Articles | Volume 20, issue 3
https://doi.org/10.5194/hess-20-1197-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/hess-20-1197-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Stable oxygen isotope variability in two contrasting glacier river catchments in Greenland
Jacob C. Yde
CORRESPONDING AUTHOR
Faculty of Engineering and Science, Sogn og Fjordane University
College, Sogndal, Norway
Niels T. Knudsen
Department of Geoscience, University of Aarhus, Aarhus, Denmark
Jørgen P. Steffensen
Centre for Ice and Climate, University of Copenhagen, Copenhagen,
Denmark
Jonathan L. Carrivick
School of Geography and water@leeds, University of Leeds, Leeds, UK
Bent Hasholt
Department of Geosciences and Natural Resource Management, University
of Copenhagen, Copenhagen, Denmark
Thomas Ingeman-Nielsen
Arctic Technology Centre, Technical University of Denmark, Kgs.
Lyngby, Denmark
Christian Kronborg
Department of Geoscience, University of Aarhus, Aarhus, Denmark
Nicolaj K. Larsen
Department of Geoscience, University of Aarhus, Aarhus, Denmark
Sebastian H. Mernild
Faculty of Engineering and Science, Sogn og Fjordane University
College, Sogndal, Norway
Antarctic and Sub-Antarctic Program, Universidad de Magallanes, Punta Arenas, Chile
Hans Oerter
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine
Research, Bremerhaven, Germany
David H. Roberts
Department of Geography, University of Durham, Durham, UK
Andrew J. Russell
School of Geography, Politics & Sociology, Newcastle University,
Newcastle upon Tyne, UK
Related authors
Sebastian H. Mernild, Glen E. Liston, Andrew P. Beckerman, and Jacob C. Yde
The Cryosphere Discuss., https://doi.org/10.5194/tc-2017-234, https://doi.org/10.5194/tc-2017-234, 2017
Revised manuscript not accepted
Short summary
Short summary
This study is about simulating the Greenland Ice Sheet surface mass balance, and the related snow refreezing conditions and the spatio-temporal Greenland distribution of freshwater runoff to surrounding seas. Runoff has increased since 1979, and can be used as input for numerical ocean models linking the terrestrial runoff to changes in the near-coastal seas. This will provide us with an increasing understanding how Greenland is linked to the surrounding seas. SnowModel and ERA-I were used here.
Shfaqat A. Khan, Helene Seroussi, Mathieu Morlighem, William Colgan, Veit Helm, Gong Cheng, Danjal Berg, Valentina R. Barletta, Nicolaj K. Larsen, William Kochtitzky, Michiel van den Broeke, Kurt H. Kjær, Andy Aschwanden, Brice Noël, Jason E. Box, Joseph A. MacGregor, Robert S. Fausto, Kenneth D. Mankoff, Ian M. Howat, Kuba Oniszk, Dominik Fahrner, Anja Løkkegaard, Eigil Y. H. Lippert, and Javed Hassan
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-348, https://doi.org/10.5194/essd-2024-348, 2024
Preprint under review for ESSD
Short summary
Short summary
The surface elevation of the Greenland Ice Sheet is changing due to surface mass balance processes and ice dynamics, each exhibiting distinct spatiotemporal patterns. Here, we employ satellite and airborne altimetry data with fine spatial (1 km) and temporal (monthly) resolutions to document this spatiotemporal evolution from 2003 to 2023. This dataset of fine-resolution altimetry data in both space and time will support studies of ice mass loss and useful for GIS ice sheet modelling.
Marco Marcer, Pierre-Allain Duvillard, Soňa Tomaškovičová, Steffen Ringsø Nielsen, André Revil, and Thomas Ingeman-Nielsen
The Cryosphere, 18, 1753–1771, https://doi.org/10.5194/tc-18-1753-2024, https://doi.org/10.5194/tc-18-1753-2024, 2024
Short summary
Short summary
This study models present and future rock wall temperatures in the mountains near Sisimiut, creating knowledge on mountain permafrost in Greenland for the first time. Bedrock is mostly frozen but also has temperatures near 0 oC, making it very sensitive to climate changes. Future climatic scenarios indicate a reduction in frozen rock wall areas. Since mountain permafrost thaw is linked to an increase in landslides, these results call for more efforts addressing mountain permafrost in Greenland.
Niels J. Korsgaard, Kristian Svennevig, Anne S. Søndergaard, Gregor Luetzenburg, Mimmi Oksman, and Nicolaj K. Larsen
Nat. Hazards Earth Syst. Sci., 24, 757–772, https://doi.org/10.5194/nhess-24-757-2024, https://doi.org/10.5194/nhess-24-757-2024, 2024
Short summary
Short summary
A tsunami wave will leave evidence of erosion and deposition in coastal lakes, making it possible to determine the runup height and when it occurred. Here, we use four lakes now located at elevations of 19–91 m a.s.l. close to the settlement of Saqqaq, West Greenland, to show that at least two giant tsunamis occurred 7300–7600 years ago with runup heights larger than 40 m. We infer that any tsunamis from at least nine giga-scale landslides must have happened 8500–10 000 years ago.
Soňa Tomaškovičová and Thomas Ingeman-Nielsen
The Cryosphere, 18, 321–340, https://doi.org/10.5194/tc-18-321-2024, https://doi.org/10.5194/tc-18-321-2024, 2024
Short summary
Short summary
We present the results of a fully coupled modeling framework for simulating the ground thermal regime using only surface measurements to calibrate the thermal model. The heat conduction model is forced by surface ground temperature measurements and calibrated using the field measurements of time lapse apparent electrical resistivity. The resistivity-calibrated thermal model achieves a performance comparable to the traditional calibration of borehole temperature measurements.
Juditha Aga, Julia Boike, Moritz Langer, Thomas Ingeman-Nielsen, and Sebastian Westermann
The Cryosphere, 17, 4179–4206, https://doi.org/10.5194/tc-17-4179-2023, https://doi.org/10.5194/tc-17-4179-2023, 2023
Short summary
Short summary
This study presents a new model scheme for simulating ice segregation and thaw consolidation in permafrost environments, depending on ground properties and climatic forcing. It is embedded in the CryoGrid community model, a land surface model for the terrestrial cryosphere. We describe the model physics and functionalities, followed by a model validation and a sensitivity study of controlling factors.
Sebastian Westermann, Thomas Ingeman-Nielsen, Johanna Scheer, Kristoffer Aalstad, Juditha Aga, Nitin Chaudhary, Bernd Etzelmüller, Simon Filhol, Andreas Kääb, Cas Renette, Louise Steffensen Schmidt, Thomas Vikhamar Schuler, Robin B. Zweigel, Léo Martin, Sarah Morard, Matan Ben-Asher, Michael Angelopoulos, Julia Boike, Brian Groenke, Frederieke Miesner, Jan Nitzbon, Paul Overduin, Simone M. Stuenzi, and Moritz Langer
Geosci. Model Dev., 16, 2607–2647, https://doi.org/10.5194/gmd-16-2607-2023, https://doi.org/10.5194/gmd-16-2607-2023, 2023
Short summary
Short summary
The CryoGrid community model is a new tool for simulating ground temperatures and the water and ice balance in cold regions. It is a modular design, which makes it possible to test different schemes to simulate, for example, permafrost ground in an efficient way. The model contains tools to simulate frozen and unfrozen ground, snow, glaciers, and other massive ice bodies, as well as water bodies.
Michael J. Bentley, James A. Smith, Stewart S. R. Jamieson, Margaret R. Lindeman, Brice R. Rea, Angelika Humbert, Timothy P. Lane, Christopher M. Darvill, Jeremy M. Lloyd, Fiamma Straneo, Veit Helm, and David H. Roberts
The Cryosphere, 17, 1821–1837, https://doi.org/10.5194/tc-17-1821-2023, https://doi.org/10.5194/tc-17-1821-2023, 2023
Short summary
Short summary
The Northeast Greenland Ice Stream is a major outlet of the Greenland Ice Sheet. Some of its outlet glaciers and ice shelves have been breaking up and retreating, with inflows of warm ocean water identified as the likely reason. Here we report direct measurements of warm ocean water in an unusual lake that is connected to the ocean beneath the ice shelf in front of the 79° N Glacier. This glacier has not yet shown much retreat, but the presence of warm water makes future retreat more likely.
Mads Dømgaard, Kristian K. Kjeldsen, Flora Huiban, Jonathan L. Carrivick, Shfaqat A. Khan, and Anders A. Bjørk
The Cryosphere, 17, 1373–1387, https://doi.org/10.5194/tc-17-1373-2023, https://doi.org/10.5194/tc-17-1373-2023, 2023
Short summary
Short summary
Sudden releases of meltwater from glacier-dammed lakes can influence ice flow, cause flooding hazards and landscape changes. This study presents a record of 14 drainages from 2007–2021 from a lake in west Greenland. The time series reveals how the lake fluctuates between releasing large and small amounts of drainage water which is caused by a weakening of the damming glacier following the large events. We also find a shift in the water drainage route which increases the risk of flooding hazards.
James A. Smith, Louise Callard, Michael J. Bentley, Stewart S. R. Jamieson, Maria Luisa Sánchez-Montes, Timothy P. Lane, Jeremy M. Lloyd, Erin L. McClymont, Christopher M. Darvill, Brice R. Rea, Colm O'Cofaigh, Pauline Gulliver, Werner Ehrmann, Richard S. Jones, and David H. Roberts
The Cryosphere, 17, 1247–1270, https://doi.org/10.5194/tc-17-1247-2023, https://doi.org/10.5194/tc-17-1247-2023, 2023
Short summary
Short summary
The Greenland Ice Sheet is melting at an accelerating rate. To understand the significance of these changes we reconstruct the history of one of its fringing ice shelves, known as 79° N ice shelf. We show that the ice shelf disappeared 8500 years ago, following a period of enhanced warming. An important implication of our study is that 79° N ice shelf is susceptible to collapse when atmospheric and ocean temperatures are ~2°C warmer than present, which could occur by the middle of this century.
Christopher D. Stringer, Jonathan L. Carrivick, Duncan J. Quincey, and Daniel Nývlt
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-250, https://doi.org/10.5194/essd-2022-250, 2022
Revised manuscript not accepted
Short summary
Short summary
Glaciers in Antarctica have been decreasing in size at a fast rate, leading to the expansion of proglacial areas, with wide-ranging ecological implications. Several global land-cover maps exist, but they do not include Antarctica. We map land cover types across West Antarctica and the McMurdo Dry Valleys to a high degree of accuracy (77.0 %). We highlight the spatial variation in land cover and emphasise the need for more field data.
