Articles | Volume 21, issue 1
https://doi.org/10.5194/hess-21-153-2017
https://doi.org/10.5194/hess-21-153-2017
Research article
 | 
09 Jan 2017
Research article |  | 09 Jan 2017

Practitioners' viewpoints on citizen science in water management: a case study in Dutch regional water resource management

Ellen Minkman, Maarten van der Sanden, and Martine Rutten

Related authors

Flood drivers and trends: a case study of the Geul River Catchment (the Netherlands) over the past half century
Athanasios Tsiokanos, Martine Rutten, Ruud J. van der Ent, and Remko Uijlenhoet
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-263,https://doi.org/10.5194/hess-2023-263, 2023
Revised manuscript accepted for HESS
Short summary
Citizen science flow – an assessment of simple streamflow measurement methods
Jeffrey C. Davids, Martine M. Rutten, Anusha Pandey, Nischal Devkota, Wessel David van Oyen, Rajaram Prajapati, and Nick van de Giesen
Hydrol. Earth Syst. Sci., 23, 1045–1065, https://doi.org/10.5194/hess-23-1045-2019,https://doi.org/10.5194/hess-23-1045-2019, 2019
Short summary
Deduction of reservoir operating rules for application in global hydrological models
Hubertus M. Coerver, Martine M. Rutten, and Nick C. van de Giesen
Hydrol. Earth Syst. Sci., 22, 831–851, https://doi.org/10.5194/hess-22-831-2018,https://doi.org/10.5194/hess-22-831-2018, 2018
Short summary
A Q methodological approach to identify practitioners' viewpoints on citizen science in Dutch regional water resource management
E. Minkman, M. M. Rutten, and M. C. A. van der Sanden
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2016-26,https://doi.org/10.5194/hess-2016-26, 2016
Revised manuscript not accepted
Short summary

Related subject area

Subject: Water Resources Management | Techniques and Approaches: Modelling approaches
A generalised ecohydrological landscape classification for assessing ecosystem risk in Australia due to an altering water regime
Alexander Herr, Linda E. Merrin, Patrick J. Mitchell, Anthony P. O'Grady, Kate L. Holland, Richard E. Mount, David A. Post, Chris R. Pavey, and Ashley D. Sparrow
Hydrol. Earth Syst. Sci., 28, 1957–1979, https://doi.org/10.5194/hess-28-1957-2024,https://doi.org/10.5194/hess-28-1957-2024, 2024
Short summary
Process-based three-layer synergistic optimal-allocation model for complex water resource systems considering reclaimed water
Jing Liu, Yue-Ping Xu, Wei Zhang, Shiwu Wang, and Siwei Chen
Hydrol. Earth Syst. Sci., 28, 1325–1350, https://doi.org/10.5194/hess-28-1325-2024,https://doi.org/10.5194/hess-28-1325-2024, 2024
Short summary
Joint optimal operation of the South-to-North Water Diversion Project considering the evenness of water deficit
Bing-Yi Zhou, Guo-Hua Fang, Xin Li, Jian Zhou, and Hua-Yu Zhong
Hydrol. Earth Syst. Sci., 28, 817–832, https://doi.org/10.5194/hess-28-817-2024,https://doi.org/10.5194/hess-28-817-2024, 2024
Short summary
Employing the generalized Pareto distribution to analyze extreme rainfall events on consecutive rainy days in Thailand's Chi watershed: implications for flood management
Tossapol Phoophiwfa, Prapawan Chomphuwiset, Thanawan Prahadchai, Jeong-Soo Park, Arthit Apichottanakul, Watchara Theppang, and Piyapatr Busababodhin
Hydrol. Earth Syst. Sci., 28, 801–816, https://doi.org/10.5194/hess-28-801-2024,https://doi.org/10.5194/hess-28-801-2024, 2024
Short summary
Leveraging a Novel Hybrid Ensemble and Optimal Interpolation Approach for Enhanced Streamflow and Flood Prediction
Mohamad El Gharamti, Arezoo RafieeiNasab, and James L. McCreight
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-269,https://doi.org/10.5194/hess-2023-269, 2024
Revised manuscript accepted for HESS
Short summary

Cited articles

Bonney, R., Cooper, C. B., Dickinson, J., Kelling, S., Phillips, T., Rosenberg, K. V., and Shirk, J.: Citizen Science: A Developing Tool for Expanding Science Knowledge and Scientific Literacy, BioScience, 59, 977–984, https://doi.org/10.1525/bio.2009.59.11.9, 2009.
Brown, S. R.: Political subjectivity: Applicaitons of Q methodology in political science, New Haven, CT, Yale University Press, 1980.
Buytaert, W., Zulkafli, Z., Grainger, S., Acosta, L., Alemie, T. C., Bastiaensen, J., De Bièvre, B., Bhusal, J., Clark, J., Dewulf, A., Foggin, M., Hannah, D., Hergarten, C., Isaeva, A., Karpouzoglou, T., Pandeya, B., Paudel, D., Sharma, K., Steenhuis, T., Tilahun, S., Van Hecken, G., and Zhumanova, M.: Citizen science in hydrology and water resources: opportunities for knowledge generation, ecosystem service management, and sustainable development, Front. Earth Sci., 2, 1–21, https://doi.org/10.3389/feart.2014.00026, 2014.
Chandler, D. and Kapelner, A.: Breaking monotony with meaning: Motivation in crowdsourcing markets, J. Econ. Behav. Organ., 90, 123–133, https://doi.org/10.1016/j.jebo.2013.03.003, 2013.
Clark, M. P., Nijssen, B., Lundquist, J. D., Kavetski, D., Rupp, D. E., Woods, R. A., Freer, J. E., Gutmann, E. D., Wood, A. W., Brekke, L. D., Arnold, J. R., Gochis, D. J., and Rasmussen, R. M.: A unified approach for process-based hydrologic modeling: 1. Modeling concept, Water Resour. Res., 51, 2498–2514, https://doi.org/10.1002/2015WR017200, 2015.
Download
Short summary
The Dutch water authorities face a water awareness gap among the general public, and consider citizen science a possible solution. Practitioners working at these authorities have doubts about citizen motivation and data quality. This systematic study on practitioner’s viewpoints aims to aid the adoption of citizen science by water authorities. Based on structured interviews with 33 practitioners around 48 statements on citizen science, we identified three distinctive viewpoints.