Articles | Volume 19, issue 9
https://doi.org/10.5194/hess-19-3755-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/hess-19-3755-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
A review of applications of satellite SAR, optical, altimetry and DEM data for surface water modelling, mapping and parameter estimation
UNESCO-IHE Institute for Water Education, Delft, the Netherlands
I. Popescu
UNESCO-IHE Institute for Water Education, Delft, the Netherlands
A. Mynett
UNESCO-IHE Institute for Water Education, Delft, the Netherlands
Department of Civil Engineering, Technical University Delft, Delft, the Netherlands
Related authors
No articles found.
Mostafa Saberian, Vidya Samadi, and Ioana Popescu
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-261, https://doi.org/10.5194/hess-2024-261, 2024
Preprint under review for HESS
Short summary
Short summary
Recent progress in neural network accelerated improvements in the performance of catchment modeling systems. Yet flood modeling remains a very difficult task. Focusing on two headwater streams, this paper developed N-HiTS and N-BEATS models and benchmarked them with LSTM to predict flooding events. Analysis suggested that both N-HiTS and N-BEATS outperformed LSTM for short-term (1-hour) flood predictions.
This article is included in the Encyclopedia of Geosciences
Faisal Sardar, Muhammad Haris Ali, Ioana Popescu, Andreja Jonoski, Schalk Jan van Andel, and Claudia Bertini
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-276, https://doi.org/10.5194/hess-2023-276, 2023
Manuscript not accepted for further review
Short summary
Short summary
This article analyzes surface and groundwater interactions in a small transboundary lowland catchment. The study also investigates the influence of rainfall representation in model on surface subsurface hydrological simulations. Emphasizing the significance of these interactions, the research highlighted the role of subsurface baseflow in contributing to river discharge. Despite minimal impact on streamflow, spatial variability in rainfall can cause localized fluctuations in groundwater levels.
This article is included in the Encyclopedia of Geosciences
Betina I. Guido, Ioana Popescu, Vidya Samadi, and Biswa Bhattacharya
Nat. Hazards Earth Syst. Sci., 23, 2663–2681, https://doi.org/10.5194/nhess-23-2663-2023, https://doi.org/10.5194/nhess-23-2663-2023, 2023
Short summary
Short summary
We used an integrated model to evaluate the impacts of nature-based solutions (NBSs) on flood mitigation across the Little Pee Dee and Lumber River watershed, the Carolinas, US. This area is strongly affected by climatic disasters, which are expected to increase due to climate change and urbanization, so exploring an NBS approach is crucial for adapting to future alterations. Our research found that NBSs can have visible effects on the reduction in hurricane-driven flooding.
This article is included in the Encyclopedia of Geosciences
Md Feroz Islam, Biswa Bhattacharya, and Ioana Popescu
Nat. Hazards Earth Syst. Sci., 19, 353–368, https://doi.org/10.5194/nhess-19-353-2019, https://doi.org/10.5194/nhess-19-353-2019, 2019
Short summary
Short summary
Bangladesh, one of the most disaster-prone countries in the world, has a dynamic delta with 123 polders. Cyclone-induced storm surges cause severe damage to these polders. This paper presents an investigation of the inundation pattern in a polder due to dike failure caused by storm surges and identifies possible critical locations of dike breaches. Moreover, the risk of flooding was assessed and probabilistic flood maps were generated for the breaching of dikes.
This article is included in the Encyclopedia of Geosciences
Thaine H. Assumpção, Ioana Popescu, Andreja Jonoski, and Dimitri P. Solomatine
Hydrol. Earth Syst. Sci., 22, 1473–1489, https://doi.org/10.5194/hess-22-1473-2018, https://doi.org/10.5194/hess-22-1473-2018, 2018
Short summary
Short summary
Citizens can contribute to science by providing data, analysing them and as such contributing to decision-making processes. For example, citizens have collected water levels from gauges, which are important when simulating/forecasting floods, where data are usually scarce. This study reviewed such contributions and concluded that integration of citizen data may not be easy due to their spatio-temporal characteristics but that citizen data still proved valuable and can be used in flood modelling.
This article is included in the Encyclopedia of Geosciences
Ali D. Abdullah, Jacqueline I. A. Gisen, Pieter van der Zaag, Hubert H. G. Savenije, Usama F. A. Karim, Ilyas Masih, and Ioana Popescu
Hydrol. Earth Syst. Sci., 20, 4031–4042, https://doi.org/10.5194/hess-20-4031-2016, https://doi.org/10.5194/hess-20-4031-2016, 2016
Short summary
Short summary
A comprehensive and detailed data set of the salinity distribution over an entire year in a complex and dynamic (because heavily utilized and modified) deltaic river system was thoroughly analysed, and formed the basis for a validated analytical model that can predict the extent of seawater among other salinity sources in an estuary. The procedure can be applied to other estuaries.
This article is included in the Encyclopedia of Geosciences
Z. N. Musa, I. Popescu, and A. Mynett
Nat. Hazards Earth Syst. Sci., 14, 3317–3329, https://doi.org/10.5194/nhess-14-3317-2014, https://doi.org/10.5194/nhess-14-3317-2014, 2014
C. Fu, I. Popescu, C. Wang, A. E. Mynett, and F. Zhang
Hydrol. Earth Syst. Sci., 18, 1225–1237, https://doi.org/10.5194/hess-18-1225-2014, https://doi.org/10.5194/hess-18-1225-2014, 2014
M. Castro Gama, I. Popescu, A. Mynett, L. Shengyang, and A. van Dam
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhessd-1-6061-2013, https://doi.org/10.5194/nhessd-1-6061-2013, 2013
Manuscript not accepted for further review
M. Arias-Hidalgo, B. Bhattacharya, A. E. Mynett, and A. van Griensven
Hydrol. Earth Syst. Sci., 17, 2905–2915, https://doi.org/10.5194/hess-17-2905-2013, https://doi.org/10.5194/hess-17-2905-2013, 2013
P. D. T. Van, I. Popescu, A. van Griensven, D. P. Solomatine, N. H. Trung, and A. Green
Hydrol. Earth Syst. Sci., 16, 4637–4649, https://doi.org/10.5194/hess-16-4637-2012, https://doi.org/10.5194/hess-16-4637-2012, 2012
Related subject area
Subject: Rivers and Lakes | Techniques and Approaches: Modelling approaches
A hybrid data-driven approach to analyze the drivers of lake level dynamics
Estimating velocity distribution and flood discharge at river bridges using entropy theory – insights from computational fluid dynamics flow fields
Late-Quaternary hydrological evolution of Fuente de Piedra playa-lake (southern Iberia) controlled by neotectonics and climate changes
Isotopic evaluation of the National Water Model reveals missing agricultural irrigation contributions to streamflow across the western United States
On the Cause of Large Daily River Flow Fluctuations in the Mekong River
Timing of spring events changes under modelled future climate scenarios in a mesotrophic lake
Effects of high-quality elevation data and explanatory variables on the accuracy of flood inundation mapping via Height Above Nearest Drainage
Understanding the compound flood risk along the coast of the contiguous United States
Benchmarking high-resolution hydrologic model performance of long-term retrospective streamflow simulations in the contiguous United States
Sources of skill in lake temperature, discharge and ice-off seasonal forecasting tools
Past and future climate change effects on the thermal regime and oxygen solubility of four peri-alpine lakes
Exploring tracer information in a small stream to improve parameter identifiability and enhance the process interpretation in transient storage models
How do inorganic nitrogen processing pathways change quantitatively at daily, seasonal, and multiannual scales in a large agricultural stream?