William Colgan, Agnes Wansing, Kenneth Mankoff, Mareen Lösing, John Hopper, Keith Louden, Jörg Ebbing, Flemming G. Christiansen, Thomas Ingeman-Nielsen, Lillemor Claesson Liljedahl, Joseph A. MacGregor, Árni Hjartarson, Stefan Bernstein, Nanna B. Karlsson, Sven Fuchs, Juha Hartikainen, Johan Liakka, Robert S. Fausto, Dorthe Dahl-Jensen, Anders Bjørk, Jens-Ove Naslund, Finn Mørk, Yasmina Martos, Niels Balling, Thomas Funck, Kristian K. Kjeldsen, Dorthe Petersen, Ulrik Gregersen, Gregers Dam, Tove Nielsen, Shfaqat A. Khan, and Anja Løkkegaard
Earth Syst. Sci. Data, 14, 2209–2238, https://doi.org/10.5194/essd-14-2209-2022, https://doi.org/10.5194/essd-14-2209-2022, 2022
Short summary
Short summary
We assemble all available geothermal heat flow measurements collected in and around Greenland into a new database. We use this database of point measurements, in combination with other geophysical datasets, to model geothermal heat flow in and around Greenland. Our geothermal heat flow model is generally cooler than previous models of Greenland, especially in southern Greenland. It does not suggest any high geothermal heat flows resulting from Icelandic plume activity over 50 million years ago.
Thomas Schneider von Deimling, Hanna Lee, Thomas Ingeman-Nielsen, Sebastian Westermann, Vladimir Romanovsky, Scott Lamoureux, Donald A. Walker, Sarah Chadburn, Erin Trochim, Lei Cai, Jan Nitzbon, Stephan Jacobi, and Moritz Langer
The Cryosphere, 15, 2451–2471, https://doi.org/10.5194/tc-15-2451-2021, https://doi.org/10.5194/tc-15-2451-2021, 2021
Short summary
Short summary
Climate warming puts infrastructure built on permafrost at risk of failure. There is a growing need for appropriate model-based risk assessments. Here we present a modelling study and show an exemplary case of how a gravel road in a cold permafrost environment in Alaska might suffer from degrading permafrost under a scenario of intense climate warming. We use this case study to discuss the broader-scale applicability of our model for simulating future Arctic infrastructure failure.
Sourav Chatterjee, Roshin P. Raj, Laurent Bertino, Sebastian H. Mernild, Meethale Puthukkottu Subeesh, Nuncio Murukesh, and Muthalagu Ravichandran
The Cryosphere, 15, 1307–1319, https://doi.org/10.5194/tc-15-1307-2021, https://doi.org/10.5194/tc-15-1307-2021, 2021
Short summary
Short summary
Sea ice in the Greenland Sea (GS) is important for its climatic (fresh water), economical (shipping), and ecological contribution (light availability). The study proposes a mechanism through which sea ice concentration in GS is partly governed by the atmospheric and ocean circulation in the region. The mechanism proposed in this study can be useful for assessing the sea ice variability and its future projection in the GS.
Svend Funder, Anita H. L. Sørensen, Nicolaj K. Larsen, Anders A. Bjørk, Jason P. Briner, Jesper Olsen, Anders Schomacker, Laura B. Levy, and Kurt H. Kjær
Clim. Past, 17, 587–601, https://doi.org/10.5194/cp-17-587-2021, https://doi.org/10.5194/cp-17-587-2021, 2021
Short summary
Short summary
Cosmogenic 10Be exposure dates from outlying islets along 300 km of the SW Greenland coast indicate that, although affected by inherited 10Be, the ice margin here was retreating during the Younger Dryas. These results seem to be corroborated by recent studies elsewhere in Greenland. The apparent mismatch between temperatures and ice margin behaviour may be explained by the advection of warm water to the ice margin on the shelf and by increased seasonality, both caused by a weakened AMOC.
Anne Sofie Søndergaard, Nicolaj Krog Larsen, Olivia Steinemann, Jesper Olsen, Svend Funder, David Lundbek Egholm, and Kurt Henrik Kjær
Clim. Past, 16, 1999–2015, https://doi.org/10.5194/cp-16-1999-2020, https://doi.org/10.5194/cp-16-1999-2020, 2020
Short summary
Short summary
We present new results that show how the north Greenland Ice Sheet responded to climate changes over the last 11 700 years. We find that the ice sheet was very sensitive to past climate changes. Combining our findings with recently published studies reveals distinct differences in sensitivity to past climate changes between northwest and north Greenland. This highlights the sensitivity to past and possible future climate changes of two of the most vulnerable areas of the Greenland Ice Sheet.
Andy R. Emery, David M. Hodgson, Natasha L. M. Barlow, Jonathan L. Carrivick, Carol J. Cotterill, Janet C. Richardson, Ruza F. Ivanovic, and Claire L. Mellett
Earth Surf. Dynam., 8, 869–891, https://doi.org/10.5194/esurf-8-869-2020, https://doi.org/10.5194/esurf-8-869-2020, 2020
Short summary
Short summary
During the last ice age, sea level was lower, and the North Sea was land. The margin of a large ice sheet was at Dogger Bank in the North Sea. This ice sheet formed large rivers. After the ice sheet retreated down from the high point of Dogger Bank, the rivers had no water supply and dried out. Increased precipitation during the 15 000 years of land exposure at Dogger Bank formed a new drainage network. This study shows how glaciation and climate changes can control how drainage networks evolve.
Iain Wheel, Poul Christoffersen, and Sebastian H. Mernild
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-194, https://doi.org/10.5194/tc-2020-194, 2020
Manuscript not accepted for further review
Short summary
Short summary
Down-fjord winds, known as katabatic winds, are shown to increase water temperatures close to Helheim Glacier through circulation changes. More importantly, strong winds are shown to break up the sea-ice and iceberg matrix in front of the glacier which through a loss of support to the glacier leads to retreat of up to 1.5 km. Therefore katabatic winds are hypothesised to play an important role in the retreat of Helheim Glacier and to be important in the retreat of other Greenland glaciers.
Baptiste Vandecrux, Michael MacFerrin, Horst Machguth, William T. Colgan, Dirk van As, Achim Heilig, C. Max Stevens, Charalampos Charalampidis, Robert S. Fausto, Elizabeth M. Morris, Ellen Mosley-Thompson, Lora Koenig, Lynn N. Montgomery, Clément Miège, Sebastian B. Simonsen, Thomas Ingeman-Nielsen, and Jason E. Box
The Cryosphere, 13, 845–859, https://doi.org/10.5194/tc-13-845-2019, https://doi.org/10.5194/tc-13-845-2019, 2019
Short summary
Short summary
The perennial snow, or firn, on the Greenland ice sheet each summer stores part of the meltwater formed at the surface, buffering the ice sheet’s contribution to sea level. We gathered observations of firn air content, indicative of the space available in the firn to retain meltwater, and find that this air content remained stable in cold regions of the firn over the last 65 years but recently decreased significantly in western Greenland.
Sebastian H. Mernild, Glen E. Liston, Andrew P. Beckerman, and Jacob C. Yde
The Cryosphere Discuss., https://doi.org/10.5194/tc-2017-234, https://doi.org/10.5194/tc-2017-234, 2017
Revised manuscript not accepted
Short summary
Short summary
This study is about simulating the Greenland Ice Sheet surface mass balance, and the related snow refreezing conditions and the spatio-temporal Greenland distribution of freshwater runoff to surrounding seas. Runoff has increased since 1979, and can be used as input for numerical ocean models linking the terrestrial runoff to changes in the near-coastal seas. This will provide us with an increasing understanding how Greenland is linked to the surrounding seas. SnowModel and ERA-I were used here.
Grant M. Raisbeck, Alexandre Cauquoin, Jean Jouzel, Amaelle Landais, Jean-Robert Petit, Vladimir Y. Lipenkov, Juerg Beer, Hans-Arno Synal, Hans Oerter, Sigfus J. Johnsen, Jorgen P. Steffensen, Anders Svensson, and Françoise Yiou
Clim. Past, 13, 217–229, https://doi.org/10.5194/cp-13-217-2017, https://doi.org/10.5194/cp-13-217-2017, 2017
Short summary
Short summary
Using records of a long-lived radioactive nuclide (10Be) that is formed globally in the atmosphere and deposited within a few years to the earth’s surface, we have synchronized three Antarctic ice cores to one from Greenland. This permits the climate and other environmental parameters registered in these ice cores to be put on a common timescale with a precision of a few decades, thus allowing different models and mechanisms associated with these parameters to be tested with the same precision.
Owen King, Duncan J. Quincey, Jonathan L. Carrivick, and Ann V. Rowan
The Cryosphere, 11, 407–426, https://doi.org/10.5194/tc-11-407-2017, https://doi.org/10.5194/tc-11-407-2017, 2017
Short summary
Short summary
We used multiple digital elevation models to quantify melt on 32 glaciers in the Everest region of the Himalayas. We examined whether patterns of melt differed depending on whether the glacier terminated on land or in water. We found that glaciers terminating in large lakes had the highest melt rates, but that those terminating in small lakes had comparable melt rates to those terminating on land. We carried out this research because Himalayan people are highly dependent on glacier meltwater.
Andreas Bech Mikkelsen, Alun Hubbard, Mike MacFerrin, Jason Eric Box, Sam H. Doyle, Andrew Fitzpatrick, Bent Hasholt, Hannah L. Bailey, Katrin Lindbäck, and Rickard Pettersson
The Cryosphere, 10, 1147–1159, https://doi.org/10.5194/tc-10-1147-2016, https://doi.org/10.5194/tc-10-1147-2016, 2016
S. Weißbach, A. Wegner, T. Opel, H. Oerter, B. M. Vinther, and S. Kipfstuhl
Clim. Past, 12, 171–188, https://doi.org/10.5194/cp-12-171-2016, https://doi.org/10.5194/cp-12-171-2016, 2016
Short summary
Short summary
Based on a set of 12 intermediate deep ice cores, covering an area of about 200 000 km2, we studied the spatial and temporal d18O patterns of northern Greenland over the past millennium and found a strong east-west gradient related to the main ice divide. A stacked record with significantly reduced noise revealed distinct climate variations with a pronounced Little Ice Age and distinct warm events such as the Medieval Climate Anomaly, around AD 1420 and in the 20th century.
A. Damsgaard, D. L. Egholm, J. A. Piotrowski, S. Tulaczyk, N. K. Larsen, and C. F. Brædstrup
The Cryosphere, 9, 2183–2200, https://doi.org/10.5194/tc-9-2183-2015, https://doi.org/10.5194/tc-9-2183-2015, 2015
Short summary
Short summary
This paper details a new algorithm for performing computational experiments of subglacial granular deformation. The numerical approach allows detailed studies of internal sediment and pore-water dynamics under shear. Feedbacks between sediment grains and pore water can cause rate-dependent strengthening, which additionally contributes to the plastic shear strength of the granular material. Hardening can stabilise patches of the subglacial beds with implications for landform development.
G. van der Wel, H. Fischer, H. Oerter, H. Meyer, and H. A. J. Meijer
The Cryosphere, 9, 1601–1616, https://doi.org/10.5194/tc-9-1601-2015, https://doi.org/10.5194/tc-9-1601-2015, 2015
Short summary
Short summary
The diffusion of the stable water isotope signal during firnification of snow is a temperature-dependent process. Therefore, past local temperatures can be derived from the differential diffusion length. In this paper we develop a new method for determining this quantity and compare it with the existing method. Both methods are applied to a large number of synthetic data sets to assess the precision and accuracy of the reconstruction and to a section of the Antarctic EDML ice core record.
