Articles | Volume 18, issue 12
Hydrol. Earth Syst. Sci., 18, 5181–5200, 2014
https://doi.org/10.5194/hess-18-5181-2014
Hydrol. Earth Syst. Sci., 18, 5181–5200, 2014
https://doi.org/10.5194/hess-18-5181-2014

Research article 12 Dec 2014

Research article | 12 Dec 2014

Meltwater run-off from Haig Glacier, Canadian Rocky Mountains, 2002–2013

S. J. Marshall

Related authors

Evolution of the firn pack of Kaskawulsh Glacier, Yukon: meltwater effects, densification, and the development of a perennial firn aquifer
Naomi E. Ochwat, Shawn J. Marshall, Brian J. Moorman, Alison S. Criscitiello, and Luke Copland
The Cryosphere, 15, 2021–2040, https://doi.org/10.5194/tc-15-2021-2021,https://doi.org/10.5194/tc-15-2021-2021, 2021
Short summary
Summary and synthesis of Changing Cold Regions Network (CCRN) research in the interior of western Canada – Part 2: Future change in cryosphere, vegetation, and hydrology
Chris M. DeBeer, Howard S. Wheater, John W. Pomeroy, Alan G. Barr, Jennifer L. Baltzer, Jill F. Johnstone, Merritt R. Turetsky, Ronald E. Stewart, Masaki Hayashi, Garth van der Kamp, Shawn Marshall, Elizabeth Campbell, Philip Marsh, Sean K. Carey, William L. Quinton, Yanping Li, Saman Razavi, Aaron Berg, Jeffrey J. McDonnell, Christopher Spence, Warren D. Helgason, Andrew M. Ireson, T. Andrew Black, Mohamed Elshamy, Fuad Yassin, Bruce Davison, Allan Howard, Julie M. Thériault, Kevin Shook, Michael N. Demuth, and Alain Pietroniro
Hydrol. Earth Syst. Sci., 25, 1849–1882, https://doi.org/10.5194/hess-25-1849-2021,https://doi.org/10.5194/hess-25-1849-2021, 2021
Short summary
The firn meltwater Retention Model Intercomparison Project (RetMIP): evaluation of nine firn models at four weather station sites on the Greenland ice sheet
Baptiste Vandecrux, Ruth Mottram, Peter L. Langen, Robert S. Fausto, Martin Olesen, C. Max Stevens, Vincent Verjans, Amber Leeson, Stefan Ligtenberg, Peter Kuipers Munneke, Sergey Marchenko, Ward van Pelt, Colin R. Meyer, Sebastian B. Simonsen, Achim Heilig, Samira Samimi, Shawn Marshall, Horst Machguth, Michael MacFerrin, Masashi Niwano, Olivia Miller, Clifford I. Voss, and Jason E. Box
The Cryosphere, 14, 3785–3810, https://doi.org/10.5194/tc-14-3785-2020,https://doi.org/10.5194/tc-14-3785-2020, 2020
Short summary
Seasonal and interannual variability of melt-season albedo at Haig Glacier, Canadian Rocky Mountains
Shawn J. Marshall and Kristina Miller
The Cryosphere, 14, 3249–3267, https://doi.org/10.5194/tc-14-3249-2020,https://doi.org/10.5194/tc-14-3249-2020, 2020
Short summary
Multi-year evaluation of airborne geodetic surveys to estimate seasonal mass balance, Columbia and Rocky Mountains, Canada
Ben M. Pelto, Brian Menounos, and Shawn J. Marshall
The Cryosphere, 13, 1709–1727, https://doi.org/10.5194/tc-13-1709-2019,https://doi.org/10.5194/tc-13-1709-2019, 2019
Short summary