Seasonal forecasting of lake water quality and algal bloom risk using a continuous Gaussian Bayesian network
Spatially referenced Bayesian state-space model of total phosphorus in western Lake Erie
Future water temperature of rivers in Switzerland under climate change investigated with physics-based models
Physical controls and a priori estimation of raising land surface elevation across the southwestern Bangladesh delta using tidal river management
Evaluation and interpretation of convolutional long short-term memory networks for regional hydrological modelling
Synthesizing the impacts of baseflow contribution on concentration–discharge (C–Q) relationships across Australia using a Bayesian hierarchical model
Calibrating 1D hydrodynamic river models in the absence of cross-section geometry using satellite observations of water surface elevation and river width
A global algorithm for identifying changing streamflow regimes: application to Canadian natural streams (1966–2010)
Streamflow drought: implication of drought definitions and its application for drought forecasting
Quantifying floodwater impacts on a lake water budget via volume-dependent transient stable isotope mass balance
River runoff in Switzerland in a changing climate – changes in moderate extremes and their seasonality
River runoff in Switzerland in a changing climate – runoff regime changes and their time of emergence
Machine-learning methods for stream water temperature prediction
Bathymetry and latitude modify lake warming under ice
Lake thermal structure drives interannual variability in summer anoxia dynamics in a eutrophic lake over 37 years
Reservoir evaporation in a Mediterranean climate: comparing direct methods in Alqueva Reservoir, Portugal
Diverging hydrological drought traits over Europe with global warming
Anthropogenic influence on the Rhine water temperatures
A new form of the Saint-Venant equations for variable topography
Simulations of future changes in thermal structure of Lake Erken: proof of concept for ISIMIP2b lake sector local simulation strategy
Assessment of the geomorphic effectiveness of controlled floods in a braided river using a reduced-complexity numerical model
Worldwide lake level trends and responses to background climate variation
Modeling inorganic carbon dynamics in the Seine River continuum in France
A data-based predictive model for spatiotemporal variability in stream water quality
Flooding in the Mekong Delta: the impact of dyke systems on downstream hydrodynamics
Reconstruction of the 1941 GLOF process chain at Lake Palcacocha (Cordillera Blanca, Peru)
Historical modelling of changes in Lake Erken thermal conditions
Improving lake mixing process simulations in the Community Land Model by using K profile parameterization
Upgraded global mapping information for earth system modelling: an application to surface water depth at the ECMWF
Sediment transport modelling in riverine environments: on the importance of grain-size distribution, sediment density, and suspended sediment concentrations at the upstream boundary
Replication of ecologically relevant hydrological indicators following a modified covariance approach to hydrological model parameterization
Lidar-based approaches for estimating solar insolation in heavily forested streams
Numerical study on the response of the largest lake in China to climate change
Unraveling the hydrological budget of isolated and seasonally contrasted subtropical lakes
Future projections of temperature and mixing regime of European temperate lakes
Conservative finite-volume forms of the Saint-Venant equations for hydrology and urban drainage
Modelling Lake Titicaca's daily and monthly evaporation
Márk Somogyvári, Dieter Scherer, Frederik Bart, Ute Fehrenbach, Akpona Okujeni, and Tobias Krueger
Hydrol. Earth Syst. Sci., 28, 4331–4348, https://doi.org/10.5194/hess-28-4331-2024, https://doi.org/10.5194/hess-28-4331-2024, 2024
Short summary
Short summary
We study the drivers behind the changes in lake levels, creating a series of models from least to most complex. In this study, we have shown that the decreasing levels of Groß Glienicker Lake in Germany are not simply the result of changes in climate but are affected by other processes. In our example, reduced inflow from a growing forest, regionally sinking groundwater levels and the modifications in the local rainwater infrastructure together resulted in an increasing lake level loss.
This article is included in the Encyclopedia of Geosciences
Farhad Bahmanpouri, Tommaso Lazzarin, Silvia Barbetta, Tommaso Moramarco, and Daniele P. Viero
Hydrol. Earth Syst. Sci., 28, 3717–3737, https://doi.org/10.5194/hess-28-3717-2024, https://doi.org/10.5194/hess-28-3717-2024, 2024
Short summary
Short summary
The entropy model is a reliable tool to estimate flood discharge in rivers using observed level and surface velocity. Often, level and velocity sensors are placed on bridges, which may disturb the flow. Using accurate numerical models, we explored the entropy model reliability nearby a multi-arch bridge. We found that it is better to place sensors and to estimate the discharge upstream of bridges; downstream, the entropy model needs the river-wide distribution of surface velocity as input data.
This article is included in the Encyclopedia of Geosciences
Alejandro Jiménez Bonilla, Lucía Martegani, Miguel Rodríguez-Rodríguez, Fernando Gázquez, Manuel Díaz-Azpíroz, Sergio Martos, Klaus Reicherter, and Inmaculada Expósito
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-142, https://doi.org/10.5194/hess-2024-142, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
We accomplished an interdisciplinary study to study the Fuente de Piedra (FdP) playa-lake evolution in southern Spain. We made water balances during the FdP lifespan . Our results indicate that the FdP playa-lake level moved and tilted towards SW caused by active faults.
This article is included in the Encyclopedia of Geosciences
Annie L. Putman, Patrick C. Longley, Morgan C. McDonnell, James Reddy, Michelle Katoski, Olivia L. Miller, and J. Renée Brooks
Hydrol. Earth Syst. Sci., 28, 2895–2918, https://doi.org/10.5194/hess-28-2895-2024, https://doi.org/10.5194/hess-28-2895-2024, 2024
Short summary
Short summary
Accuracy of streamflow estimates where water management and use are prevalent, such as the western US, reflect hydrologic modeling decisions. To evaluate process inclusion decisions, we equipped a hydrologic model with tracers and compared estimates to observations. The tracer-equipped model performed well, and differences between the model and observations suggest that the inclusion of water from irrigation may improve model performance in this region.
This article is included in the Encyclopedia of Geosciences
Khosro Morovati, Lidi Shi, Yadu Pokhrel, Maozhu Wu, Paradis Someth, Sarann Ly, and Fuqiang Tian
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-96, https://doi.org/10.5194/hess-2024-96, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
This study addresses the regional contribution of the transboundary dammed Mekong River to daily large river flow fluctuations. Regional studies for cross-border rivers hold significant importance for regional water resource management and provide insights into how regional human activities and climate change influence the mainstream flow. The developed sub-basin approach holds significant potential for managing river fluctuations and have broader applicability beyond the specific basin studied.
This article is included in the Encyclopedia of Geosciences
Jorrit P. Mesman, Inmaculada C. Jiménez-Navarro, Ana I. Ayala, Javier Senent-Aparicio, Dennis Trolle, and Don C. Pierson
Hydrol. Earth Syst. Sci., 28, 1791–1802, https://doi.org/10.5194/hess-28-1791-2024, https://doi.org/10.5194/hess-28-1791-2024, 2024
Short summary
Short summary
Spring events in lakes are key processes for ecosystem functioning. We used a coupled catchment–lake model to investigate future changes in the timing of spring discharge, ice-off, spring phytoplankton peak, and onset of stratification in a mesotrophic lake. We found a clear trend towards earlier occurrence under climate warming but also that relative shifts in the timing occurred, such as onset of stratification advancing more slowly than the other events.
This article is included in the Encyclopedia of Geosciences
Fernando Aristizabal, Taher Chegini, Gregory Petrochenkov, Fernando Salas, and Jasmeet Judge
Hydrol. Earth Syst. Sci., 28, 1287–1315, https://doi.org/10.5194/hess-28-1287-2024, https://doi.org/10.5194/hess-28-1287-2024, 2024
Short summary
Short summary
Floods are significant natural disasters that affect people and property. This study uses a simplified terrain index and the latest lidar-derived digital elevation maps (DEMs) to investigate flood inundation extent quality. We examined inundation quality influenced by different spatial resolutions and other variables. Results showed that lidar DEMs enhance inundation quality, but their resolution is less impactful in our context. Further studies on reservoirs and urban flooding are recommended.
This article is included in the Encyclopedia of Geosciences
Dongyu Feng, Zeli Tan, Donghui Xu, and L. Ruby Leung
Hydrol. Earth Syst. Sci., 27, 3911–3934, https://doi.org/10.5194/hess-27-3911-2023, https://doi.org/10.5194/hess-27-3911-2023, 2023
Short summary
Short summary
This study assesses the flood risks concurrently induced by river flooding and coastal storm surge along the coast of the contiguous United States using statistical and numerical models. We reveal a few hotspots of such risks, the critical spatial variabilities within a river basin and over the whole US coast, and the uncertainties of the risk assessment. We highlight the importance of weighing different risk measures to avoid underestimating or exaggerating the compound flood impacts.
This article is included in the Encyclopedia of Geosciences
Erin Towler, Sydney S. Foks, Aubrey L. Dugger, Jesse E. Dickinson, Hedeff I. Essaid, David Gochis, Roland J. Viger, and Yongxin Zhang
Hydrol. Earth Syst. Sci., 27, 1809–1825, https://doi.org/10.5194/hess-27-1809-2023, https://doi.org/10.5194/hess-27-1809-2023, 2023
Short summary
Short summary
Hydrologic models developed to assess water availability need to be systematically evaluated. This study evaluates the long-term performance of two high-resolution hydrologic models that simulate streamflow across the contiguous United States. Both models show similar performance overall and regionally, with better performance in minimally disturbed basins than in those impacted by human activity. At about 80 % of the sites, both models outperform the seasonal climatological benchmark.