V. Masson-Delmotte, H. C. Steen-Larsen, P. Ortega, D. Swingedouw, T. Popp, B. M. Vinther, H. Oerter, A. E. Sveinbjornsdottir, H. Gudlaugsdottir, J. E. Box, S. Falourd, X. Fettweis, H. Gallée, E. Garnier, V. Gkinis, J. Jouzel, A. Landais, B. Minster, N. Paradis, A. Orsi, C. Risi, M. Werner, and J. W. C. White
The Cryosphere, 9, 1481–1504, https://doi.org/10.5194/tc-9-1481-2015, https://doi.org/10.5194/tc-9-1481-2015, 2015
Short summary
Short summary
The deep NEEM ice core provides the oldest Greenland ice core record, enabling improved understanding of the response of ice core records to local climate. Here, we focus on shallow ice cores providing a stack record of accumulation and water-stable isotopes spanning the past centuries. For the first time, we document the ongoing warming in a Greenland ice core. By combining our data with other Greenland ice cores and model results, we characterise the spatio-temporal patterns of variability.
B. Hasholt, S. A. Khan, and A. B. Mikkelsen
The Cryosphere Discuss., https://doi.org/10.5194/tcd-8-3829-2014, https://doi.org/10.5194/tcd-8-3829-2014, 2014
Preprint withdrawn
S. H. Mernild, W. H. Lipscomb, D. B. Bahr, V. Radić, and M. Zemp
The Cryosphere, 7, 1565–1577, https://doi.org/10.5194/tc-7-1565-2013, https://doi.org/10.5194/tc-7-1565-2013, 2013
Related subject area
Subject: Snow and Ice | Techniques and Approaches: Modelling approaches
Inferring sediment-discharge event types in an Alpine catchment from sub-daily time series
Debris cover effects on energy and mass balance of Batura Glacier in the Karakoram over the past 20 years
The application and modification of WRF-Hydro/Glacier to a cold-based Antarctic glacier
Spatio-temporal information propagation using sparse observations in hyper-resolution ensemble-based snow data assimilation
Simulated hydrological effects of grooming and snowmaking in a ski resort on the local water balance
Spatial distribution and controls of snowmelt runoff in a sublimation-dominated environment in the semiarid Andes of Chile
Snow data assimilation for seasonal streamflow supply prediction in mountainous basins
Canopy structure, topography, and weather are equally important drivers of small-scale snow cover dynamics in sub-alpine forests
Climate sensitivity of the summer runoff of two glacierised Himalayan catchments with contrasting climate
A snow and glacier hydrological model for large catchments – case study for the Naryn River, central Asia
Precipitation biases and snow physics limitations drive the uncertainties in macroscale modeled snow water equivalent
Development and parameter estimation of snowmelt models using spatial snow-cover observations from MODIS
Recent hydrological response of glaciers in the Canadian Rockies to changing climate and glacier configuration
Future projections of High Atlas snowpack and runoff under climate change
Trends and variability in snowmelt in China under climate change
Assimilation of citizen science data in snowpack modeling using a new snow data set: Community Snow Observations
Snowpack dynamics in the Lebanese mountains from quasi-dynamically downscaled ERA5 reanalysis updated by assimilating remotely sensed fractional snow-covered area
The evaluation of the potential of global data products for snow hydrological modelling in ungauged high-alpine catchments
Learning about precipitation lapse rates from snow course data improves water balance modeling
Snow water equivalents exclusively from snow depths and their temporal changes: the Δsnow model
Application of machine learning techniques for regional bias correction of snow water equivalent estimates in Ontario, Canada
Sensitivity of snow models to the accuracy of meteorological forcings in mountain environments
Snow processes in mountain forests: interception modeling for coarse-scale applications
Satellite-derived products of solar and longwave irradiances used for snowpack modelling in mountainous terrain
Using Gravity Recovery and Climate Experiment data to derive corrections to precipitation data sets and improve modelled snow mass at high latitudes
The role of liquid water percolation representation in estimating snow water equivalent in a Mediterranean mountain region (Mount Lebanon)
Hyper-resolution ensemble-based snow reanalysis in mountain regions using clustering
The sensitivity of modeled snow accumulation and melt to precipitation phase methods across a climatic gradient
Assessment of SWAT spatial and temporal transferability for a high-altitude glacierized catchment
Modeling experiments on seasonal lake ice mass and energy balance in the Qinghai–Tibet Plateau: a case study
A simple model for local-scale sensible and latent heat advection contributions to snowmelt
Assimilation of passive microwave AMSR-2 satellite observations in a snowpack evolution model over northeastern Canada
A simple temperature-based method to estimate heterogeneous frozen ground within a distributed watershed model
Technical note: Representing glacier geometry changes in a semi-distributed hydrological model
Projected cryospheric and hydrological impacts of 21st century climate change in the Ötztal Alps (Austria) simulated using a physically based approach
Scenario approach for the seasonal forecast of Kharif flows from the Upper Indus Basin
The role of glacier changes and threshold definition in the characterisation of future streamflow droughts in glacierised catchments
Modelling hydrologic impacts of light absorbing aerosol deposition on snow at the catchment scale
Liquid water infiltration into a layered snowpack: evaluation of a 3-D water transport model with laboratory experiments
Assessing glacier melt contribution to streamflow at Universidad Glacier, central Andes of Chile
Modelling liquid water transport in snow under rain-on-snow conditions – considering preferential flow
Developing a representative snow-monitoring network in a forested mountain watershed
Subgrid parameterization of snow distribution at a Mediterranean site using terrestrial photography
Assessing the benefit of snow data assimilation for runoff modeling in Alpine catchments
Spatio-temporal variability of snow water equivalent in the extra-tropical Andes Cordillera from distributed energy balance modeling and remotely sensed snow cover
A conceptual, distributed snow redistribution model
Diagnostic calibration of a hydrological model in a mountain area by hydrograph partitioning
Meltwater run-off from Haig Glacier, Canadian Rocky Mountains, 2002–2013
Modeling the snow surface temperature with a one-layer energy balance snowmelt model
Estimating degree-day factors from MODIS for snowmelt runoff modeling
Amalie Skålevåg, Oliver Korup, and Axel Bronstert
Hydrol. Earth Syst. Sci., 28, 4771–4796, https://doi.org/10.5194/hess-28-4771-2024, https://doi.org/10.5194/hess-28-4771-2024, 2024
Short summary
Short summary
We present a cluster-based approach for inferring sediment discharge event types from suspended sediment concentration and streamflow. Applying it to a glacierised catchment, we find event magnitude and shape complexity to be the key characteristics separating event types, while hysteresis is less important. The four event types are attributed to compound rainfall–melt extremes, high snowmelt and glacier melt, freeze–thaw-modulated snow-melt and precipitation, and late-season glacier melt.
Yu Zhu, Shiyin Liu, Ben W. Brock, Lide Tian, Ying Yi, Fuming Xie, Donghui Shangguan, and Yiyuan Shen
Hydrol. Earth Syst. Sci., 28, 2023–2045, https://doi.org/10.5194/hess-28-2023-2024, https://doi.org/10.5194/hess-28-2023-2024, 2024
Short summary
Short summary
This modeling-based study focused on Batura Glacier from 2000 to 2020, revealing that debris alters its energy budget, affecting mass balance. We propose that the presence of debris on the glacier surface effectively reduces the amount of latent heat available for ablation, which creates a favorable condition for Batura Glacier's relatively low negative mass balance. Batura Glacier shows a trend toward a less negative mass balance due to reduced ablation.
Tamara Pletzer, Jonathan P. Conway, Nicolas J. Cullen, Trude Eidhammer, and Marwan Katurji
Hydrol. Earth Syst. Sci., 28, 459–478, https://doi.org/10.5194/hess-28-459-2024, https://doi.org/10.5194/hess-28-459-2024, 2024
Short summary
Short summary
We applied a glacier and hydrology model in the McMurdo Dry Valleys (MDV) to model the start and duration of melt over a summer in this extreme polar desert. To do so, we found it necessary to prevent the drainage of melt into ice and optimize the albedo scheme. We show that simulating albedo (for the first time in the MDV) is critical to modelling the feedbacks of albedo, snowfall and melt in the region. This paper is a first step towards more complex spatial modelling of melt and streamflow.
Esteban Alonso-González, Kristoffer Aalstad, Norbert Pirk, Marco Mazzolini, Désirée Treichler, Paul Leclercq, Sebastian Westermann, Juan Ignacio López-Moreno, and Simon Gascoin
Hydrol. Earth Syst. Sci., 27, 4637–4659, https://doi.org/10.5194/hess-27-4637-2023, https://doi.org/10.5194/hess-27-4637-2023, 2023
Short summary
Short summary
Here we explore how to improve hyper-resolution (5 m) distributed snowpack simulations using sparse observations, which do not provide information from all the areas of the simulation domain. We propose a new way of propagating information throughout the simulations adapted to the hyper-resolution, which could also be used to improve simulations of other nature. The method has been implemented in an open-source data assimilation tool that is readily accessible to everyone.
Samuel Morin, Hugues François, Marion Réveillet, Eric Sauquet, Louise Crochemore, Flora Branger, Étienne Leblois, and Marie Dumont
Hydrol. Earth Syst. Sci., 27, 4257–4277, https://doi.org/10.5194/hess-27-4257-2023, https://doi.org/10.5194/hess-27-4257-2023, 2023
Short summary
Short summary
Ski resorts are a key socio-economic asset of several mountain areas. Grooming and snowmaking are routinely used to manage the snow cover on ski pistes, but despite vivid debate, little is known about their impact on water resources downstream. This study quantifies, for the pilot ski resort La Plagne in the French Alps, the impact of grooming and snowmaking on downstream river flow. Hydrological impacts are mostly apparent at the seasonal scale and rather neutral on the annual scale.
Álvaro Ayala, Simone Schauwecker, and Shelley MacDonell
Hydrol. Earth Syst. Sci., 27, 3463–3484, https://doi.org/10.5194/hess-27-3463-2023, https://doi.org/10.5194/hess-27-3463-2023, 2023
Short summary
Short summary
As the climate of the semiarid Andes is very dry, much of the seasonal snowpack is lost to the atmosphere through sublimation. We propose that snowmelt runoff originates from specific areas that we define as snowmelt hotspots. We estimate that snowmelt hotspots produce half of the snowmelt runoff in a small study catchment but represent about a quarter of the total area. Snowmelt hotspots may be important for groundwater recharge, rock glaciers, and mountain peatlands.
Sammy Metref, Emmanuel Cosme, Matthieu Le Lay, and Joël Gailhard
Hydrol. Earth Syst. Sci., 27, 2283–2299, https://doi.org/10.5194/hess-27-2283-2023, https://doi.org/10.5194/hess-27-2283-2023, 2023
Short summary
Short summary
Predicting the seasonal streamflow supply of water in a mountainous basin is critical to anticipating the operation of hydroelectric dams and avoiding hydrology-related hazard. This quantity partly depends on the snowpack accumulated during winter. The study addresses this prediction problem using information from streamflow data and both direct and indirect snow measurements. In this study, the prediction is improved by integrating the data information into a basin-scale hydrological model.
