhanced aquifer remediation, 1 Formation, J. Contam.
Hydrol., 23, 303–327, 1996.
Eggleston, J. R., Rojstaczer, S. A., and Peirce, J. J.: Identification of
hydraulic conductivity structure in sand and gravel aquifers: Cape Cod data
set, Water Resour. Res., 32, 1209–1222, 1996.
Essaid, H. I., Bekins, B. A., and Cozzarelli, I. M.: Organic contaminant
transport and fate in the subsurface: evolution of knowledge and
understanding, Water Resour. Res., 51, 4861–4902, 2015.
Feng, Y. J. and Yu, B. M.:
Fractal dimension for tortuous streamtubes in porous media,
Fractals,
15, 385–390, 2007.
Hadley, P. W. and Newell, C.:
The new potential for understanding groundwater contaminant transport,
Groundwater,
52, 174–186, 2014.
Hu, K., White, R., Chen, D., Li, B., and Li, W.: Stochastic simulation of
water drainage at the field scale and its application to irrigation
management, Agr. Water Manage., 89, 123–130, 2007.
Huang, J. Q., Christ, J. A., Goltz, M. N., and Demond, A. H.:
Modeling NAPL dissolution from pendular rings in idealized porous media,
Water Resour. Res.,
51, 8182–8197, 2015.
Katz, A. J. and Thompson, A. H.:
Fractal sandstone: implications for conductivity and pore formation,
Phys. Rev. Lett.,
54, 325–332, 1985.
Krohn, C. E.:
Sandstone fractal and Euclidean pore volume distributions,
J. Geophys. Res.,
93, 3286–3296, 1988.
Li, L. and Yu, B. M.: Fractal analysis of the effective thermal conductivity
of biological media embedded with randomly distributed vascular trees, Int.
J. Heat Mass Tran., 67, 74–80, 2013.
Liang, C. and Hsieh, C. L.:
Evaluation of surfactant flushing for remediating EDC-tar contamination,
J. Contam. Hydrol.,
177–178, 158–166, 2015.
Liang, C. and Lai, M. C.: Trichloroethylene degradation by zero valent iron
activated persulfate oxidation, Envrion. Eng. Sci., 25, 1071–1077, 2008.
Liu, H., Li, Y. X., He, X., Sissou, Z., Tong, L., Yarnes, C., and Huang, X.:
Compound-specific carbon isotopic fractionation during transport of phthalate
esters in sandy aquifer, Chemosphere, 144, 1831–1836, 2016.
Liu, L.: Modeling for surfactant-enhanced groundwater remediation processes
at DNAPLs-contaminated sites, J. Environ. Inform., 5, 42–52, 2005.
Liu, L., Hao, R. X., and Cheng, S. Y.: A possibilistic analysis approach for
assessing environmental risks from drinking groundwater at
petroleum-contaminated sites, J. Environ. Inform., 2, 31–37, 2003.
Liu, Y., Wang, S., McDonough, C. A., Khairy, M., Muir, D. C. G., Helm, P. A.,
and Lohmann, R.: Gaseous and freely-dissolved PCBs in the lower great lake
based on passive sampling: spatial trends and air-water exchange, Environ.
Sci. Technol., 50, 4932–4939, 2016.
Mishra, A. K., Kumar, B., and Dutta, J.: Prediction of hydraulic conductivity
of soil bentonite mixture using Hybrid-ANN approach, J. Environ. Inform., 27,
98–105, 2016.
Montgomery, R.H ., Loftis, J. C., and Harris, J.: Statistical characteristics
of ground-water quality variables, Ground Water, 25, 176–184, 1987.
Pacheco, F. A. L.: Hydraulic diffusivity and macrodispersivity calculations
embedded in a geographic information system, Hydrolog. Sci. J., 58, 930–943,
2013.
Pacheco, F. A. L., Landim, P. M. B., and Szocs, T.: Bridging hydraulic
diffusivity from aquifer to particle-size scale: a study on loess sediments
from southwest Hungary, Hydrolog. Sci. J., 60, 269–284, 2015.
Pfeifer, P. and Avnir, D.: Chemistry in nonintegral dimensions between two
and three. I. Fractal theory of heterogeneous surface, J. Chem. Phys., 79,
3558–3565, 1983.
Qin, X. S., Huang, G. H., Chakma, A., Chen, B., and Zeng, G. M.:
Simulation-based process optimization for surfactant-enhanced aquifer
remediation at heterogeneous DNAPL-contaminated sites, Sci. Total Environ.,
381, 17–37, 2007.
Schaefer, C. E., White, E. B., Lavorgna, G. M., and Annable, M. D.: Dense
nonaqueous-phase liquid architecture in fractured bedrock: implications for
treatment and plume longevity, Environ. Sci. Technol., 50, 207–213, 2016.