This article is included in the Encyclopedia of Geosciences
François Clayer, Leah Jackson-Blake, Daniel Mercado-Bettín, Muhammed Shikhani, Andrew French, Tadhg Moore, James Sample, Magnus Norling, Maria-Dolores Frias, Sixto Herrera, Elvira de Eyto, Eleanor Jennings, Karsten Rinke, Leon van der Linden, and Rafael Marcé
Hydrol. Earth Syst. Sci., 27, 1361–1381, https://doi.org/10.5194/hess-27-1361-2023, https://doi.org/10.5194/hess-27-1361-2023, 2023
Short summary
Short summary
We assessed the predictive skill of forecasting tools over the next season for water discharge and lake temperature. Tools were forced with seasonal weather predictions; however, most of the prediction skill originates from legacy effects and not from seasonal weather predictions. Yet, when skills from seasonal weather predictions are present, additional skill comes from interaction effects. Skilful lake seasonal predictions require better weather predictions and realistic antecedent conditions.
This article is included in the Encyclopedia of Geosciences
Olivia Desgué-Itier, Laura Melo Vieira Soares, Orlane Anneville, Damien Bouffard, Vincent Chanudet, Pierre Alain Danis, Isabelle Domaizon, Jean Guillard, Théo Mazure, Najwa Sharaf, Frédéric Soulignac, Viet Tran-Khac, Brigitte Vinçon-Leite, and Jean-Philippe Jenny
Hydrol. Earth Syst. Sci., 27, 837–859, https://doi.org/10.5194/hess-27-837-2023, https://doi.org/10.5194/hess-27-837-2023, 2023
Short summary
Short summary
The long-term effects of climate change will include an increase in lake surface and deep water temperatures. Incorporating up to 6 decades of limnological monitoring into an improved 1D lake model approach allows us to predict the thermal regime and oxygen solubility in four peri-alpine lakes over the period 1850–2100. Our modeling approach includes a revised selection of forcing variables and provides a way to investigate the impacts of climate variations on lakes for centennial timescales.
This article is included in the Encyclopedia of Geosciences
Enrico Bonanno, Günter Blöschl, and Julian Klaus
Hydrol. Earth Syst. Sci., 26, 6003–6028, https://doi.org/10.5194/hess-26-6003-2022, https://doi.org/10.5194/hess-26-6003-2022, 2022
Short summary
Short summary
There is an unclear understanding of which processes regulate the transport of water, solutes, and pollutants in streams. This is crucial since these processes control water quality in river networks. Compared to other approaches, we obtained clearer insights into the processes controlling solute transport in the investigated reach. This work highlights the risks of using uncertain results for interpreting the processes controlling water movement in streams.
This article is included in the Encyclopedia of Geosciences
Jingshui Huang, Dietrich Borchardt, and Michael Rode
Hydrol. Earth Syst. Sci., 26, 5817–5833, https://doi.org/10.5194/hess-26-5817-2022, https://doi.org/10.5194/hess-26-5817-2022, 2022
Short summary
Short summary
In this study, we set up a water quality model using a 5-year paired high-frequency water quality dataset from a large agricultural stream. The simulations were compared with the 15 min interval measurements and showed very good fits. Based on these, we quantified the N uptake pathway rates and efficiencies at daily, seasonal, and yearly scales. This study offers an overarching understanding of N processing in large agricultural streams across different temporal scales.
This article is included in the Encyclopedia of Geosciences
Leah A. Jackson-Blake, François Clayer, Sigrid Haande, James E. Sample, and S. Jannicke Moe
Hydrol. Earth Syst. Sci., 26, 3103–3124, https://doi.org/10.5194/hess-26-3103-2022, https://doi.org/10.5194/hess-26-3103-2022, 2022
Short summary
Short summary
We develop a Gaussian Bayesian network (GBN) for seasonal forecasting of lake water quality and algal bloom risk in a nutrient-impacted lake in southern Norway. Bayesian networks are powerful tools for environmental modelling but are almost exclusively discrete. We demonstrate that a continuous GBN is a promising alternative approach. Predictive performance of the GBN was similar or improved compared to a discrete network, and it was substantially less time-consuming and subjective to develop.
This article is included in the Encyclopedia of Geosciences
Timothy J. Maguire, Craig A. Stow, and Casey M. Godwin
Hydrol. Earth Syst. Sci., 26, 1993–2017, https://doi.org/10.5194/hess-26-1993-2022, https://doi.org/10.5194/hess-26-1993-2022, 2022
Short summary
Short summary
Water within large water bodies is constantly moving. Consequently, water movement masks causal relationships that exist between rivers and lakes. Incorporating water movement into models of nutrient concentration allows us to predict concentrations at unobserved locations and at observed locations on days not sampled. Our modeling approach does this while accommodating nutrient concentration data from multiple sources and provides a way to experimentally define the impact of rivers on lakes.
This article is included in the Encyclopedia of Geosciences
Adrien Michel, Bettina Schaefli, Nander Wever, Harry Zekollari, Michael Lehning, and Hendrik Huwald
Hydrol. Earth Syst. Sci., 26, 1063–1087, https://doi.org/10.5194/hess-26-1063-2022, https://doi.org/10.5194/hess-26-1063-2022, 2022
Short summary
Short summary
This study presents an extensive study of climate change impacts on river temperature in Switzerland. Results show that, even for low-emission scenarios, water temperature increase will lead to adverse effects for both ecosystems and socio-economic sectors throughout the 21st century. For high-emission scenarios, the effect will worsen. This study also shows that water seasonal warming will be different between the Alpine regions and the lowlands. Finally, efficiency of models is assessed.
This article is included in the Encyclopedia of Geosciences
Md Feroz Islam, Paul P. Schot, Stefan C. Dekker, Jasper Griffioen, and Hans Middelkoop
Hydrol. Earth Syst. Sci., 26, 903–921, https://doi.org/10.5194/hess-26-903-2022, https://doi.org/10.5194/hess-26-903-2022, 2022
Short summary
Short summary
The potential of sedimentation in the lowest parts of polders (beels) through controlled flooding with dike breach (tidal river management – TRM) to counterbalance relative sea level rise (RSLR) in 234 beels of SW Bangladesh is determined in this study, using 2D models and multiple regression. Lower beels located closer to the sea have the highest potential. Operating TRM only during the monsoon season is sufficient to raise the land surface of most beels by more than 3 times the yearly RSLR.
This article is included in the Encyclopedia of Geosciences
Sam Anderson and Valentina Radić
Hydrol. Earth Syst. Sci., 26, 795–825, https://doi.org/10.5194/hess-26-795-2022, https://doi.org/10.5194/hess-26-795-2022, 2022
Short summary
Short summary
We develop and interpret a spatiotemporal deep learning model for regional streamflow prediction at more than 200 stream gauge stations in western Canada. We find the novel modelling style to work very well for daily streamflow prediction. Importantly, we interpret model learning to show that it has learned to focus on physically interpretable and physically relevant information, which is a highly desirable quality of machine-learning-based hydrological models.
This article is included in the Encyclopedia of Geosciences
Danlu Guo, Camille Minaudo, Anna Lintern, Ulrike Bende-Michl, Shuci Liu, Kefeng Zhang, and Clément Duvert
Hydrol. Earth Syst. Sci., 26, 1–16, https://doi.org/10.5194/hess-26-1-2022, https://doi.org/10.5194/hess-26-1-2022, 2022
Short summary
Short summary
We investigate the impact of baseflow contribution on concentration–flow (C–Q) relationships across the Australian continent. We developed a novel Bayesian hierarchical model for six water quality variables across 157 catchments that span five climate zones. For sediments and nutrients, the C–Q slope is generally steeper for catchments with a higher median and a greater variability of baseflow contribution, highlighting the key role of variable flow pathways in particulate and solute export.
This article is included in the Encyclopedia of Geosciences
Liguang Jiang, Silja Westphal Christensen, and Peter Bauer-Gottwein
Hydrol. Earth Syst. Sci., 25, 6359–6379, https://doi.org/10.5194/hess-25-6359-2021, https://doi.org/10.5194/hess-25-6359-2021, 2021
Short summary
Short summary
River roughness and geometry are essential to hydraulic river models. However, measurements of these quantities are not available in most rivers globally. Nevertheless, simultaneous calibration of channel geometric parameters and roughness is difficult as they compensate for each other. This study introduces an alternative approach of parameterization and calibration that reduces parameter correlations by combining cross-section geometry and roughness into a conveyance parameter.
This article is included in the Encyclopedia of Geosciences
Masoud Zaerpour, Shadi Hatami, Javad Sadri, and Ali Nazemi
Hydrol. Earth Syst. Sci., 25, 5193–5217, https://doi.org/10.5194/hess-25-5193-2021, https://doi.org/10.5194/hess-25-5193-2021, 2021
Short summary
Short summary
Streamflow regimes are changing globally particularly in cold regions. We develop a novel algorithm for detecting shifting streamflow regimes using changes in first and second moments of ensemble streamflow features. This algorithm is generic and can be used globally. To showcase its application, we assess alterations in Canadian natural streams from 1966 to 2010 to provide the first temporally consistent, pan-Canadian assessment of change in natural streamflow regimes, coast to coast to coast.