Giulia Mazzotti, Clare Webster, Louis Quéno, Bertrand Cluzet, and Tobias Jonas
Hydrol. Earth Syst. Sci., 27, 2099–2121, https://doi.org/10.5194/hess-27-2099-2023, https://doi.org/10.5194/hess-27-2099-2023, 2023
Short summary
Short summary
This study analyses snow cover evolution in mountainous forested terrain based on 2 m resolution simulations from a process-based model. We show that snow accumulation patterns are controlled by canopy structure, but topographic shading modulates the timing of melt onset, and variability in weather can cause snow accumulation and melt patterns to vary between years. These findings advance our ability to predict how snow regimes will react to rising temperatures and forest disturbances.
Sourav Laha, Argha Banerjee, Ajit Singh, Parmanand Sharma, and Meloth Thamban
Hydrol. Earth Syst. Sci., 27, 627–645, https://doi.org/10.5194/hess-27-627-2023, https://doi.org/10.5194/hess-27-627-2023, 2023
Short summary
Short summary
A model study of two Himalayan catchments reveals that the summer runoff from the glacierized parts of the catchments responds strongly to temperature forcing and is insensitive to precipitation forcing. The runoff from the non-glacierized parts has the exact opposite behaviour. The interannual variability and decadal changes of runoff under a warming climate is determined by the response of glaciers to temperature forcing and that of off-glacier areas to precipitation perturbations.
Sarah Shannon, Anthony Payne, Jim Freer, Gemma Coxon, Martina Kauzlaric, David Kriegel, and Stephan Harrison
Hydrol. Earth Syst. Sci., 27, 453–480, https://doi.org/10.5194/hess-27-453-2023, https://doi.org/10.5194/hess-27-453-2023, 2023
Short summary
Short summary
Climate change poses a potential threat to water supply in glaciated river catchments. In this study, we added a snowmelt and glacier melt model to the Dynamic fluxEs and ConnectIvity for Predictions of HydRology model (DECIPHeR). The model is applied to the Naryn River catchment in central Asia and is found to reproduce past change discharge and the spatial extent of seasonal snow cover well.
Eunsang Cho, Carrie M. Vuyovich, Sujay V. Kumar, Melissa L. Wrzesien, Rhae Sung Kim, and Jennifer M. Jacobs
Hydrol. Earth Syst. Sci., 26, 5721–5735, https://doi.org/10.5194/hess-26-5721-2022, https://doi.org/10.5194/hess-26-5721-2022, 2022
Short summary
Short summary
While land surface models are a common approach for estimating macroscale snow water equivalent (SWE), the SWE accuracy is often limited by uncertainties in model physics and forcing inputs. In this study, we found large underestimations of modeled SWE compared to observations. Precipitation forcings and melting physics limitations dominantly contribute to the SWE underestimations. Results provide insights into prioritizing strategies to improve the SWE simulations for hydrologic applications.
Dhiraj Raj Gyawali and András Bárdossy
Hydrol. Earth Syst. Sci., 26, 3055–3077, https://doi.org/10.5194/hess-26-3055-2022, https://doi.org/10.5194/hess-26-3055-2022, 2022
Short summary
Short summary
In this study, different extensions of the degree-day model were calibrated on snow-cover distribution against freely available satellite snow-cover images. The calibrated models simulated the distribution very well in Baden-Württemberg (Germany) and Switzerland. In addition to reliable identification of snow cover, the melt outputs from the calibrated models were able to improve the flow simulations in different catchments in the study region.
Dhiraj Pradhananga and John W. Pomeroy
Hydrol. Earth Syst. Sci., 26, 2605–2616, https://doi.org/10.5194/hess-26-2605-2022, https://doi.org/10.5194/hess-26-2605-2022, 2022
Short summary
Short summary
This study considers the combined impacts of climate and glacier changes due to recession on the hydrology and water balance of two high-elevation glaciers. Peyto and Athabasca glacier basins in the Canadian Rockies have undergone continuous glacier loss over the last 3 to 5 decades, leading to an increase in ice exposure and changes to the elevation and slope of the glacier surfaces. Streamflow from these glaciers continues to increase more due to climate warming than glacier recession.
Alexandre Tuel, Nabil El Moçayd, Moulay Driss Hasnaoui, and Elfatih A. B. Eltahir
Hydrol. Earth Syst. Sci., 26, 571–588, https://doi.org/10.5194/hess-26-571-2022, https://doi.org/10.5194/hess-26-571-2022, 2022
Short summary
Short summary
Snowmelt in the High Atlas is critical for irrigation in Morocco but is threatened by climate change. We assess future trends in High Atlas snowpack by modelling it under historical and future climate scenarios and estimate their impact on runoff. We find that the combined warming and drying will result in a roughly 80 % decline in snowpack, a 5 %–30 % decrease in runoff efficiency and 50 %–60 % decline in runoff under a business-as-usual scenario.
Yong Yang, Rensheng Chen, Guohua Liu, Zhangwen Liu, and Xiqiang Wang
Hydrol. Earth Syst. Sci., 26, 305–329, https://doi.org/10.5194/hess-26-305-2022, https://doi.org/10.5194/hess-26-305-2022, 2022
Short summary
Short summary
A comprehensive assessment of snowmelt is missing for China. Trends and variability in snowmelt in China under climate change are investigated using historical precipitation and temperature data (1951–2017) and projection scenarios (2006–2099). The snowmelt and snowmelt runoff ratio show significant spatial and temporal variability in China. The spatial variability in snowmelt changes may lead to regional differences in the impact of snowmelt on the water supply.
Ryan L. Crumley, David F. Hill, Katreen Wikstrom Jones, Gabriel J. Wolken, Anthony A. Arendt, Christina M. Aragon, Christopher Cosgrove, and Community Snow Observations Participants
Hydrol. Earth Syst. Sci., 25, 4651–4680, https://doi.org/10.5194/hess-25-4651-2021, https://doi.org/10.5194/hess-25-4651-2021, 2021
Short summary
Short summary
In this study, we use a new snow data set collected by participants in the Community Snow Observations project in coastal Alaska to improve snow depth and snow water equivalence simulations from a snow process model. We validate our simulations with multiple datasets, taking advantage of snow telemetry (SNOTEL), snow depth and snow water equivalence, and remote sensing measurements. Our results demonstrate that assimilating citizen science snow depth measurements can improve model performance.
Esteban Alonso-González, Ethan Gutmann, Kristoffer Aalstad, Abbas Fayad, Marine Bouchet, and Simon Gascoin
Hydrol. Earth Syst. Sci., 25, 4455–4471, https://doi.org/10.5194/hess-25-4455-2021, https://doi.org/10.5194/hess-25-4455-2021, 2021
Short summary
Short summary
Snow water resources represent a key hydrological resource for the Mediterranean regions, where most of the precipitation falls during the winter months. This is the case for Lebanon, where snowpack represents 31 % of the spring flow. We have used models to generate snow information corrected by means of remote sensing snow cover retrievals. Our results highlight the high temporal variability in the snowpack in Lebanon and its sensitivity to further warming caused by its hypsography.
Michael Weber, Franziska Koch, Matthias Bernhardt, and Karsten Schulz
Hydrol. Earth Syst. Sci., 25, 2869–2894, https://doi.org/10.5194/hess-25-2869-2021, https://doi.org/10.5194/hess-25-2869-2021, 2021
Short summary
Short summary
We compared a suite of globally available meteorological and DEM data with in situ data for physically based snow hydrological modelling in a small high-alpine catchment. Although global meteorological data were less suited to describe the snowpack properly, transferred station data from a similar location in the vicinity and substituting single variables with global products performed well. In addition, using 30 m global DEM products as model input was useful in such complex terrain.
Francesco Avanzi, Giulia Ercolani, Simone Gabellani, Edoardo Cremonese, Paolo Pogliotti, Gianluca Filippa, Umberto Morra di Cella, Sara Ratto, Hervè Stevenin, Marco Cauduro, and Stefano Juglair
Hydrol. Earth Syst. Sci., 25, 2109–2131, https://doi.org/10.5194/hess-25-2109-2021, https://doi.org/10.5194/hess-25-2109-2021, 2021
Short summary
Short summary
Precipitation tends to increase with elevation, but the magnitude and distribution of this enhancement remain poorly understood. By leveraging over 11 000 spatially distributed, manual measurements of snow depth (snow courses) upstream of two reservoirs in the western European Alps, we show that these courses bear a characteristic signature of orographic precipitation. This opens a window of opportunity for improved modeling accuracy and, ultimately, our understanding of the water budget.
Michael Winkler, Harald Schellander, and Stefanie Gruber
Hydrol. Earth Syst. Sci., 25, 1165–1187, https://doi.org/10.5194/hess-25-1165-2021, https://doi.org/10.5194/hess-25-1165-2021, 2021
Short summary
Short summary
A new method to calculate the mass of snow is provided. It is quite simple but gives surprisingly good results. The new approach only requires regular snow depth observations to simulate respective water mass that is stored in the snow. It is called
ΔSNOW model, its code is freely available, and it can be applied in various climates. The method is especially interesting for studies on extremes (e.g., snow loads or flooding) and climate (e.g., precipitation trends).
Fraser King, Andre R. Erler, Steven K. Frey, and Christopher G. Fletcher
Hydrol. Earth Syst. Sci., 24, 4887–4902, https://doi.org/10.5194/hess-24-4887-2020, https://doi.org/10.5194/hess-24-4887-2020, 2020
Short summary
Short summary
Snow is a critical contributor to our water and energy budget, with impacts on flooding and water resource management. Measuring the amount of snow on the ground each year is an expensive and time-consuming task. Snow models and gridded products help to fill these gaps, yet there exist considerable uncertainties associated with their estimates. We demonstrate that machine learning techniques are able to reduce biases in these products to provide more realistic snow estimates across Ontario.
Silvia Terzago, Valentina Andreoli, Gabriele Arduini, Gianpaolo Balsamo, Lorenzo Campo, Claudio Cassardo, Edoardo Cremonese, Daniele Dolia, Simone Gabellani, Jost von Hardenberg, Umberto Morra di Cella, Elisa Palazzi, Gaia Piazzi, Paolo Pogliotti, and Antonello Provenzale
Hydrol. Earth Syst. Sci., 24, 4061–4090, https://doi.org/10.5194/hess-24-4061-2020, https://doi.org/10.5194/hess-24-4061-2020, 2020
Short summary
Short summary
In mountain areas high-quality meteorological data to drive snow models are rarely available, so coarse-resolution data from spatial interpolation of the available in situ measurements or reanalyses are typically employed. We perform 12 experiments using six snow models with different degrees of complexity to show the impact of the accuracy of the forcing on snow depth and snow water equivalent simulations at the Alpine site of Torgnon, discussing the results in relation to the model complexity.