Shen, J., Huang, G., An, C. J., Zhao, S., and Rosendahl, S.: Immobilization
of Tetrabromobisphenol A by pinecone-derived biochars at solid–liquid
interface_Synchrotron-assisted analysis and role of inorganic fertilizer
ions, Chem. Eng. J., 321, 346–357, 2017.
Taiwo, O. O., Finegan, D. P., Eastwood, D. S., Fife, J. L., Brown, L. D.,
Darr, J. A., Lee, P. D., Brett, D. J. L., and Shearing, P. R.: Comparison of
three-dimensional analysis and stereological techniques for quantifying
lithium-ion battery electrode microstructures, J. Microsc.-Oxford, 263,
280–292, 2016.
Valipour, M.: Comparison of surface irrigation simulation models: full
hydrodynamic, zero inertia, kinematic wave, J. Agr. Sci., 4, 68–74, 2012.
Valipour, M.:
Future of agricultural water management in Africa,
Arch. Agron. Soil Sci.,
61, 907–927, 2015.
Valipour, M. and Singh, V. P.: Global Experiences on Wastewater Irrigation:
Challenges and Prospects, in: Balanced Urban Development: Options and
Strategies for Liveable Cities, edited by: Maheshwari, B., Singh, V., and
Thoradeniya, B., Water Science and Technology Library, Springer, Cham, 72,
289–327, 2016.
Veneziano, D. and Tabaei, A.: Nonlinear spectral analysis of flow through
porous media with isotropic lognormal hydraulic conductivity, J. Hydrol.,
294, 4–17, 2004.
Weathers, T. S., Harding-Marjanovic, K., Higgins, C. P., Alvarez-Cohen, L.,
and Sharp, J. O.: Perfluoroalkyl acids inhibit reductive dechlorination of
trichloroethene by repressing dehalococcoides, Environ. Sci. Technol., 50,
240–248, 2016.
Wu, M., Cheng, Z., Wu, J. F., and Wu, J. C.: Quantifying representative
elementary volume of connectivity for translucent granular materials by light
transmission micro-tomography, J. Hydrol., 545, 12–27, 2017a.
Wu, M., Cheng, Z., Wu, J. F., and Wu, J. C.: Estimation of representative
elementary volume for DNAPL saturation and DNAPL-water interfacial areas in
2-D heterogeneous porous media, J. Hydrol., 549, 12–26, 2017b.
Wu, M., Wu, J. F., and Wu, J. C.: Simulation of DNAPL migration in
heterogeneous translucent porous media based on estimation of representative
elementary volume, J. Hydrol., 553, 276–288, 2017c.
Wu, M., Cheng, Z., Wu, J. F., and Wu, J. C.: Precise simulation of long-term
DNAPL migration in heterogeneous porous media based on light transmission
micro-tomography, Journal of Environmental Chemical Engineering, 5, 725–734,
https://doi.org/10.1016/j.jece.2016.12.039, 2017d.
Yannopoulos, S. I., Lyberatos, G., Theodossiou, N., Li, W., Valipour, M.,
Tamburrino, A., and Angelakis, A. N.: Evolution of water lifting devices
(pumps) over the centuries worldwide, Water, 7, 5031–5060, 2015.
Yu, B. M.:
Fractal character for tortuous streamtubes in porous media,
Chinese Phys. Lett.,
22, 158–160, 2005.
Yu, B. M. and Cheng, P.: Fractal models for the effective thermal
conductivity of bidispersed porous media, J. Thermophys. Heat Tr., 16,
22–29, 2002.
Yu, B. M. and Li, J. H.:
A geometry model for tortuosity of flow path in porous media,
Chinese Phys. Lett.,
21, 1569–1571, 2004.
Yu, B. M., Cai, J. C., and Zou, M. Q.: On the physical properties of apparent
two-phase fractal porous media, Vadose Zone J., 8, 177–186, 2009.
Yun, M. J., Yu, B. M., Zhang, B., and Huang, M. T.: A geometry model for
tortuosity of streamtubes in porous media with spherical particles, Chinese
Phys. Lett., 22, 1464–1467, 2005.
Short summary
Fractal models of regular triangle arrangement (RTA) and square pitch arrangement (SPA) are developed in this study. Results suggest RTA can cause more groundwater contamination and make remediation more difficult. In contrast, the cleanup of contaminants in aquifers with SPA is easier. This study demonstrates how microscale arrangements control contaminant migration and remediation, which is helpful in designing successful remediation schemes for subsurface contamination.
Fractal models of regular triangle arrangement (RTA) and square pitch arrangement (SPA) are...