This article is included in the Encyclopedia of Geosciences
Samuel J. Sutanto and Henny A. J. Van Lanen
Hydrol. Earth Syst. Sci., 25, 3991–4023, https://doi.org/10.5194/hess-25-3991-2021, https://doi.org/10.5194/hess-25-3991-2021, 2021
Short summary
Short summary
This paper provides a comprehensive overview of the differences within streamflow droughts derived using different identification approaches, namely the variable threshold, fixed threshold, and the Standardized Streamflow Index, including an analysis of both historical drought and implications for forecasting. Our results clearly show that streamflow droughts derived from different approaches deviate from each other in terms of drought occurrence, timing, duration, and deficit volume.
This article is included in the Encyclopedia of Geosciences
Janie Masse-Dufresne, Florent Barbecot, Paul Baudron, and John Gibson
Hydrol. Earth Syst. Sci., 25, 3731–3757, https://doi.org/10.5194/hess-25-3731-2021, https://doi.org/10.5194/hess-25-3731-2021, 2021
Short summary
Short summary
A volume-dependent transient isotopic mass balance model was developed for an artificial lake in Canada, in a context where direct measurements of surface water fluxes are difficult. It revealed that floodwater inputs affected the dynamics of the lake in spring but also significantly influenced the long-term water balance due to temporary subsurface storage of floodwater. Such models are paramount for understanding the vulnerability of lakes to changes in groundwater quantity and quality.
This article is included in the Encyclopedia of Geosciences
Regula Muelchi, Ole Rössler, Jan Schwanbeck, Rolf Weingartner, and Olivia Martius
Hydrol. Earth Syst. Sci., 25, 3577–3594, https://doi.org/10.5194/hess-25-3577-2021, https://doi.org/10.5194/hess-25-3577-2021, 2021
Short summary
Short summary
This study analyses changes in magnitude, frequency, and seasonality of moderate low and high flows for 93 catchments in Switzerland. In lower-lying catchments (below 1500 m a.s.l.), moderate low-flow magnitude (frequency) will decrease (increase). In Alpine catchments (above 1500 m a.s.l.), moderate low-flow magnitude (frequency) will increase (decrease). Moderate high flows tend to occur more frequent, and their magnitude increases in most catchments except some Alpine catchments.
This article is included in the Encyclopedia of Geosciences
Regula Muelchi, Ole Rössler, Jan Schwanbeck, Rolf Weingartner, and Olivia Martius
Hydrol. Earth Syst. Sci., 25, 3071–3086, https://doi.org/10.5194/hess-25-3071-2021, https://doi.org/10.5194/hess-25-3071-2021, 2021
Short summary
Short summary
Runoff regimes in Switzerland will change significantly under climate change. Projected changes are strongly elevation dependent with earlier time of emergence and stronger changes in high-elevation catchments where snowmelt and glacier melt play an important role. The magnitude of change and the climate model agreement on the sign increase with increasing global mean temperatures and stronger emission scenarios. This amplification highlights the importance of climate change mitigation.
This article is included in the Encyclopedia of Geosciences
Moritz Feigl, Katharina Lebiedzinski, Mathew Herrnegger, and Karsten Schulz
Hydrol. Earth Syst. Sci., 25, 2951–2977, https://doi.org/10.5194/hess-25-2951-2021, https://doi.org/10.5194/hess-25-2951-2021, 2021
Short summary
Short summary
In this study we developed machine learning approaches for daily river water temperature prediction, using different data preprocessing methods, six model types, a range of different data inputs and 10 study catchments. By comparing to current state-of-the-art models, we could show a significant improvement of prediction performance of the tested approaches. Furthermore, we could gain insight into the relationships between model types, input data and predicted stream water temperature.
This article is included in the Encyclopedia of Geosciences
Cintia L. Ramón, Hugo N. Ulloa, Tomy Doda, Kraig B. Winters, and Damien Bouffard
Hydrol. Earth Syst. Sci., 25, 1813–1825, https://doi.org/10.5194/hess-25-1813-2021, https://doi.org/10.5194/hess-25-1813-2021, 2021
Short summary
Short summary
When solar radiation penetrates the frozen surface of lakes, shallower zones underneath warm faster than deep interior waters. This numerical study shows that the transport of excess heat to the lake interior depends on the lake circulation, affected by Earth's rotation, and controls the lake warming rates and the spatial distribution of the heat flux across the ice–water interface. This work contributes to the understanding of the circulation and thermal structure patterns of ice-covered lakes.
This article is included in the Encyclopedia of Geosciences
Robert Ladwig, Paul C. Hanson, Hilary A. Dugan, Cayelan C. Carey, Yu Zhang, Lele Shu, Christopher J. Duffy, and Kelly M. Cobourn
Hydrol. Earth Syst. Sci., 25, 1009–1032, https://doi.org/10.5194/hess-25-1009-2021, https://doi.org/10.5194/hess-25-1009-2021, 2021
Short summary
Short summary
Using a modeling framework applied to 37 years of dissolved oxygen time series data from Lake Mendota, we identified the timing and intensity of thermal energy stored in the lake water column, the lake's resilience to mixing, and surface primary production as the most important drivers of interannual dynamics of low oxygen concentrations at the lake bottom. Due to climate change, we expect an increase in the spatial and temporal extent of low oxygen concentrations in Lake Mendota.
This article is included in the Encyclopedia of Geosciences
Carlos Miranda Rodrigues, Madalena Moreira, Rita Cabral Guimarães, and Miguel Potes
Hydrol. Earth Syst. Sci., 24, 5973–5984, https://doi.org/10.5194/hess-24-5973-2020, https://doi.org/10.5194/hess-24-5973-2020, 2020
Short summary
Short summary
In Mediterranean environments, evaporation is a key component of reservoir water budgets. Prediction of surface evaporation becomes crucial for adequate reservoir water management. This study provides an applicable method for calculating evaporation based on pan measurements applied at Alqueva Reservoir (southern Portugal), one of the largest artificial lakes in Europe. Moreover, the methodology presented here could be applied to other Mediterranean reservoirs.
This article is included in the Encyclopedia of Geosciences
Carmelo Cammalleri, Gustavo Naumann, Lorenzo Mentaschi, Bernard Bisselink, Emiliano Gelati, Ad De Roo, and Luc Feyen
Hydrol. Earth Syst. Sci., 24, 5919–5935, https://doi.org/10.5194/hess-24-5919-2020, https://doi.org/10.5194/hess-24-5919-2020, 2020
Short summary
Short summary
Climate change is anticipated to alter the demand and supply of water at the earth's surface. This study shows how hydrological droughts will change across Europe with increasing global warming levels, showing that at 3 K global warming an additional 11 million people and 4.5 ×106 ha of agricultural land will be exposed to droughts every year, on average. These effects are mostly located in the Mediterranean and Atlantic regions of Europe.
This article is included in the Encyclopedia of Geosciences
Alex Zavarsky and Lars Duester
Hydrol. Earth Syst. Sci., 24, 5027–5041, https://doi.org/10.5194/hess-24-5027-2020, https://doi.org/10.5194/hess-24-5027-2020, 2020
Short summary
Short summary
River water temperature is an important parameter for water quality and an important variable for physical, chemical and biological processes. River water is also used as a cooling agent by power plants and production facilities. We study long-term trends in river water temperature and correlate them to meteorological influences and power production or economic indices.
This article is included in the Encyclopedia of Geosciences
Cheng-Wei Yu, Ben R. Hodges, and Frank Liu
Hydrol. Earth Syst. Sci., 24, 4001–4024, https://doi.org/10.5194/hess-24-4001-2020, https://doi.org/10.5194/hess-24-4001-2020, 2020
Short summary
Short summary
This study investigates the effects of bottom slope discontinuity on the stability of numerical solutions for the Saint-Venant equations. A new reference slope concept is proposed to ensure smooth source terms and eliminate potential numerical oscillations. It is shown that a simple algebraic transformation of channel geometry provides a smooth reference slope while preserving the correct cross-sectional flow area and the piezometric pressure gradient that drives the flow.