Nora Helbig, David Moeser, Michaela Teich, Laure Vincent, Yves Lejeune, Jean-Emmanuel Sicart, and Jean-Matthieu Monnet
Hydrol. Earth Syst. Sci., 24, 2545–2560, https://doi.org/10.5194/hess-24-2545-2020, https://doi.org/10.5194/hess-24-2545-2020, 2020
Short summary
Short summary
Snow retained in the forest canopy (snow interception) drives spatial variability of the subcanopy snow accumulation. As such, accurately describing snow interception in models is of importance for various applications such as hydrological, weather, and climate predictions. We developed descriptions for the spatial mean and variability of snow interception. An independent evaluation demonstrated that the novel models can be applied in coarse land surface model grid cells.
Louis Quéno, Fatima Karbou, Vincent Vionnet, and Ingrid Dombrowski-Etchevers
Hydrol. Earth Syst. Sci., 24, 2083–2104, https://doi.org/10.5194/hess-24-2083-2020, https://doi.org/10.5194/hess-24-2083-2020, 2020
Short summary
Short summary
In mountainous terrain, the snowpack is strongly affected by incoming shortwave and longwave radiation. Satellite-derived products of incoming radiation were assessed in the French Alps and the Pyrenees and compared to meteorological forecasts, reanalyses and in situ measurements. We showed their good quality in mountains. The different radiation datasets were used as radiative forcing for snowpack simulations with the detailed model Crocus. Their impact on the snowpack evolution was explored.
Emma L. Robinson and Douglas B. Clark
Hydrol. Earth Syst. Sci., 24, 1763–1779, https://doi.org/10.5194/hess-24-1763-2020, https://doi.org/10.5194/hess-24-1763-2020, 2020
Short summary
Short summary
This study used a water balance approach based on GRACE total water storage to infer the amount of cold-season precipitation in four Arctic river basins. This was used to evaluate four gridded meteorological data sets, which were used as inputs to a land surface model. We found that the cold-season precipitation in these data sets needed to be increased by up to 55 %. Using these higher precipitation inputs improved the model representation of Arctic hydrology, particularly lying snow.
Abbas Fayad and Simon Gascoin
Hydrol. Earth Syst. Sci., 24, 1527–1542, https://doi.org/10.5194/hess-24-1527-2020, https://doi.org/10.5194/hess-24-1527-2020, 2020
Short summary
Short summary
Seasonal snowpack is an essential water resource in Mediterranean mountains. Here, we look at the role of water percolation in simulating snow mass (SWE), for the first time, in Mount Lebanon. We use SnowModel, a distributed snow model, forced by station data. The main sources of uncertainty were attributed to rain–snow partitioning, transient winter snowmelt, and the subpixel snow cover. Yet, we show that a process-based model is suitable to simulate wet snowpack in Mediterranean mountains.
Joel Fiddes, Kristoffer Aalstad, and Sebastian Westermann
Hydrol. Earth Syst. Sci., 23, 4717–4736, https://doi.org/10.5194/hess-23-4717-2019, https://doi.org/10.5194/hess-23-4717-2019, 2019
Short summary
Short summary
In this paper we address one of the big challenges in snow hydrology, namely the accurate simulation of the seasonal snowpack in ungauged regions. We do this by assimilating satellite observations of snow cover into a modelling framework. Importantly (and a novelty of the paper), we include a clustering approach that permits highly efficient ensemble simulations. Efficiency gains and dependency on purely global datasets, means that this method can be applied over large areas anywhere on Earth.
Keith S. Jennings and Noah P. Molotch
Hydrol. Earth Syst. Sci., 23, 3765–3786, https://doi.org/10.5194/hess-23-3765-2019, https://doi.org/10.5194/hess-23-3765-2019, 2019
Short summary
Short summary
There is a wide variety of modeling methods to designate precipitation as rain, snow, or a mix of the two. Here we show that method choice introduces marked uncertainty to simulated snowpack water storage (> 200 mm) and snow cover duration (> 1 month) in areas that receive significant winter and spring precipitation at air temperatures at and near freezing. This marked uncertainty has implications for water resources management as well as simulations of past and future hydroclimatic states.
Maria Andrianaki, Juna Shrestha, Florian Kobierska, Nikolaos P. Nikolaidis, and Stefano M. Bernasconi
Hydrol. Earth Syst. Sci., 23, 3219–3232, https://doi.org/10.5194/hess-23-3219-2019, https://doi.org/10.5194/hess-23-3219-2019, 2019
Short summary
Short summary
We tested the performance of the SWAT hydrological model after being transferred from a small Alpine watershed to a greater area. We found that the performance of the model for the greater catchment was satisfactory and the climate change simulations gave insights into the impact of climate change on our site. Assessment tests are important in identifying the strengths and weaknesses of the models when they are applied under extreme conditions different to the ones that were calibrated.
Wenfeng Huang, Bin Cheng, Jinrong Zhang, Zheng Zhang, Timo Vihma, Zhijun Li, and Fujun Niu
Hydrol. Earth Syst. Sci., 23, 2173–2186, https://doi.org/10.5194/hess-23-2173-2019, https://doi.org/10.5194/hess-23-2173-2019, 2019
Short summary
Short summary
Up to now, little has been known on ice thermodynamics and lake–atmosphere interaction over the Tibetan Plateau during ice-covered seasons due to a lack of field data. Here, model experiments on ice thermodynamics were conducted in a shallow lake using HIGHTSI. Water–ice heat flux was a major source of uncertainty for lake ice thickness. Heat and mass budgets were estimated within the vertical air–ice–water system. Strong ice sublimation occurred and was responsible for water loss during winter.
Phillip Harder, John W. Pomeroy, and Warren D. Helgason
Hydrol. Earth Syst. Sci., 23, 1–17, https://doi.org/10.5194/hess-23-1-2019, https://doi.org/10.5194/hess-23-1-2019, 2019
Short summary
Short summary
As snow cover becomes patchy during snowmelt, energy is advected from warm snow-free surfaces to cold snow-covered surfaces. This paper proposes a simple sensible and latent heat advection model for snowmelt situations that can be coupled to one-dimensional energy balance snowmelt models. The model demonstrates that sensible and latent heat advection fluxes can compensate for one another, especially in early melt periods.
Fanny Larue, Alain Royer, Danielle De Sève, Alexandre Roy, and Emmanuel Cosme
Hydrol. Earth Syst. Sci., 22, 5711–5734, https://doi.org/10.5194/hess-22-5711-2018, https://doi.org/10.5194/hess-22-5711-2018, 2018
Short summary
Short summary
A data assimilation scheme was developed to improve snow water equivalent (SWE) simulations by updating meteorological forcings and snowpack states using passive microwave satellite observations. A chain of models was first calibrated to simulate satellite observations over northeastern Canada. The assimilation was then validated over 12 stations where daily SWE measurements were acquired during 4 winters (2012–2016). The overall SWE bias is reduced by 68 % compared to original SWE simulations.
Michael L. Follum, Jeffrey D. Niemann, Julie T. Parno, and Charles W. Downer
Hydrol. Earth Syst. Sci., 22, 2669–2688, https://doi.org/10.5194/hess-22-2669-2018, https://doi.org/10.5194/hess-22-2669-2018, 2018
Short summary
Short summary
Spatial patterns of snow and frozen ground within watersheds can impact the volume and timing of runoff. Commonly used snow and frozen ground simulation methods were modified to better account for the effects of topography and land cover on the spatial patterns of snow and frozen ground. When tested using a watershed in Vermont the modifications resulted in more accurate temporal and spatial simulation of both snow and frozen ground.
Jan Seibert, Marc J. P. Vis, Irene Kohn, Markus Weiler, and Kerstin Stahl
Hydrol. Earth Syst. Sci., 22, 2211–2224, https://doi.org/10.5194/hess-22-2211-2018, https://doi.org/10.5194/hess-22-2211-2018, 2018
Short summary
Short summary
In many glacio-hydrological models glacier areas are assumed to be constant over time, which is a crucial limitation. Here we describe a novel approach to translate mass balances as simulated by the (glacio)hydrological model into glacier area changes. We combined the Δh approach of Huss et al. (2010) with the bucket-type model HBV and introduced a lookup table approach, which also allows periods with advancing glaciers to be represented, which is not possible with the original Huss method.
Florian Hanzer, Kristian Förster, Johanna Nemec, and Ulrich Strasser
Hydrol. Earth Syst. Sci., 22, 1593–1614, https://doi.org/10.5194/hess-22-1593-2018, https://doi.org/10.5194/hess-22-1593-2018, 2018
Short summary
Short summary
Climate change effects on snow, glaciers, and hydrology are investigated for the Ötztal Alps region (Austria) using a hydroclimatological model driven by climate projections for the RCP2.6, RCP4.5, and RCP8.5 scenarios. The results show declining snow amounts and strongly retreating glaciers with moderate effects on catchment runoff until the mid-21st century, whereas annual runoff volumes decrease strongly towards the end of the century.
Muhammad Fraz Ismail and Wolfgang Bogacki
Hydrol. Earth Syst. Sci., 22, 1391–1409, https://doi.org/10.5194/hess-22-1391-2018, https://doi.org/10.5194/hess-22-1391-2018, 2018
Marit Van Tiel, Adriaan J. Teuling, Niko Wanders, Marc J. P. Vis, Kerstin Stahl, and Anne F. Van Loon
Hydrol. Earth Syst. Sci., 22, 463–485, https://doi.org/10.5194/hess-22-463-2018, https://doi.org/10.5194/hess-22-463-2018, 2018
Short summary
Short summary
Glaciers are important hydrological reservoirs. Short-term variability in glacier melt and also glacier retreat can cause droughts in streamflow. In this study, we analyse the effect of glacier changes and different drought threshold approaches on future projections of streamflow droughts in glacierised catchments. We show that these different methodological options result in different drought projections and that these options can be used to study different aspects of streamflow droughts.
Felix N. Matt, John F. Burkhart, and Joni-Pekka Pietikäinen
Hydrol. Earth Syst. Sci., 22, 179–201, https://doi.org/10.5194/hess-22-179-2018, https://doi.org/10.5194/hess-22-179-2018, 2018
Short summary
Short summary
Certain particles that have the ability to absorb sunlight deposit onto mountain snow via atmospheric transport mechanisms and then lower the snow's ability to reflect sunlight, which increases snowmelt. Herein we present a model aiming to simulate this effect and model the impacts on the streamflow of a southern Norwegian river. We find a significant difference in streamflow between simulations with and without the effect of light absorbing particles applied, in particular during spring melt.
Hiroyuki Hirashima, Francesco Avanzi, and Satoru Yamaguchi
Hydrol. Earth Syst. Sci., 21, 5503–5515, https://doi.org/10.5194/hess-21-5503-2017, https://doi.org/10.5194/hess-21-5503-2017, 2017
Short summary
Short summary
We reproduced the formation of capillary barriers and the development of preferential flow through snow using a multi-dimensional water transport model, which was then validated using laboratory experiments of liquid water infiltration into layered, initially dry snow. Simulation results showed that the model reconstructs some relevant features of capillary barriers and the timing of liquid water arrival at the snow base.