Related subject area

Subject: Snow and Ice | Techniques and Approaches: Modelling approaches
The evaluation of the potential of global data products for snow hydrological modelling in ungauged high-alpine catchments
Michael Weber, Franziska Koch, Matthias Bernhardt, and Karsten Schulz
Hydrol. Earth Syst. Sci., 25, 2869–2894, https://doi.org/10.5194/hess-25-2869-2021,https://doi.org/10.5194/hess-25-2869-2021, 2021
Short summary
Learning about precipitation lapse rates from snow course data improves water balance modeling
Francesco Avanzi, Giulia Ercolani, Simone Gabellani, Edoardo Cremonese, Paolo Pogliotti, Gianluca Filippa, Umberto Morra di Cella, Sara Ratto, Hervè Stevenin, Marco Cauduro, and Stefano Juglair
Hydrol. Earth Syst. Sci., 25, 2109–2131, https://doi.org/10.5194/hess-25-2109-2021,https://doi.org/10.5194/hess-25-2109-2021, 2021
Short summary
Snow water equivalents exclusively from snow depths and their temporal changes: the Δsnow model
Michael Winkler, Harald Schellander, and Stefanie Gruber
Hydrol. Earth Syst. Sci., 25, 1165–1187, https://doi.org/10.5194/hess-25-1165-2021,https://doi.org/10.5194/hess-25-1165-2021, 2021
Short summary
Application of machine learning techniques for regional bias correction of snow water equivalent estimates in Ontario, Canada
Fraser King, Andre R. Erler, Steven K. Frey, and Christopher G. Fletcher
Hydrol. Earth Syst. Sci., 24, 4887–4902, https://doi.org/10.5194/hess-24-4887-2020,https://doi.org/10.5194/hess-24-4887-2020, 2020
Short summary
Sensitivity of snow models to the accuracy of meteorological forcings in mountain environments
Silvia Terzago, Valentina Andreoli, Gabriele Arduini, Gianpaolo Balsamo, Lorenzo Campo, Claudio Cassardo, Edoardo Cremonese, Daniele Dolia, Simone Gabellani, Jost von Hardenberg, Umberto Morra di Cella, Elisa Palazzi, Gaia Piazzi, Paolo Pogliotti, and Antonello Provenzale
Hydrol. Earth Syst. Sci., 24, 4061–4090, https://doi.org/10.5194/hess-24-4061-2020,https://doi.org/10.5194/hess-24-4061-2020, 2020
Short summary

Cited articles

Adhikari, S. and Marshall, S. J.: Influence of high-order mechanics on simulation of glacier response to climate change: insights from Haig Glacier, Canadian Rocky Mountains, The Cryosphere, 7, 1527–1541, https://doi.org/10.5194/tc-7-1527-2013, 2013.
Alberta Environment: South Saskatchewan River Basin historical weekly natural flows, 1912–2001, v. 3.02, Environmental Monitoring and Evaluation Branch, Alberta Environment, Edmonton AB, 2004.
Arnold, N. S., Willis, I. C., Sharp, M. J., Richards, K. S., and Lawson, M. J.: A distributed surface energy-balance model for a small valley glacier. I. Development and testing for Haut Glacier d'Arolla, Valais, Switzerland, J. Glaciol., 42, 77–89, 1996.
Baraer, M., Mark, B. G., McKenzie, J. M., Condom, T., Bury, J., Huh, K.-I., Portocarrero, C., Gómez, J., and Rathay, S.: Glacier recession and water resources in Peru's Cordillera Blanca, J. Glaciol., 58, 134–150, 2012.
Barnett T. P., Adam, J. C., and Lettenmaier, D. P.: Potential impacts of a warming climate on water availability in snow-dominated regions, Nature, 438, 303–309, 2005.
Download
Short summary
This paper presents a new 12-year glacier meteorological, mass balance, and run-off record from the Canadian Rocky Mountains. This provides insight into the glaciohydrological regime of the Rockies. For the period 2002-2013, about 60% of glacier meltwater run-off originated from seasonal snow and 40% was derived from glacier ice and firn. Ice and firn run-off is concentrated in the months of August and September, at which time it contributes significantly to regional-scale water resources.