This article is included in the Encyclopedia of Geosciences
Ana I. Ayala, Simone Moras, and Donald C. Pierson
Hydrol. Earth Syst. Sci., 24, 3311–3330, https://doi.org/10.5194/hess-24-3311-2020, https://doi.org/10.5194/hess-24-3311-2020, 2020
Short summary
Short summary
The impacts of different levels of global warming on the thermal structure of Lake Erken are assessed. We used the General Ocean Turbulence Model (GOTM) to simulate water temperature driven by meteorological scenarios supplied by the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) and tested its ability at different frequencies. Then, daily ISIMIP meteorological scenarios were disaggregated and assessed for the effects of climate change on lake thermal structure.
This article is included in the Encyclopedia of Geosciences
Luca Ziliani, Nicola Surian, Gianluca Botter, and Luca Mao
Hydrol. Earth Syst. Sci., 24, 3229–3250, https://doi.org/10.5194/hess-24-3229-2020, https://doi.org/10.5194/hess-24-3229-2020, 2020
Short summary
Short summary
Although geomorphic recovery is a key issue in many rivers worldwide, controlled floods have been rarely designed using geomorphological criteria. An integrated approach is used to assess the effects of different controlled-flood scenarios in a strongly regulated river. None of the controlled-flood strategies provide significant morphological benefits. Nevertheless, this study represents a significant contribution for the management and restoration of highly disturbed rivers.
This article is included in the Encyclopedia of Geosciences
Benjamin M. Kraemer, Anton Seimon, Rita Adrian, and Peter B. McIntyre
Hydrol. Earth Syst. Sci., 24, 2593–2608, https://doi.org/10.5194/hess-24-2593-2020, https://doi.org/10.5194/hess-24-2593-2020, 2020
Short summary
Short summary
Lake levels go up and down due to natural variability in the climate. But the effects of natural variability on lake levels can sometimes be confused for the influence of humans. Here we used long-term data from 200 globally distributed lakes and an advanced statistical approach to show that the effects of natural variability on lake levels can be disentangled from other effects leading to better estimates of long-term changes that may be partially caused by humans.
This article is included in the Encyclopedia of Geosciences
Audrey Marescaux, Vincent Thieu, Nathalie Gypens, Marie Silvestre, and Josette Garnier
Hydrol. Earth Syst. Sci., 24, 2379–2398, https://doi.org/10.5194/hess-24-2379-2020, https://doi.org/10.5194/hess-24-2379-2020, 2020
Short summary
Short summary
Rivers have been recognized as an active part of the carbon cycle where transformations are associated with CO2 outgassing. To understand it, we propose a modeling approach with the biogeochemical model, pyNuts-Riverstrahler. We implemented it on the human-impacted Seine River. Sources of carbon to the river were characterized by field measurements in groundwater and in wastewater. Outgassing was the most important in streams, and peaks were simulated downstream of wastewater treatment effluent.
This article is included in the Encyclopedia of Geosciences
Danlu Guo, Anna Lintern, J. Angus Webb, Dongryeol Ryu, Ulrike Bende-Michl, Shuci Liu, and Andrew William Western
Hydrol. Earth Syst. Sci., 24, 827–847, https://doi.org/10.5194/hess-24-827-2020, https://doi.org/10.5194/hess-24-827-2020, 2020
Short summary
Short summary
This study developed predictive models to represent the spatial and temporal variation of stream water quality across Victoria, Australia. The model structures were informed by a data-driven approach, which identified the key controls of water quality variations from long-term records. These models are helpful to identify likely future changes in water quality and, in turn, provide critical information for developing management strategies to improve stream water quality.
This article is included in the Encyclopedia of Geosciences
Vo Quoc Thanh, Dano Roelvink, Mick van der Wegen, Johan Reyns, Herman Kernkamp, Giap Van Vinh, and Vo Thi Phuong Linh
Hydrol. Earth Syst. Sci., 24, 189–212, https://doi.org/10.5194/hess-24-189-2020, https://doi.org/10.5194/hess-24-189-2020, 2020
Short summary
Short summary
The Vietnamese Mekong Delta (VMD) is a rice bowl of not only Vietnam, but also the world; agriculture is the main source of livelihood in the delta. The VMD is facing threats related to water management and hydraulic structures. Dykes are built to protect agricultural crops in the floodplains and may influence water regimes downstream in the VMD. If the VMD floodplains are completely protected by dykes, yearly mean water levels could increase by 3 cm (at Can Tho) and 1.5 cm (at My Thuan).
This article is included in the Encyclopedia of Geosciences
Martin Mergili, Shiva P. Pudasaini, Adam Emmer, Jan-Thomas Fischer, Alejo Cochachin, and Holger Frey
Hydrol. Earth Syst. Sci., 24, 93–114, https://doi.org/10.5194/hess-24-93-2020, https://doi.org/10.5194/hess-24-93-2020, 2020
Short summary
Short summary
In 1941, the glacial lagoon Lake Palcacocha in the Cordillera Blanca (Peru) drained suddenly. The resulting outburst flood/debris flow consumed another lake and had a disastrous impact on the town of Huaraz 23 km downstream. We reconstuct this event through a numerical model to learn about the possibility of prediction of similar processes in the future. Remaining challenges consist of the complex process interactions and the lack of experience due to the rare occurrence of such process chains.
This article is included in the Encyclopedia of Geosciences
Simone Moras, Ana I. Ayala, and Don C. Pierson
Hydrol. Earth Syst. Sci., 23, 5001–5016, https://doi.org/10.5194/hess-23-5001-2019, https://doi.org/10.5194/hess-23-5001-2019, 2019
Short summary
Short summary
We used a hydrodynamic model to reconstruct daily historical water temperature of Lake Erken (Sweden) between 1961 and 2017 to demonstrate the ongoing effect of climate change on lake thermal conditions. The results show that the lake has warmed most rapidly in the last 30 years and that it is now subject to a longer and more stable stratification. The methods used here to reconstruct historical water temperature records can be easily extended to other lakes.
This article is included in the Encyclopedia of Geosciences
Qunhui Zhang, Jiming Jin, Xiaochun Wang, Phaedra Budy, Nick Barrett, and Sarah E. Null
Hydrol. Earth Syst. Sci., 23, 4969–4982, https://doi.org/10.5194/hess-23-4969-2019, https://doi.org/10.5194/hess-23-4969-2019, 2019
Short summary
Short summary
We improved lake mixing process simulations by applying a vertical mixing scheme, K profile parameterization (KPP), in the Community Land Model (CLM) version 4.5, developed by the National Center for Atmospheric Research. The current vertical mixing scheme in CLM requires an arbitrarily enlarged eddy diffusivity to enhance water mixing. The coupled CLM-KPP considers a boundary layer for eddy development. The improved lake model provides an important tool for lake hydrology and ecosystem studies.
This article is included in the Encyclopedia of Geosciences
Margarita Choulga, Ekaterina Kourzeneva, Gianpaolo Balsamo, Souhail Boussetta, and Nils Wedi
Hydrol. Earth Syst. Sci., 23, 4051–4076, https://doi.org/10.5194/hess-23-4051-2019, https://doi.org/10.5194/hess-23-4051-2019, 2019
Short summary
Short summary
Lakes influence weather and climate of regions, especially if several of them are located close by. Just by using upgraded lake depths, based on new or more recent measurements and geological methods of depth estimation, errors of lake surface water forecasts produced by the European Centre for Medium-Range Weather Forecasts became 12–20 % lower compared with observations for 27 lakes collected by the Finnish Environment Institute. For ice-off date forecasts errors changed insignificantly.
This article is included in the Encyclopedia of Geosciences
Jérémy Lepesqueur, Renaud Hostache, Núria Martínez-Carreras, Emmanuelle Montargès-Pelletier, and Christophe Hissler
Hydrol. Earth Syst. Sci., 23, 3901–3915, https://doi.org/10.5194/hess-23-3901-2019, https://doi.org/10.5194/hess-23-3901-2019, 2019
Short summary
Short summary
This article evaluates the influence of sediment representation in a sediment transport model. A short-term simulation is used to assess how far changing the sediment characteristics in the modelling experiment changes riverbed evolution and sediment redistribution during a small flood event. The study shows in particular that representing sediment with extended grain-size and grain-density distributions allows for improving model accuracy and performances.
This article is included in the Encyclopedia of Geosciences
Annie Visser-Quinn, Lindsay Beevers, and Sandhya Patidar
Hydrol. Earth Syst. Sci., 23, 3279–3303, https://doi.org/10.5194/hess-23-3279-2019, https://doi.org/10.5194/hess-23-3279-2019, 2019
Short summary
Short summary
The ecological impact of changes in river flow may be explored through the simulation of ecologically relevant flow indicators. Traditional approaches to model parameterization are not well-suited for this. To this end, this paper considers the ability of a
This article is included in the Encyclopedia of Geosciences
modified covariance approach, applied to five hydrologically diverse catchments. An overall improvement in consistency is observed, whilst timing and rate of change represent the best and worst replicated indicators respectively.