Claudio Bravo, Thomas Loriaux, Andrés Rivera, and Ben W. Brock
Hydrol. Earth Syst. Sci., 21, 3249–3266, https://doi.org/10.5194/hess-21-3249-2017, https://doi.org/10.5194/hess-21-3249-2017, 2017
Short summary
Short summary
We present an analysis of meteorological conditions and melt for Universidad Glacier in central Chile. This glacier is characterized by high melt rates over the ablation season, representing a mean contribution of between 10 and 13 % of the total runoff observed in the upper Tinguiririca Basin during the November 2009 to March 2010 period. Few studies have quantified the glacier melt contribution to river runoff in Chile, and this work represents a new precedent for the Andes.
Sebastian Würzer, Nander Wever, Roman Juras, Michael Lehning, and Tobias Jonas
Hydrol. Earth Syst. Sci., 21, 1741–1756, https://doi.org/10.5194/hess-21-1741-2017, https://doi.org/10.5194/hess-21-1741-2017, 2017
Short summary
Short summary
We discuss a dual-domain water transport model in a physics-based snowpack model to account for preferential flow (PF) in addition to matrix flow. So far no operationally used snow model has explicitly accounted for PF. The new approach is compared to existing water transport models and validated against in situ data from sprinkling and natural rain-on-snow (ROS) events. Our work demonstrates the benefit of considering PF in modelling hourly snowpack runoff, especially during ROS conditions.
Kelly E. Gleason, Anne W. Nolin, and Travis R. Roth
Hydrol. Earth Syst. Sci., 21, 1137–1147, https://doi.org/10.5194/hess-21-1137-2017, https://doi.org/10.5194/hess-21-1137-2017, 2017
Short summary
Short summary
We present a coupled modeling approach used to objectively identify representative snow-monitoring locations in a forested watershed in the western Oregon Cascades mountain range. The resultant Forest Elevational Snow Transect (ForEST) represents combinations of forested and open land cover types at low, mid-, and high elevations.
Rafael Pimentel, Javier Herrero, and María José Polo
Hydrol. Earth Syst. Sci., 21, 805–820, https://doi.org/10.5194/hess-21-805-2017, https://doi.org/10.5194/hess-21-805-2017, 2017
Short summary
Short summary
This study analyses the subgrid variability of the snow distribution in a Mediterranean region and formulates a parametric approach that includes these scale effects in the physical modelling of snow by means of accumulation–depletion curves associated with snow evolution patterns, by means of terrestrial photography. The results confirm that the use of these on a cell scale provides a solid foundation for the extension of point snow models to larger areas.
Nena Griessinger, Jan Seibert, Jan Magnusson, and Tobias Jonas
Hydrol. Earth Syst. Sci., 20, 3895–3905, https://doi.org/10.5194/hess-20-3895-2016, https://doi.org/10.5194/hess-20-3895-2016, 2016
Short summary
Short summary
In Alpine catchments, snowmelt is a major contribution to runoff. In this study, we address the question of whether the performance of a hydrological model can be enhanced by integrating data from an external snow monitoring system. To this end, a hydrological model was driven with snowmelt input from snow models of different complexities. Best performance was obtained with a snow model, which utilized data assimilation, in particular for catchments at higher elevations and for snow-rich years.
E. Cornwell, N. P. Molotch, and J. McPhee
Hydrol. Earth Syst. Sci., 20, 411–430, https://doi.org/10.5194/hess-20-411-2016, https://doi.org/10.5194/hess-20-411-2016, 2016
Short summary
Short summary
We present a high-resolution snow water equivalent estimation for the 2001–2014 period over the extratropical Andes Cordillera of Argentina and Chile, the first of its type. The effect of elevation on accumulation is confirmed, although this is less marked in the northern portion of the domain. The 3000–4000 m a.s.l. elevation band contributes the bulk of snowmelt, but the 4000–5000 m a.s.l. band is a significant source and deserves further monitoring and research.
S. Frey and H. Holzmann
Hydrol. Earth Syst. Sci., 19, 4517–4530, https://doi.org/10.5194/hess-19-4517-2015, https://doi.org/10.5194/hess-19-4517-2015, 2015
Short summary
Short summary
Temperature index melt models often lead to snow accumulation in high mountainous elevations. We developed a simple conceptual snow redistribution model working on a commonly used grid cell size of 1x1km. That model is integrated in the hydrological rainfall runoff model COSERO. Applying the model to the catchment of Oetztaler Ache, Austria, could prevent the accumulation of snow in the upper altitudes and lead to an improved model efficiency regarding discharge and snow coverage (MODIS).
Z. H. He, F. Q. Tian, H. V. Gupta, H. C. Hu, and H. P. Hu
Hydrol. Earth Syst. Sci., 19, 1807–1826, https://doi.org/10.5194/hess-19-1807-2015, https://doi.org/10.5194/hess-19-1807-2015, 2015
S. J. Marshall
Hydrol. Earth Syst. Sci., 18, 5181–5200, https://doi.org/10.5194/hess-18-5181-2014, https://doi.org/10.5194/hess-18-5181-2014, 2014
Short summary
Short summary
This paper presents a new 12-year glacier meteorological, mass balance, and run-off record from the Canadian Rocky Mountains. This provides insight into the glaciohydrological regime of the Rockies. For the period 2002-2013, about 60% of glacier meltwater run-off originated from seasonal snow and 40% was derived from glacier ice and firn. Ice and firn run-off is concentrated in the months of August and September, at which time it contributes significantly to regional-scale water resources.
J. You, D. G. Tarboton, and C. H. Luce
Hydrol. Earth Syst. Sci., 18, 5061–5076, https://doi.org/10.5194/hess-18-5061-2014, https://doi.org/10.5194/hess-18-5061-2014, 2014
Short summary
Short summary
This paper evaluates three improvements to an energy balance snowmelt model aimed to represent snow surface temperature while retaining the parsimony of a single layer. Surface heat flow is modeled using a forcing term related to the vertical temperature difference and a restore term related to the temporal gradient of surface temperature. Adjustments for melt water refreezing and thermal conductivity when the snow is shallow are introduced. The model performs well at the three test sites.
Z. H. He, J. Parajka, F. Q. Tian, and G. Blöschl
Hydrol. Earth Syst. Sci., 18, 4773–4789, https://doi.org/10.5194/hess-18-4773-2014, https://doi.org/10.5194/hess-18-4773-2014, 2014
Short summary
Short summary
In this paper, we propose a new method for estimating the snowmelt degree-day factor (DDFS) directly from MODIS snow covered area (SCA) and ground-based snow depth data without calibration. Snow density is estimated as the ratio between observed precipitation and changes in the snow volume for days with snow accumulation. DDFS values are estimated as the ratio between changes in the snow water equivalent and difference between the daily temperature and a threshold value for days with snowmelt.
Cited articles
Ahlstrøm, A. P., Bøggild, C. E., Olesen, O. B., Petersen, D., and Mohr,
J. J.: Mass balance of the Amitsulôq ice cap, West Greenland, IAHS-AISH
P., 318, 107–115, 2007.
Andreasen, J.-O.: Ilt-isotop undersøgelse ved Kidtlessuaq,
Vestgrønland, PhD Dissertation, Aarhus University, Aarhus, 33 pp., 1984.
Arendt, C. A., Aciego, A. M., and Hetland, E. A.: An open source Bayesian Monte
Carlo isotope mixing model with applications in Earth surface processes,
Geochem. Geophy. Geosy., 16, 1274–1292, https://doi.org/10.1002/2014GC005683, 2015.
Bales, R. C., Guo, Q., Shen, D., McConnell, J. R., Du, G., Burkhart, J. F.,
Spikes, V. B., Hanna, E., and Cappelen, J.: Annual accumulation for Greenland
updated using ice core data developed during 2000–2006 and analysis of daily
coastal meteorological data, J. Geophys. Res., 114, D06116,
https://doi.org/10.1029/2008JD011208, 2009.
Bamber, J., van den Broeke, M., Ettema, J., Lenaerts, J., and Rignot, E.:
Recent large increase in freshwater fluxes from Greenland into the North
Atlantic, Geophys. Res. Lett., 39, L19501, https://doi.org/10.1029/2012GL052552, 2012.
Bárcena, T. G., Yde, J. C., and Finster, K. W.: Methane flux and
high-affinity methanotrophic diversity along the chronosequence of a
receding glacier in Greenland, Ann. Glaciol., 51, 23–31, 2010.
Bárcena, T. G., Finster, K. W., and Yde, J. C.: Spatial patterns of soil
development, methane oxidation, and methanotrophic diversity along a
receding glacier forefield, Southeast Greenland, Arct. Antarct. Alp. Res.,
43, 178–188, 2011.
Behrens, H., Bergmann, H., Moser, H., Rauert, W., Stichler, W., Ambach, W.,
Eisner, H., and Pessl, K.: Study of the discharge of Alpine glaciers by means
of environmental isotpes and dye tracers, Z. Gletscherkunde Glazialgeologie,
7, 79–102, 1971.
Behrens, H., Moser, H., Oerter, H., Rauert, W., and Stichler, W.: Models for
the runoff from a glaciated catchment area using measurements of
environmental isotope contents, in: Proceedings of the International
Symposium on Isotope Hydrology, International Atomic Energy Agency, Vienna,
829–846, 1978.
Bhatia, M. P., Das, S. B., Kujawinski, E. B., Henderson, P., Burke, A., and
Charette, M. A.: Seasonal evolution of water contributions to discharge from
a Greenland outlet glacier: insight from a new isotope-mixing model, J.
Glaciol., 57, 929–941, 2011.
Blaen, P. J., Hannah, D. M., Brown, L. E., and Milner, A. M.: Water source
dynamics of high Arctic river basins, Hydrol. Process., 28, 3521–3538, 2014.
Bøggild, C. E., Brandt, R. E., Brown, K. J., and Warren, S. G.: The ablation
zone in Northeast Greenland: ice types, albedos and impurities, J. Glaciol.,
56, 101–113, 2010.
Box, J. E., Fettweis, X., Stroeve, J. C., Tedesco, M., Hall, D. K., and Steffen, K.:
Greenland ice sheet albedo feedback: thermodynamics and atmospheric drivers,
The Cryosphere, 6, 821–839, https://doi.org/10.5194/tc-6-821-2012, 2012.
Boye, B.: En undersøgelse af variationer i δ18O-indholdet i
prøver indsamlet på Mittivakkat gletscheren i Østgrønland, Ms
Thesis, Aarhus University, Aarhus, 101 pp., 1999.
Cable, J., Ogle, K., and Williams, D.: Contribution of glacier meltwater to
streamflow in the Wind River Range, Wyoming, inferred via a Bayesian mixing
model applied to isotopic measurements, Hydrol. Process., 25, 2228–2236,
https://doi.org/10.1002/hyp.7982, 2011.
Cappelen, J.: Weather observations from Greenland 1958–2012, Danish
Meteorological Institute Technical Report 13–11, Danish Meteorological
Institute, Copenhagen, 23 pp., 2013.
