Articles | Volume 21, issue 2
https://doi.org/10.5194/hess-21-751-2017
https://doi.org/10.5194/hess-21-751-2017
Research article
 | 
07 Feb 2017
Research article |  | 07 Feb 2017

Application of CryoSat-2 altimetry data for river analysis and modelling

Raphael Schneider, Peter Nygaard Godiksen, Heidi Villadsen, Henrik Madsen, and Peter Bauer-Gottwein

Related authors

CAMELS-DK: Hydrometeorological Time Series and Landscape Attributes for 3330 Catchments in Denmark
Jun Liu, Julian Koch, Simon Stisen, Lars Troldborg, Anker Lajer Højberg, Hans Thodsen, Mark F. T. Hansen, and Raphael J. M. Schneider
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-292,https://doi.org/10.5194/essd-2024-292, 2024
Preprint under review for ESSD
Short summary
A national-scale hybrid model for enhanced streamflow estimation – consolidating a physically based hydrological model with long short-term memory (LSTM) networks
Jun Liu, Julian Koch, Simon Stisen, Lars Troldborg, and Raphael J. M. Schneider
Hydrol. Earth Syst. Sci., 28, 2871–2893, https://doi.org/10.5194/hess-28-2871-2024,https://doi.org/10.5194/hess-28-2871-2024, 2024
Short summary
Data-driven modeling of hydraulic head time series: results and lessons learned from the 2022 groundwater modeling challenge
Raoul Alexander Collenteur, Ezra Haaf, Mark Bakker, Tanja Liesch, Andreas Wunsch, Jenny Soonthornrangsan, Jeremy White, Nick Martin, Rui Hugman, Michael Fienen, Ed de Sousa, Didier Vanden Berghe, Xinyang Fan, Tim Peterson, Janis Bikše, Antoine Di Ciacca, Xinyue Wang, Yang Zheng, Maximilian Nölscher, Julian Koch, Raphael Schneider, Nikolas Benavides Höglund, Sivarama Krishna Reddy Chidepudi, Abel Henriot, Nicolas Massei, Abderrahim Jardani, Max Gustav Rudolph, Amir Rouhani, Jaime Gómez-Hernández, Seifeddine Jomaa, Anna Pölz, Tim Franken, Morteza Behbooei, Jimmy Lin, Bryan Tolson, and Rojin Meysami
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-111,https://doi.org/10.5194/hess-2024-111, 2024
Revised manuscript accepted for HESS
Short summary
Potential of Machine learning techniques compared to MIKE-SHE model for drain flow predictions in tile-drained agricultural areas of Denmark
Hafsa Mahmood, Ty P. A. Ferré, Raphael J. M. Schneider, Simon Stisen, Rasmus R. Frederiksen, and Anders V. Christiansen
EGUsphere, https://doi.org/10.5194/egusphere-2023-1872,https://doi.org/10.5194/egusphere-2023-1872, 2023
Preprint withdrawn
Short summary
Machine-learning-based downscaling of modelled climate change impacts on groundwater table depth
Raphael Schneider, Julian Koch, Lars Troldborg, Hans Jørgen Henriksen, and Simon Stisen
Hydrol. Earth Syst. Sci., 26, 5859–5877, https://doi.org/10.5194/hess-26-5859-2022,https://doi.org/10.5194/hess-26-5859-2022, 2022
Short summary

Related subject area

Subject: Rivers and Lakes | Techniques and Approaches: Instruments and observation techniques
Hydrological, meteorological, and watershed controls on the water balance of thermokarst lakes between Inuvik and Tuktoyaktuk, Northwest Territories, Canada
Evan J. Wilcox, Brent B. Wolfe, and Philip Marsh
Hydrol. Earth Syst. Sci., 27, 2173–2188, https://doi.org/10.5194/hess-27-2173-2023,https://doi.org/10.5194/hess-27-2173-2023, 2023
Short summary
Influence of vegetation maintenance on flow and mixing: case study comparing fully cut with high-coverage conditions
Monika Barbara Kalinowska, Kaisa Västilä, Michael Nones, Adam Kiczko, Emilia Karamuz, Andrzej Brandyk, Adam Kozioł, and Marcin Krukowski
Hydrol. Earth Syst. Sci., 27, 953–968, https://doi.org/10.5194/hess-27-953-2023,https://doi.org/10.5194/hess-27-953-2023, 2023
Short summary
Assessing the influence of lake and watershed attributes on snowmelt bypass at thermokarst lakes
Evan J. Wilcox, Brent B. Wolfe, and Philip Marsh
Hydrol. Earth Syst. Sci., 26, 6185–6205, https://doi.org/10.5194/hess-26-6185-2022,https://doi.org/10.5194/hess-26-6185-2022, 2022
Short summary
Technical note: Analyzing river network dynamics and the active length–discharge relationship using water presence sensors
Francesca Zanetti, Nicola Durighetto, Filippo Vingiani, and Gianluca Botter
Hydrol. Earth Syst. Sci., 26, 3497–3516, https://doi.org/10.5194/hess-26-3497-2022,https://doi.org/10.5194/hess-26-3497-2022, 2022
Short summary
Technical note: Efficient imaging of hydrological units below lakes and fjords with a floating, transient electromagnetic (FloaTEM) system
Pradip Kumar Maurya, Frederik Ersted Christensen, Masson Andy Kass, Jesper B. Pedersen, Rasmus R. Frederiksen, Nikolaj Foged, Anders Vest Christiansen, and Esben Auken
Hydrol. Earth Syst. Sci., 26, 2813–2827, https://doi.org/10.5194/hess-26-2813-2022,https://doi.org/10.5194/hess-26-2813-2022, 2022
Short summary

Cited articles

Abbott, M. B. and Ionescu, F.: On The Numerical Computation Of Nearly Horizontal Flows, J. Hydraul. Res., 5, 97–117, https://doi.org/10.1080/00221686709500195, 1967.
Armitage, T. W. K. and Davidson, M. W. J.: Using the Interferometric Capabilities of the ESA CryoSat-2 Mission to Improve the Accuracy of Sea Ice Freeboard Retrievals, IEEE T. Geosci. Remote, 42, 529–536, https://doi.org/10.1109/TGRS.2013.2242082, 2014.
Becker, M., da Silva, J., Calmant, S., Robinet, V., Linguet, L., and Seyler, F.: Water Level Fluctuations in the Congo Basin Derived from ENVISAT Satellite Altimetry, Remote Sens., 6, 9340–9358, https://doi.org/10.3390/rs6109340, 2014.
Berrisford, P., Dee, D., Fielding, K., Fuentes, M., Kallberg, P., Kobayashi, S., and Uppala, S.: The ERA-Interim Archive – Version 2.0, ECMWF, Shinfield Park, Reading, 2011.
Berry, P. A. M. and Wheeler, J. L.: JASON2-ENVISAT Exploitation – Development of Algorithms for the Exploitation of JASON2-ENVISAT Altimetry for the Generation of a River and Lake Product, Product Handbook v3.5, De Montfort University, Leicester, UK, 2009.
Download
Short summary
We use water level observations from the CryoSat-2 satellite in combination with a river model of the Brahmaputra River, extracting satellite data over a dynamic river mask derived from Landsat imagery. The novelty of this work is the use of the CryoSat-2 water level observations, collected using a complex spatio-temporal sampling scheme, to calibrate a hydrodynamic river model. The resulting model accurately reproduces water levels, without precise knowledge of river bathymetry.