Jeffrey J. Richardson, Christian E. Torgersen, and L. Monika Moskal
Hydrol. Earth Syst. Sci., 23, 2813–2822, https://doi.org/10.5194/hess-23-2813-2019, https://doi.org/10.5194/hess-23-2813-2019, 2019
Short summary
Short summary
High stream temperatures can be detrimental to the survival of aquatic species such as endangered salmon. Stream temperatures can be reduced by shade provided by trees in riparian areas. Two lidar-based methods were effective at assessing stream shading. These methods can be used in place of expensive field measurements.
This article is included in the Encyclopedia of Geosciences
Dongsheng Su, Xiuqing Hu, Lijuan Wen, Shihua Lyu, Xiaoqing Gao, Lin Zhao, Zhaoguo Li, Juan Du, and Georgiy Kirillin
Hydrol. Earth Syst. Sci., 23, 2093–2109, https://doi.org/10.5194/hess-23-2093-2019, https://doi.org/10.5194/hess-23-2093-2019, 2019
Short summary
Short summary
In this study, freshwater lake model simulation results, verified by satellite and buoy observation data, were used to quantify recent climate change effects on the thermal regime of the largest lake in China. Results indicate that the FLake model can reproduce the lake thermal pattern nicely. The lake surface is warming, while the lake bottom has no significant trend. Climate change also caused an earlier ice-off and later ice-on, leading to an obvious change in the energy balance of the lake.
This article is included in the Encyclopedia of Geosciences
Chloé Poulin, Bruno Hamelin, Christine Vallet-Coulomb, Guinbe Amngar, Bichara Loukman, Jean-François Cretaux, Jean-Claude Doumnang, Abdallah Mahamat Nour, Guillemette Menot, Florence Sylvestre, and Pierre Deschamps
Hydrol. Earth Syst. Sci., 23, 1705–1724, https://doi.org/10.5194/hess-23-1705-2019, https://doi.org/10.5194/hess-23-1705-2019, 2019
Short summary
Short summary
This study investigates the water budget of two intertropical lake systems in the absence of long-term hydrological monitoring. By coupling dry season isotopic data with satellite imagery, we were able to provide quantitative constrains on the hydrological balance and show that these two lake systems can be considered miniature analogs of Lake Chad, making them important targets in the future setup of any large-scale program on the hydro-climatic evolution in the Sahel region.
This article is included in the Encyclopedia of Geosciences
Tom Shatwell, Wim Thiery, and Georgiy Kirillin
Hydrol. Earth Syst. Sci., 23, 1533–1551, https://doi.org/10.5194/hess-23-1533-2019, https://doi.org/10.5194/hess-23-1533-2019, 2019
Short summary
Short summary
We used models to project future temperature and mixing in temperate lakes. Lakes will probably warm faster in winter than in summer, making ice less frequent and altering mixing. We found that the layers that form seasonally in lakes (ice, stratification) and water clarity affect how lakes accumulate heat. Seasonal changes in climate were thus important. This helps us better understand how different lake types respond to warming and which physical changes to expect in the future.
This article is included in the Encyclopedia of Geosciences
Ben R. Hodges
Hydrol. Earth Syst. Sci., 23, 1281–1304, https://doi.org/10.5194/hess-23-1281-2019, https://doi.org/10.5194/hess-23-1281-2019, 2019
Short summary
Short summary
A new derivation of the equations for one-dimensional open-channel flow in rivers and storm drainage systems has been developed. The new approach solves some long-standing problems for obtaining well-behaved solutions with conservation forms of the equations. This research was motivated by the need for highly accurate models of large-scale river networks and the storm drainage systems in megacities. Such models are difficult to create with existing equation forms.
This article is included in the Encyclopedia of Geosciences
Ramiro Pillco Zolá, Lars Bengtsson, Ronny Berndtsson, Belen Martí-Cardona, Frederic Satgé, Franck Timouk, Marie-Paule Bonnet, Luis Mollericon, Cesar Gamarra, and José Pasapera
Hydrol. Earth Syst. Sci., 23, 657–668, https://doi.org/10.5194/hess-23-657-2019, https://doi.org/10.5194/hess-23-657-2019, 2019
Short summary
Short summary
The evaporation was computed at a daily time step and compared with the estimated evaporation using mean monthly meteorological observations. We found that the most reliable method of determining the annual lake evaporation is using the heat balance approach.
This article is included in the Encyclopedia of Geosciences
Cited articles
Barneveld, H., Silander, J., Sane, M., and Malnes, E.: Application of satellite data for improved flood forecasting and mapping, 4th International Symposium on Flood Defence: Managing Flood Risk, Reliability and Vulnerability, 6–8 May 2008 Toronto, Canada, retrieved from: http://www.hkv.nl/site/hkv/upload/publication/Application_of satellite_data_for improved flood_forecasting HJB.pdf (last access: 1 June 2015), 2008.
Belaud, G., Cassan, L., and Bader, J. C.: Calibration of a propagation model in large river using satellite, 6th International Symposium on Environmental Hydraulics, Athens, Greece, 869–874, 2010.
Bercher, N., Calmant, S., Picot, N., Seyler, F., and Fleury, S.: Evaluation of Cryosat-2 measurements for the monitoring of large river water levels, retrieved from: Along-Track.com: http://chronos.altihydrolab.fr/2012-09-23_Venice_ESA_20_years_of_progress_in_altimetry/Bercher.2012b_(Venice_Paper)_CryoSat-2_hydro.pdf (last access 25 June 2015), 2014.
Chen, H., Yang, D., Hong, Y., Gourley, J., and Zhang, Y.: Hydrological data assimilation with the Ensemble Square-Root-Filter: Use of streamflow observations to update model states for real-time flash flood forecasting, Adv. Water Resour., 59, 209–220, https://doi.org/10.1016/j.advwatres.2013.06.010, 2013.
Crétaux, J. F., Stéphane, C., Romanovski, V., Shabunin, A., Lyard, F., Bergé Nguyen, M., Cazenave, A., Fabrice, H., and Perosanz, F.: An absolute calibration site for radar altimeters in the continental domain: lake Issykkul in Central Asia, J. Geodesy, 83, 723–735, 2009.
Crétaux, J. F., Bergé-Nguyen, M., Leblanc, M., Del Rio, R. A., Delclaux, F., Mognard, N., Lion, C., Pandey, R. K., Tweed, S., Calmant, S., and Maisongrande, P.: Flood mapping inferred from remote sensing data, Fifteenth International Water Technology Conference, 28–30 May 2011, Alexandria, Egypt, 2011.
CSA – Canadian Space Agency:RADARSAT Constellation, retrieved from: RADARSAT constellation: http://www.asc-csa.gc.ca/eng/satellites/radarsat/, last access: 23 June 2015.
Dellepiane, S., de Laurentiis, R., and Giordano, F.: Coastline Extraction from SAR Images and a Method for the Evaluation of the Coastline Precision, Pattern Recog. Lett., 25, 1461–1470, 2004.
Di Baldassarre, G., Schumann, G., and Bates, P. D.: A technique for the calibration of hydraulic models using uncertain satellite observations of flood extent, J. Hydrol., 367, 276–282, https://doi.org/10.1016/j.jhydrol.2009.01.020, 2009.
DLR: Earth Observation: TanDEM-X – the Earth in three dimensions, retrieved from: http://www.dlr.de/dlr/en/desktopdefault.aspx/tabid-10378/566_read-426/#/gallery/345, last access: 1 June 2015.
Duan, Z. and Bastiaanssen, W.: Estimating water volume variations in lakes and reservoirs from four operational satellite altimetry databases and satellite imagery data, Remote Sens. Environ., 134, 403–416, https://doi.org/10.1016/j.rse.2013.03.010, 2013.
ESA: Sentinel 3, retrieved from Copernicus, observing the Earth: http://www.esa.int/Our Activities/Observing_the Earth/Copernicus/Sentinel-3, last access 15 June 2015.
Ezer, T. and Liu, H.: On the dynamics and morphology of extensive tidal mudflats: Integrating remote sensing data with an inundation model of Cook Inlet, Alaska, Ocean Dynam., 60, 1307–1318, https://doi.org/10.1007/s10236-010-0319-x, 2010.
Fraser, C. S. and Ravanbakhsh, M.: Performance of DEM generation technologies in coastal environments, 7th International Symposium on Digital Earth, 23–25 August 2011, Perth, Australia, 40–49, 2011.
García-Pintado, J., Mason, D., Dance, S., Cloke, H., Neal, J., Freer, J., and Bates, P.: Satellite-supported flood forecasting in river networks: A real case study, J. Hydrol., 523, 706–724, https://doi.org/10.1016/j.jhydrol.2015.01.084, 2015.