Coplen, T. B.: New guidelines for reporting stable hydrogen, carbon, and
oxygen isotope-ratio data, Geochim. Cosmochim. Ac., 60, 3359–3360, 1996.
Dahlke, H. E., Lyom, S. W., Jansson, P., Karlin, T., and Rosquist, G.: Isotopic
investigation of runoff generation in a glacierized catchment in northern
Sweden, Hydrol. Process., 28, 1383–1398, 2014.
Dansgaard, W.: Stable isotopes in precipitation, Tellus, 16, 436–468, 1964.
Dansgaard, W., Johnsen, S. J., Clausen, H. B., and Gundestrup, N.: Stable
isotope glaciology, Medd. Grønland, 197, 53 pp., 1973.
Dinçer, T., Payne, B. R., Florkowski, T., Martinec, J., and Tongiorgi, E.:
Snowmelt runoff from measurements of tritium and oxygen-18, Water Resour.
Res., 6, 110–124, 1970.
Dissing, L.: Studier af kemiske forhold i sne aflejret på og ved
Mittivakkat-gletscheren i Østgrønland, Ms Thesis, Aarhus University,
102 pp., 2000.
Epstein, S. and Sharp, R. P.: Oxygen-isotope variations in the Malaspina and
Saskatchewan Glaciers, J. Geol., 67, 88–102, 1959.
Fairchild, I. J., Killawee, J. A., Sharp, M. J., Spiro, B., Hubbard, B.,
Lorrain, R., and Tison, J.-L.: Solute generation and transfer from a
chemically reactive Alpine glacial-proglacial system, Earth Surf. Proc.
Land., 24, 1189–1211, 1999.
Gat, J. R. and Gonfiantini, R.: Stable isotope hydrology. Deuterium and
oxygen-18 in the water cycle, Technical Report Series 210, International
Atomic Energy Agency, Vienna, 334 pp., 1981.
Haldorsen, S., Riise, G., Swensen, B., and Sletten, R. S.: Environmental
isotopes as tracers in catchments, in: Geochemical processes, weathering and
groundwater recharge in catchments, edited by: Saether, O. M. and de Caritat,
P., Balkema, Rotterdam, 185–210, 1997.
Hambrey, M. J.: Oxygen isotope studies at Charles Rabots Bre, Okstindan,
northern Norway, Geogr. Ann. A, 56, 147–158, 1974.
Hanna, E., Huybrechts, P., Janssens, I., Cappelen, J., Steffen, K., and
Stephens, A.: Runoff and mass balance of the Greenland ice sheet: 1958–2003,
J. Geophys. Res., 110, D13108, https://doi.org/10.1029/2004JD005641, 2005.
Hanna, E., Huybrechts, P., Steffen, K., Cappelen, J., Huff, R., Shuman, C.,
Irvine-Fynn, T., Wise, S., and Griffiths, M.: Increased runoff from melt from
the Greenland ice sheet: A response to global warming, J. Climate, 21,
331–341, 2008.
Hanna, E., Mernild, S. H., Cappelen, J., and Steffen, K.: Recent warming in
Greenland in a long-term instrumental (1881–2012) climatic context, Part 1:
evaluation of surface air temperature records, Environ. Res. Lett., 7,
045404, https://doi.org/10.1088/1748-9326/7/4/045404, 2012.
Hanna, E., Jones, J. M., Cappelen, J., Mernild, S. H., Wood, L., Steffen, K.,
and Huybrechts, P.: Discerning the influence of North Atlantic atmospheric
and oceanic forcing effects on 1900–2012 Greenland summer climate and melt,
Int. J. Climatol., 33, 862–888, 2013.
Hasholt, B. and Mernild, S. H.: Glacial erosion and sediment transport in the
Mittivakkat Glacier catchment, Ammassalik Island, southeast Greenland, 2005,
IAHS-AISH P., 306, 45–55, 2006.
Henry, C. H., Wilson, A. T., Popplewell, K. B., and House, D. A.: Dating of
geochemical events in Lake Bonney, Antarctica, and their relation to glacial
and climate changes, New Zeal. J. Geol. Geop., 20, 1103–1122, 1977.
Herschy, R. W.: Hydrometry: Principles and practice, 2nd edition, Wiley,
384 pp., 1999.
Hindshaw, R. S., Tipper, E. T., Reynolds, B. C., Lemarchard, E., Wiederhold,
J. G., Magnusson, J., Bernasconi, S. M., Kretzschmar, R., and Bourdon, B.:
Hydrological control of stream water chemistry in a glacial catchment (Damma
Glacier, Switzerland), Chem. Geol., 285, 215–230,
https://doi.org/10.1016/j.chemgeo.2011.04.012, 2011.
Hindshaw, R. S., Rickli, J., Leuthold, J., Wadham, J., and Bourdon, B.:
Identifying weathering sources and processes in an outlet glacier of the
Greenland Ice Sheet using Ca and Sr isotope ratios, Geochim. Cosmochim. Ac., 145, 50–71, 2014.
Hindshaw, R. S., Heaton, T. H. E., Boyd, E. S., Lindsay, M. R., and Tipper, E. T.:
Influence of glaciation on mechanisms of mineral weathering in two high
Arctic catchments, Chem. Geol., 420, 37–50,
https://doi.org/10.1016/j.chemgeo.2015.11.004, 2016.
Holdsworth, G., Fogarasi, S., and Krouse, H. R.: Variation of the stable
isotopes of water with altitude in the Saint Elias Mountains of Canada, J.
Geophys. Res. 96, 7483–7494, 1991.
Hooper, R. P. and Shoemaker, C. A.: A comparison of chemical and isotopic
hydrograph separation, Water Resour. Res., 106, 233–244, 1986.
Humlum, O.: Late-Holocene climate in central West Greenland: meteorological
data and rock-glacier isotope evidence, Holocene, 9, 581–594, 1999.
Kamb, B.: Glacier surge mechanism based on linked cavity configuration of
the basal water conduit system, J. Geophys. Res., 92, 9083–9100, 1987.
Kamb, B., Raymond, C. F., Harrison, W. D., Engelhardt, H., Echelmeyer, K. A.,
Humphrey, N., Brugman, M. M., and Pfeffer, T.: Glacier surge mechanism:
1982–1983 surge of Variegated Glacier, Alaska, Science, 227, 469–479, 1985.
Kang, S., Kreutz, K. J., Mayewski, P. A., Qin, D., and Yao, T.: Stable-isotopic
composition of precipitation over the northern slope of the central
Himalaya, J. Glaciol., 48, 519–526, 2002.
Keegan, K. M., Albert, M. R., McConnell, J. R., and Baker, I.: Climate change
and forest fires synergistically drive widespread melt events of the
Greenland Ice Sheet, P. Natl. Acad. Sci. USA, 111, 7964–7967, 2014.
Kendall, C., Doctor, D. H., and Young, M. B.: Environmental isotope applications in hydrological studies, in:
Treatise on Geochemistry, second edition, edited by: Holland, H. D. and Turekian, K. K., Elsevier, Oxford, 7, chapter 9, 273–327, 2014.
Knudsen, N. T., Yde, J. C., and Gasser, G.: Suspended sediment transport in
glacial meltwater during the initial quiescent phase after a major surge
event at Kuannersuit Glacier, Greenland, Geogr. Tidsskr., 107, 1–7, 2007.
Knudsen, N. T., Nørnberg, P., Yde, J. C., Hasholt, B., and Heinemeier, J.:
Recent marginal changes of the Mittivakkat Glacier, Southeast Greenland and
the discovery of remains of reindeer (Rangifer tarandus), polar bear (Ursus
maritimus) and peaty material, Geogr. Tidsskr., 108, 137–142, 2008.
Kong, Y. and Pang, Z.: Evaluating the sensitivity of glacier rivers to
climate change based on hydrograph separation of discharge, J. Hydrol.,
434–435, 121–129, 2012.
Kristiansen, S. M., Yde, J. C., Bárcena, T. G., Jakobsen, B. H., Olsen,
J.,
and Knudsen, N. T.: Geochemistry of groundwater in front of a warm-based
glacier in Southeast Greenland, Geogr. Ann. A, 95, 97–108, 2013.
Larsen, N. K., Kronborg, C., Yde, J. C., and Knudsen, N. T.: Debris entrainment
by basal freeze-on and thrusting during the 1995–1998 surge of Kuannersuit
Glacier on Disko Island, west Greenland, Earth Surf. Proc. Land., 35,
561–574, 2010.
Lee, J., Feng, X., Faiia, A., Posmentier, E., Osterhuber, R., and Kirchner,
J.: Isotopic evolution of snowmelt: A new model incorporating mobile and
immobile water, Water Resour. Res., 46, W11512, https://doi.org/10.1029/2009WR008306,
2010.
Lutz, S., Anesio, A. M., Villar, S. E. J., and Benning, L. G.: Variations of
algal communities cause darkening of a Greenland glacier, FEMS Microbiol.
Ecol., 89, 402–414, 2014.
Mark, B. G. and Seltzer, G. O.: Tropical glacier meltwater contribution to
stream discharge: a case study in the Cordillera Blanca, Peru, J. Glaciol.,
49, 271–281, 2003.
Mark, B. G. and McKenzie, J. M.: Tracing increasing tropical Andean glacier
melt with stable isotopes in water, Environ. Sci. Technol., 41, 6955–6960,
2007.
McDonnell, J. J., Bonell, M., Stewart, M. K., and Pearce, A. J.: Deuterium
variations in storm rainfall – implications for stream hydrograph
separation, Water Resour. Res., 26, 455–458, 1990.
Meng, Y., Liu, G., and Zhang, L.: A comparative study on stable isotopic
composition in waters of the glacial and nonglacial rivers in Mount Gongga,
China, Water Environ. J., 28, 212–221, 2014.
Mernild, S. H.: The internal drainage system of the lower Mittivakkat
Glacier, Ammassalik Island, SE Greenland, Geogr. Tidsskr., 106, 13–24, 2006.
Mernild, S. H. and Liston, G. E.: The influence of air temperature inversions
on snowmelt and glacier mass balance simulations, Ammassalik Island,
Southeast Greenland, J. Appl. Meteorol. Clim., 49, 47–67, 2010.
Mernild, S. H. and Liston, G. E.: Greenland freshwater runoff, Part II:
Distribution and trends, 1960–2010, J. Clim., 25, 6015–6035, 2012.
Mernild, S. H., Hasholt, B., Jakobsen, B. H., and Hansen, B. U.: Meteorological
observations 2006 and ground temperature variations over 12-year at the
Sermilik Station, Ammassalik Island, Southeast Greenland, Geogr. Tidsskr.,
108, 153–161, 2008a.
Mernild, S. H., Liston, G. E., and Hasholt, B.: East Greenland freshwater
runoff to the Greenland-Iceland-Norwegian Seas 1999–2004 and 2071–2100,
Hydrol. Process., 22, 4571–4586, 2008b.
Mernild, S. H., Knudsen, N. T., Lipscomb, W. H., Yde, J. C., Malmros, J. K., Hasholt, B.,
and Jakobsen, B. H.: Increasing mass loss from Greenland's Mittivakkat Gletscher,
The Cryosphere, 5, 341–348, https://doi.org/10.5194/tc-5-341-2011, 2011.
Mernild, S. H., Malmros, J. K., Yde, J. C., and Knudsen, N. T.: Multi-decadal marine- and land-terminating
glacier recession in the Ammassalik region, southeast Greenland, The Cryosphere, 6, 625–639, https://doi.org/10.5194/tc-6-625-2012, 2012.
Mernild, S. H., Pelto, M., Malmros, J. K., Yde, J. C., Knudsen, N. T., and Hanna,
E.: Identification of snow ablation rate, ELA, AAR and net mass balance
using transient snowline variations on two Arctic glaciers, J. Glaciol., 59,
649–659, 2013a.
Mernild, S. H., Knudsen, N. T., Hoffman, M. J., Yde, J. C., Hanna, E., Lipscomb,
W. H., Malmros, J. K., and Fausto, R. S.: Volume and velocity changes at
Mittivakkat Gletscher, southeast Greenland, J. Glaciol., 59, 660–670, 2013b.
Mernild, S. H., Hanna, E., Yde, J. C., Cappelen, J., and Malmros, J. K.: Coastal
Greenland air temperature extremes and trends 1890–2010: annual and monthly
analysis, Int. J. Climatol., 34, 1472–1487, 2014.
Mernild, S. H., Hanna, E., McConnell, J. R., Sigl, M., Beckerman, A. P., Yde,
J. C., Cappelen, J., Malmros, J. K., and Steffen, K.: Greenland precipitation
trends in a long-term instrumental climate context (1890–2012): evaluation
of coastal and ice core records, Int. J. Climatol., 35, 303–320, 2015a.
Mernild, S. H., Malmros, J. K., Yde, J. C., Wilson, R., Knudsen, N. T., Hanna,
E., Fausto, R. S., and van As, D.: Albedo decline on Greenland's Mittivakkat
Gletscher in a warming climate, Int. J. Climatol., 35, 2294–2307, 2015b.
Milner, A. M., Brown, L. E., and Hannah, D. M.: Hydroecological response of
river systems to shrinking glaciers, Hydrol. Process., 23, 62–77, 2009.
Moser, H. and Stichler, W.: Environmental isotopes in ice and snow, in:
Handbook of environmental isotope geochemistry, The terrestrial
environment, A, edited by: Fritz, P. and Fontes, J. C., Elsevier, Amsterdam,
Volume 1, 141–178, 1980.
Nghiem, S. V., Hall, D. K., Mote, T. L., Tedesco, M., Albert, M. R., Keegan, K.,
Shuman, C. A., DiGirolamo, N. E., and Neumann, G.: The extreme melt across the
Greenland ice sheet in 2012, Geophys. Res. Lett., 39, L20502,
https://doi.org/10.1029/2012GL053611, 2012.
Ohlanders, N., Rodriguez, M., and McPhee, J.: Stable water isotope variation in a
Central Andean watershed dominated by glacier and snowmelt, Hydrol. Earth Syst. Sci., 17, 1035–1050, https://doi.org/10.5194/hess-17-1035-2013, 2013.
Penna, D., Engel, M., Mao, L., Dell'Agnese, A., Bertoldi, G., and Comiti, F.: Tracer-based analysis of
spatial and temporal variations of water sources in a glacierized catchment, Hydrol. Earth Syst. Sci., 18, 5271–5288, https://doi.org/10.5194/hess-18-5271-2014, 2014.
Raben, P. and Theakstone, W. H.: Changes of ionic and oxygen isotopic
composition of the snowpack at the glacier Austre Okstindbreen, Norway,
1995, Nord. Hydrol., 29, 1–20, 1998.
Reeh, N., Oerter, H., and Thomsen, H. H.: Comparison between Greenland
ice-margin and ice-core oxygen-18 records, Ann. Glaciol., 35, 136–144, 2002.
Roberts, D. H., Yde, J. C., Knudsen, N. T., Long, A. J., and Lloyd, J. M.: Ice
marginal dynamics and sediment delivery mechanisms during surge activity,
Kuannersuit Glacier, Disko Island, West Greenland, Quaternary Sci. Rev., 28,
209–222, 2009.
Rodriguez, M., Ohlanders, N., and McPhee, J.: Estimating glacier and snowmelt contributions to stream flow
in a Central Andes catchment in Chile using natural tracers, Hydrol. Earth Syst. Sci. Discuss., 11, 8949–8994, https://doi.org/10.5194/hessd-11-8949-2014, 2014.
Tedesco, M., Serreze, M., and Fettweis, X.: Diagnosing the extreme surface melt
event over southwestern Greenland in 2007, The Cryosphere, 2, 159–166, https://doi.org/10.5194/tc-2-159-2008, 2008.
Tedesco, M., Fettweis, X., van den Broeke, M. R., van de Wal, R. S. W., Smeets,
C. J. P. P., van de Berg, W. J., Serreze, M. C., and Box, J. E.: The role of albedo
and accumulation in the 2010 melting record in Greenland, Environ. Res.
Lett., 6, 014005, https://doi.org/10.1088/1748-9326/6/1/014005, 2011.
Theakstone, W. H.: Temporal variations of isotopic composition of
glacier-river water during summer: observations at Austre Okstindbreen,
Okstindan, Norway, J. Glaciol., 34, 309–317, 1988.
Theakstone, W. H.: Oxygen isotopes in glacier-river water, Austre
Okstindbreen, Okstidan, Norway, J. Glaciol., 49, 282–298, 2003.
Theakstone, W. H.: Dating stratigraphic variations of ions and oxygen
isotopes in a high-altitude snowpack by comparison with daily variations of
precipitation chemistry at a low-altitude site, Hydrol. Res., 39, 101–112,
2008.
Theakstone, W. H. and Knudsen, N. T.: Temporal changes of glacier hydrological
systems indicated by isotopic and related observations at Austre
Okstindbreen, Okstindan, Norway, 1976–87, Ann. Glaciol., 13, 252–256, 1989.
Theakstone, W. H. and Knudsen, N. T.: Isotopic and ionic variations in glacier
river water during three contrasting ablation seasons, Hydrol. Process., 10,
523–539, 1996a.
Theakstone, W. H. and Knudsen, N. T.: Oxygen isotope and ionic concentrations
in glacier river water: multi-year observations in the Austre Okstindbreen
basin, Norway, Nord. Hydrol., 27, 101–116, 1996b.
Tian, L., Masson-Delmotte, V., Stiévenard, M., Yao, T., and Jouzel, J.:
Tibetan Plateau summer monsoon northward extent revealed by measurements of
water stable isotopes, J. Geophys. Res., 106, 28081–28088, 2001.
van As, D., Hubbard, A. L., Hasholt, B., Mikkelsen, A. B., van den Broeke, M. R., and Fausto, R. S.:
Large surface meltwater discharge from the Kangerlussuaq sector of the Greenland ice sheet
during the record-warm year 2010 explained by detailed energy balance observations, The Cryosphere, 6, 199–209, https://doi.org/10.5194/tc-6-199-2012, 2012.
Vaughan, D. G., Comiso, J. C., Allison, J., Carrasco, J., Kaser, G., Kwok, R.,
Mote, P., Murray, T., Paul, F., Ren, J., Rignot, E., Solomina, O., Steffen,
K., and Zhang, T.: Observations: Cryosphere, in: Climate Change 2013: The
physical science basis, Contribution of working group I to the Fifth
Assessment Report of the Intergovernmental Panel on Climate Change, edited
by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K.,
Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge
University Press, Cambridge, United Kingdom and New York, NY, USA, 2013.
Weidick, A. and Morris, E.: Local glaciers surrounding the continental ice
sheets, in: Into the second century of world glacier monitoring – prospects
and strategies, edited by: Haeberli, W., Hoelzle, M., and Suter, S., UNESCO
Studies and Reports in Hydrology, 56, 167–176, 1998.
Yallop, M. L., Anesio, A. M., Perkins, R. G., Cook, J., Telling, J., Fagan, D.,
MacFarlene, J., Stibal, M., Barker, G., Bellas, C., Hodson, A., Tranter, M.,
Wadham, J., and Roberts, N. W.: Photophysiology and albedo-changing potential
of the ice algal community on the surface of the Greenland ice sheet,
ISME J., 6, 2302–2313, 2012.
Yde, J. C. and Knudsen, N. T.: The importance of oxygen isotope provenance in
relation to solute content of bulk meltwaters at Imersuaq Glacier, West
Greenland, Hydrol. Process., 18, 125–139, 2004.
Yde, J. C. and Knudsen, N. T.: Glaciological features in the initial quiescent
phase of Kuannersuit Glacier, Greenland, Geogr. Ann. A, 87, 473–485, 2005a.
Yde, J. C. and Knudsen, N. T.: Observations of debris-rich naled associated
with a major glacier surge event, Disko Island, West Greenland, Permafrost Periglac., 16, 319–325, 2005b.
Yde, J. C. and Knudsen, N. T.: 20th-century glacier fluctuations on Disko
Island (Qeqertarsuaq), Greenland, Ann. Glaciol., 46, 209–214, 2007.
Yde, J. C., Knudsen, N. T., and Nielsen, O. B.: Glacier hydrochemistry, solute
provenance, and chemical denudation at a surge-type glacier in Kuannersuit
Kuussuat, Disko Island, West Greenland, J. Hydrol., 300, 172–187, 2005a.
Yde, J. C., Knudsen, N. T., Larsen, N. K., Kronborg, C., Nielsen, O. B.,
Heinemeier, J., and Olsen, J.: The presence of thrust-block naled after a
major surge event: Kuannersuit Glacier, West Greenland, Ann. Glaciol., 42,
145–150, 2005b.
Yde, J. C., Riger-Kusk, M., Christiansen, H. H., Knudsen, N. T., and Humlum, O.:
Hydrochemical characteristics of bulk meltwater from an entire ablation
season, Longyearbreen, Svalbard, J. Glaciol., 54, 259–272, 2008.
Yde, J. C., Hodson, A. J., Solovjanova, I., Steffensen, J. P., Nørnberg, P.,
Heinemeier, J., and Olsen, J.: Chemical and isotopic characteristics of a
glacier-derived naled in front of Austre Grønfjordbreen, Svalbard, Polar
Res., 31, 17628, https://doi.org/10.3402/polar.v31i0.17628, 2012.
Yde, J. C., Kusk Gillespie, M., Løland, R., Ruud, H., Mernild, S. H., de
Villiers, S., Knudsen, N. T., and Malmros, J. K.: Volume measurements of
Mittivakkat Gletscher, Southeast Greenland, J. Glaciol., 60, 1199–1207,
2014.
Zhou, S., Wang, Z., and Joswiak, D. R.: From precipitation to runoff: stable
isotopic fractionation effect of glacier melting on a catchment scale,
Hydrol. Process., 28, 3341–3349, 2014.