Getirana, A. C., Bonnet, M.-P., Calmant, S., Roux, E., Rotunno Filho, O. C., and Mansur, W. J.: Hydrological monitoring of poorly gauged basins based on rainfall–runoff, J. Hydrol., 379, 205–219, https://doi.org/10.1016/j.jhydrol.2009.09.049, 2009.
Giustarini, L., Matgen, P., Hostache, R., Montanari, M., Plaza, D., Pauwels, V. R. N., De Lannoy, G. J. M., De Keyser, R., Pfister, L., Hoffmann, L., and Savenije, H. H. G.: Assimilating SAR-derived water level data into a hydraulic model: a case study, Hydrol. Earth Syst. Sci., 15, 2349–2365, https://doi.org/10.5194/hess-15-2349-2011, 2011.
Gorokhovich, Y. and Voustianiouk, A.: Accuracy assessment of the processed SRTM-based elevation data by CGIAR using field data from USA and Thailand and its relation to the terrain characteristics, Remote Sens. Environ., 104, 409–415, https://doi.org/10.1016/j.rse.2006.05.012, 2006.
Horritt, M. S.: A methodology for the validation of uncertain flood inundation models, J. Hydrol., 326, 153–165, https://doi.org/10.1016/j.jhydrol.2005.10.027, 2006.
Islam, R. Z., Begum, S. F., Yamaguchi, Y., and Ogawa, K.: Distribution of suspended sediment in the coastal sea off the Ganges–Brahmaputra River mouth: observation from TM data, Marine Syst., 32, 307–321, https://doi.org/10.1016/S0924-7963(02)00045-3, 2002.
Jarihani, A., Callow, J., Johansen, K., and Gouweleeuw, B.: Evaluation of multiple satellite altimetry data for studying inland water bodies and river floods, J. Hydrol., 505, 78–90, https://doi.org/10.1016/j.jhydrol.2013.09.010, 2013.
Jarihani, A., McVicar, T., Van Niel, T., Emelyanova, I., Callow, J., and Johansen, K.: Blending Landsat and MODIS Data to Generate Multispectral Indices: A Comparison of "Index-then-Blend" and "Blend-then-Index" Approaches, Remote Sensing, 6, 9213–9238, https://doi.org/10.3390/rs6109213, 2014.
Jarihani, A., Callow, J., McVicar, T., Van Niel, T., and Larsen, J.: Satellite-derived Digital Elevation Model (DEM) selection, preparation and correction for hydrodynamic modelling in large, low-gradient and data-sparse catchments, J. Hydrol., 524, 489–506, https://doi.org/10.1016/j.jhydrol.2015.02.049, 2015.
Jung, C. H., Hamski, J., Durand, M., Alsdorf, D., Hossain, F., Lee, H., and Hasan, K.: Characterization of complex fluvial systems using remote sensing of spatial and temporal water level variations in the Amazon, Congo, and Brahmaputra Rivers, Earth Surf. Proc. Land., 35, 294–304, https://doi.org/10.1002/esp.1914, 2010.
Karlsson, J. M. and Arnberg, W.: Quality analysis of SRTM and HYDRO1K: a case study of flood inundation in Mozambique, Int. J. Remote Sens., 32, 267–285, https://doi.org/10.1080/01431160903464112, 2011.
Khan, S. I., Hong, Y., Vergara, H. J., Gourley, J. J., Brakenridge, G. R., De Groeve, T., and Yong, B.: Microwave Satllite Data for Hydrologic Modelling in Ungauged Basins, IEEE Geosci. Remote Sens. Lett., 9, 663–667, https://doi.org/10.1109/LGRS.2011.2177807, 2012.
Kim, J., Lu, Z., Lee, H., Shum, C. K., Swarzenski, C. M., Doyle, T. W., and Baek, S.-H.: Integrated analysis of PALSAR/Radarsat-1 InSAR and ENVISAT altimeter data for mapping of absolute water level changes in Louisiana wetlands, Remote Sens. Environ., 113, 2356–2365, 2009.
Kumar, A., Narayana, A., and Jayappa, K.: Shoreline changes and morphology of spits along southern Karnataka, west coast of India: A remote sensing and statistics-based approach, Geomorphology, 120, 133–152, https://doi.org/10.1016/j.geomorph.2010.02.023, 2010.
León, J. G., Calmant, S., Seyler, F., Bonnet, M.-P., Cauhopé, M., Frappart, F., and Fraizy, P.: Rating curves and estimation of average water depth at the upper Negro, J. Hydrol., 328, 481–496, https://doi.org/10.1016/J.JHYDROL.2005.12.006, 2006.
Li, S., Sun, D., Goldberg, M., and Stefanidis, A.: Derivation of 30-m-resolution water maps from TERRA/MODIS and SRTM, Remote Sens. Environ., 134, 417–430, https://doi.org/10.1016/j.rse.2013.03.015, 2013.
Liew, S. C., Gupta, A., Wong, P. P., and Kwoha, L. K.: Recovery from a large tsunami mapped over time: The Aceh coast, Sumatra, Geology, 114, 520–529, https://doi.org/10.1016/j.geomorph.2009.08.010, 2010.
Lillesand, T., Kiefer, R. W., and Chapman, J. W.: Remote sensing and image interpretation, 5th Edn., John Wiley and sons, Hobone, NJ, USA, 2004.
Long, S., Fatoyinbo, T., and Policelli, F.: Flood extent mapping for Namibia using change detection and thresholding with SAR, Environ. Res. Lett., 9, 035002, https://doi.org/10.1088/1748-9326/9/3/035002, 2014.
Mason, D. C., Horritt, M. S., Dall'Amico, J. T., and Scott, T. R.: Improving River Flood Extent Delineation From Synthetic Aperture Radar Using Airborne Laser Altimetry, IEEE T. Geosci. Remote, 45, 3932–3943, https://doi.org/10.1109/TGRS.2007.901032, 2007.
Mason, D. C., Scott, T. R., and Dance, S. L.: Remote sensing of intertidal morphological change in Morcambe Bay, U,K., between 1991 and 2007, Estuar. Coast. Shelf Sci., 87, 487–496, https://doi.org/10.1016/j.ecss.2010.01.015, 2010.
Matgen, P., Montanari, M., Hostache, R., Pfister, L., Hoffmann, L., Plaza, D., and Savenije, H.: Towards the sequential assimilation of SAR-derived water stages into hydraulic models using the Particle Filter: proof of concept, Hydrol. Earth Syst. Sci., 14, 1773–1785, https://doi.org/10.5194/hess-14-1773-2010, 2010.
Mcmillan, H., Hreinsson, E., Clark, M., Singh, S., Zammit, C., and Uddstrom, M.: Operational hydrological data assimilation with the recursive ensemble Kalman filter, Hydrol. Earth Syst. Sci., 17, 21–38, https://doi.org/10.5194/hess-17-21-2013, 2013.
Meijerink, A. M., Bannert, D., Batelaan, O., Lubczynski, M. W., and Pointet, T.: Remote sensing applictions to groundwater, Series on Groundwater, UNESCO, Paris, France, 2007.
NOAA, S. I.: Jason3, retrieved from: http://www.nesdis.noaa.gov/jason-3/?CFID=731ecb89-8379-48fc-ad50-9546e71739&CFTOKEN=0, last access: 29 May 2015.
Noh, S., Tachikawa, Y., Shiiba, M., and Kim, S.: Applying sequential Monte Carlo methods into a distributedhydrologic model: lagged particle filtering approach with regularization, Hydrol. Earth Syst. Sci., 15, 3237–3251, https://doi.org/10.5194/hess-15-3237-2011, 2011.
Owe, M., Brubaker, K., Ritchie, J., and Albert, R.: Remote sensing and Hydrology, 2000, IAHS, Wallingford, OX, UK, 2001.
Papa, F., Bala, S. K., Pandey, R. K., Durand, F., Gopalakrishna, V. V., Rahman, A., and Rossow, W. B.: Ganga-Brahmaputra river discharge from Jason-2 radar altimetry: An update to the long-term satellite-derived estimates of continental freshwater forcing flux into the Bay of Bengal, J. Geophys. Res., 117, C11021, https://doi.org/10.1029/2012JC008158, 2012.
Pavelsky, T., Morrow, R., Peterson, C., Andral, A., Bronner, E., and Srinivasan, M.: SWOT 101: A Quatum Improvement of Oceanography and Hydrology from the Next Generation Altimeter Mission, retrieved from: Surface Water and Ocean Topography: https://swot.jpl.nasa.gov/files/swot/SWOT-101 Jan2015.pdf, last access: 29 May 2015.
Penton, D. J. and Overton, I. C.: Spatial modelling of floodplain inundation combining satellite imagery and elevation models, MODSIM 2007 International Congress on Modelling and Simulation, Modelling and Simulation Society of Australia and New Zealand CSIRO, Clayton south, Vic, Australia, 2007.
Pereira-Cardenal, S. J., Riegels, N. D., Berry, P. A. M., Smith, R. G., Yakovlev, A., Siegfried, T. U., and Bauer-Gottwein, P.: Real-time remote sensing driven river basin modeling using radar altimetry, Hydrol. Earth Syst. Sci., 15, 241–254, https://doi.org/10.5194/hess-15-241-2011, 2011.
Quinn, P. F., Hewett, C. J. M., Muste, M., and Popescu, I.: Towards new types of water-centric collaboration, Proceedings of the Institution of Civil Engineers: Water Management, 163, 39–51, https://doi.org/10.1680/wama.2010.163.1.39, 2010.
Ričko, M., Birkett, C., Carton, J., and Crétauxc, J.-F.: Intercomparison and validation of continental water, J. Appl. Remote Sens., 6, 061710, https://doi.org/10.1117/1.JRS.6.061710, 2012.
Santos da Silva, J., Roux, E., Filho, O., Bonne, M. P., Seyler, F., and Calmant, S.: 3D Selection of Envisat Data for Improved Water Stage Times Series on the Rio Negro and Adjacent Wetlands (Amazon Basin), 2nd Hydrospace Workshop, 07_06, 12–14 November 2007, ESA, Geneva, 2007.
Santos da Silver, J., Calmant, S., Seyler, F., Lee, H., and Shum, C.: Mapping of the extreme stage variations using ENVISAT altimetry in the Amazon basin rivers, Int. Water Technol. J., 2, 14–25, 2012.
Sarhadi, A., Soltani, S., and Modarres, R.: Probabilistic flood inundation mapping of ungauged rivers: Linking GIS techniques and frequency analysis, J. Hydrol., 458–459, 68–86, https://doi.org/10.1016/j.jhydrol.2012.06.039, 2012.
Schumann, G., Matgen, P., Pappenberger, F., Black, A., Cutler, M., Hoffmann, L., and Pfister, L.: The Refix Model: Remote Sensing Based Flood Modelling, ISPRS Commission VII Mid-term Symposium "Remote Sensing: From Pixels to Processes", Enschede, the Netherlands, 2006.
Schumann, G., Matgen, P., Hoffmann, L., Hostache, R., Pappenberger, F., and Pfister, L.: Deriving distributed roughness values from satellite radar data for flood inundation modelling, J. Hydrol., 344, 96–111, https://doi.org/10.1016/j.jhydrol.2007.06.024, 2007.
Schumann, G., Matgen, P., Cutler, M., Black, A., Hoffmann, L., and Pfister, L.: Comparison of remotely sensed water stages from LiDAR,topographic contours and SRTM, Photogram. Remote Sens., 63, 283–296, https://doi.org/10.1016/j.isprsjprs.2007.09.004, 2008.
Schumann, G. J.-P., Neal, J., Voisin, N., Andreadis, K., Pappenberger, F., Phanthuwongpakdee, N., and Bates, P.: A first large-scale flood inundation forecasting model, Water Resour. Res., 49, 6248–6257, https://doi.org/10.1002/wrcr.20521, 2013.
Schumann, G. J.-P., Bates, P., Neal, J., and Andreadis, K.: Measuring and Mapping Flood processes, in: Hydro-Meteorological Hazards, Risks, and Disasters edited by: Paron, P. and Di Baldassare, G., Elsevier, Amsterdam, the Netherlands, 35–64, 2015.
Seyler, F., Calmant, S., Santos da Silva, J., León, G. J., Frappart, F., Bonnet, M.-P., Filizola, N., Roux, E., Cochonneau, G., Zoppas Costi, A.-C., De, O. E., Guyot, J.-L., and Seyler, P.: New perspectives in monitoring water resources in large tropical transboundary basins based on the combined used of remote sensing and radar altimetry, in: Improving Integrated Surface and Groundwater Resources Management in a Vulnerable and Changing World, IAHS Publication, Wallingford OX, UK, 282–288, https://doi.org/10.13140/2.1.5101.0569, 2009.
Siddique-E-Akbor, A. H., Hossain, F., Lee, H., and Shum, C. K.: Inter-comparison study of water level estimates derived from, Remote Sens. Environ., 115, 1522–1531, 2011.
Skakun, S.: A neural network approach to flood mapping using satellite imagery, Comput. Inform., 29, 1013–1024, 2010.
Smith, L. C.: Satellite Remote Sensing of River Innundation Area, Stage and Discharge: A review, Hydrol. Process., 11, 1427–1439, 1997.
Stephens, E., Bates, P., Freer, J., and Mason, D.: The impact of uncertainty in satellite data on the assessment of flood inundation models, J. Hydrol., 414–415, 162–173, https://doi.org/10.1016/j.jhydrol.2011.10.040, 2012.
Sun, W., Ishidaira, H., and Bastola, S.: Estimating discharge by calibrating hydrological model against water surface width measured from satellites in large ungauged basins, Annu. J. Hydraul. Eng., 53, 49–54, 2009.
Sun, W., Ishidaira, H., and Bastola, S.: Towards improving river discharge estimation in ungauged basins: calibration of rainfall-runoff models based on satellite observations of river flow width at basin outlet. Hydrol. Earth Syst. Sci., 14, 2011–2022, https://doi.org/10.5194/hess-14-2011-2010, 2010.
Syvitski, J. P., Overeem, I., Brakenridge, R. G., and Hannon, M.: Floods, floodplains, delta plains – A satellite imaging approach, Sediment. Geol., 267–268, 1–14, https://doi.org/10.1016/j.sedgeo.2012.05.014, 2012.
Tarpanelli, A., Barbetta, S., Brocca, L., and Moramarco, T.: River Discharge Estimation by Using Altimetry Data and Simplified Flood Routing Modeling, Remote Sensing, 5, 4145–4162, https://doi.org/10.3390/rs5094145, 2013.
Vermeulen, C. J., Barneveld, H. J., Huizinga, H. J., and Havinga, F. J.: Data-assimilation in flood forecasting using time series and satellite data, International conference on innovation advances and implementation of flood forcasting technology, ACTIF/Floodman/FloodRelief, Tromso, 2005.
Villladsen, H., Andersen, O., and Stenseng, L.: Annual cycle in lakes and rivers from cryosat-2 altimetry – the brahmaputra river, IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 13–18 July 2014, Quebec, Canada, 894–897, https://doi.org/10.1109/IGARSS.2014.6946569, 2014.
Westahoff, R., Huizinga, J., Kleuskens, M., Burren, R., and Casey, S.: ESA Living Planet Symposium, 686, ESA Communications, Bergen, Norway, 2010.
Woldemicheal, A., Degu, A., Siddique-E-Akbor, A., and Hossain, F.: Role of Land–Water Classification and Manning's Roughness Parameter in Space-Borne Estimation of Discharge for Braided Rivers: A Case Study of the Brahmaputra River in Bangladesh, IEEE J. Select. Top. Appl. Earth Obs. Rem. S., 1939–1404, 395–403, https://doi.org/10.1109/JSTARS.2010.2050579, 2010.
Yan, K., Di Baldassarre, G., Solomatine, D., and Schumann, G.: A review of low-cost space-borne data for flood modelling: topography, flood extent and water level, Hydrol. Process., 29, 3368–3387, https://doi.org/10.1002/hyp.10449, 2015.
Yang, C. and Ouchic, K.: Analysis of bar morphology using multi-temporal and multi-sensor satellite images: Example from the Han Estuary, Korea, Mar. Geol., 311-314, 17–31, https://doi.org/10.1016/j.margeo.2012.04.004, 2012.
Zhang, J., Xu, K., Yang, Y., Qi, L., Hayashi, S., and Watanabe, M.: Measuring water storage fluctuations in Lake Dongting, China, by Topex/Poseidon satellite altimetry, Environ. Monit. Assess., 115, 23–37, https://doi.org/10.1007/s10661-006-5233-9, 2006.
Short summary
Hydrological data collection is a challenge for the scientific community, especially as some events e.g. floods occur in un-gauged rivers or infrequently.
Some such events are however recorded by satellites.
Using satellite remote sensing in estimating surface water parameters has its limitations, but recent improvements in sensor specifications, expansion in research methods and knowledge of satellite data have increased its utilization.
The review is on modelling and mapping with RS.
Hydrological data collection is a challenge for the scientific community, especially as some...