Articles | Volume 18, issue 11
https://doi.org/10.5194/hess-18-4509-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/hess-18-4509-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Climate change and wetland loss impacts on a western river's water quality
R. M. Records
CORRESPONDING AUTHOR
Integrated Water, Atmosphere, Ecosystems Education and Research Program, Department of Geosciences, Colorado State University, 1482 Campus Delivery, Fort Collins, CO 80523-1482, USA
M. Arabi
Department of Civil and Environmental Engineering, Colorado State University, 1372 Campus Delivery, Fort Collins, CO 80523-1372, USA
S. R. Fassnacht
Department of Ecosystem Science and Sustainability/Watershed Science, Colorado State University, 1476 Campus Delivery, Fort Collins, CO 80523-1476, USA
W. G. Duffy
US Geological Survey, California Cooperative Fish and Wildlife Research Unit, Humboldt State University, 1 Harpst Street, Arcata, CA 95521, USA
M. Ahmadi
Spatial Sciences Lab, 1500 Research Parkway, Suite 221B, Texas A&M University, College Station, TX 77843, USA
K. C. Hegewisch
Department of Geography, University of Idaho, Moscow, ID 83844-3120, USA
Related authors
No articles found.
Molly E. Tedesche, Erin D. Trochim, Steven R. Fassnacht, and Gabriel J. Wolken
The Cryosphere Discuss., https://doi.org/10.5194/tc-2022-143, https://doi.org/10.5194/tc-2022-143, 2022
Publication in TC not foreseen
Short summary
Short summary
Perennial snowfields in the Brooks Range of Alaska are critical for the ecosystem and provide caribou habitat. Caribou are a crucial food source for rural hunters. The purpose of this research is to map perennial snowfield extents using several remote sensing techniques with Sentinel-1 and 2. These include analysis of Synthetic Aperture Radar backscatter change and of optical satellite imagery. Results are compared with field data and appear to effectively detect perennial snowfield locations.
Ryan W. Webb, Keith Jennings, Stefan Finsterle, and Steven R. Fassnacht
The Cryosphere, 15, 1423–1434, https://doi.org/10.5194/tc-15-1423-2021, https://doi.org/10.5194/tc-15-1423-2021, 2021
Short summary
Short summary
We simulate the flow of liquid water through snow and compare results to field experiments. This process is important because it controls how much and how quickly water will reach our streams and rivers in snowy regions. We found that water can flow large distances downslope through the snow even after the snow has stopped melting. Improved modeling of snowmelt processes will allow us to more accurately estimate available water resources, especially under changing climate conditions.
Steven R. Fassnacht, Jared T. Heath, Niah B. H. Venable, and Kelly J. Elder
The Cryosphere, 12, 1121–1135, https://doi.org/10.5194/tc-12-1121-2018, https://doi.org/10.5194/tc-12-1121-2018, 2018
Short summary
Short summary
We conducted a series of experiments to determine how snowpack properties change with varying snowmobile traffic. Experiments were initiated at a shallow (30 cm) and deep (120 cm) snow depth at two locations. Except for initiation at 120 cm, snowmobiles significantly changed the density, hardness, ram resistance, and basal layer crystal size. Temperature was not changed. A density change model was developed and tested. The results inform management of lands with snowmobile traffic.
Freddy A. Saavedra, Stephanie K. Kampf, Steven R. Fassnacht, and Jason S. Sibold
The Cryosphere, 12, 1027–1046, https://doi.org/10.5194/tc-12-1027-2018, https://doi.org/10.5194/tc-12-1027-2018, 2018
Short summary
Short summary
This manuscript presents a large latitude and elevation range analysis for snow trends in the Andes using satellite images (MODIS) snow cover product. The research approach is also significant because it presents a novel strategy for defining trends in snow persistence from remote sensing data, and this allows us to improve understanding of climate change effects on snow in areas with sparse and unevenly ground climate data.
Ryan W. Webb, Steven R. Fassnacht, and Michael N. Gooseff
The Cryosphere, 12, 287–300, https://doi.org/10.5194/tc-12-287-2018, https://doi.org/10.5194/tc-12-287-2018, 2018
Short summary
Short summary
We observed how snowmelt is transported on a hillslope through multiple measurements of snow and soil moisture across a small headwater catchment. We found that snowmelt flows through the snow with less infiltration on north-facing slopes and infiltrates the ground on south-facing slopes. This causes an increase in snow water equivalent at the base of the north-facing slope by as much as 170 %. We present a conceptualization of flow path development to improve future investigations.
Graham A. Sexstone, Steven R. Fassnacht, Juan Ignacio López-Moreno, and Christopher A. Hiemstra
The Cryosphere Discuss., https://doi.org/10.5194/tc-2016-188, https://doi.org/10.5194/tc-2016-188, 2016
Revised manuscript has not been submitted
Short summary
Short summary
Seasonal snowpacks vary spatially within mountainous environments and the representation of this variability by modeling can be a challenge. This study uses high-resolution airborne lidar data to evaluate the variability of snow depth within a grid size common for modeling applications. Results suggest that snow depth coefficient of variation is well correlated with ecosystem type, depth of snow, and topography and forest characteristics, and can be parameterized using airborne lidar data.
S. R. Fassnacht, M. L. Cherry, N. B. H. Venable, and F. Saavedra
The Cryosphere, 10, 329–339, https://doi.org/10.5194/tc-10-329-2016, https://doi.org/10.5194/tc-10-329-2016, 2016
Short summary
Short summary
We used 60 years of daily meteorological data from 20 stations across the US Northern Great Plains to examine climate trends, focusing on the winter climate. Besides standard climate trends, we computed trends in snowfall amounts, days with precipitation, days with snow, and modelled winter albedo (surface reflectivity). Daily minimum temperatures and days with precipitation increased at most locations, while winter albedo decreased at many stations. There was much spatial variability.
S. R. Fassnacht and M. Hultstrand
Proc. IAHS, 371, 131–136, https://doi.org/10.5194/piahs-371-131-2015, https://doi.org/10.5194/piahs-371-131-2015, 2015
Short summary
Short summary
Snowpack properties vary over distance. Water resources managers use operational data to estimate streamflow, while scientists use snow data models to understand climate and hydrology. We suggest that there is the individual measurements in a snowcourse be used to address uncertainty. Further, over the long term trends may not be obvious but increasing and decreasing trends can exist over shorter time periods, as seen in Northern Colorado. Such trends mirror global temperature patterns.
G. A. Sexstone and S. R. Fassnacht
The Cryosphere, 8, 329–344, https://doi.org/10.5194/tc-8-329-2014, https://doi.org/10.5194/tc-8-329-2014, 2014
Related subject area
Subject: Water Resources Management | Techniques and Approaches: Modelling approaches
An investigation of anthropogenic influences on hydrologic connectivity using model stress tests
The H2Ours game to explore water use, resources and sustainability: connecting issues in two landscapes in Indonesia
Drainage assessment of irrigation districts: on the precision and accuracy of four parsimonious models
Impact of reservoir evaporation on future water availability in north-eastern Brazil: a multi-scenario assessment
How economically and environmentally viable are multiple dams in the upper Cauvery Basin, India? A hydro-economic analysis using a landscape-based hydrological model
Leveraging a novel hybrid ensemble and optimal interpolation approach for enhanced streamflow and flood prediction
A generalised ecohydrological landscape classification for assessing ecosystem risk in Australia due to an altering water regime
Process-based three-layer synergistic optimal-allocation model for complex water resource systems considering reclaimed water
Assessment of Upscaling Methodologies for Daily Crop Transpiration using Sap-Flows and Two-Source Energy Balance Models in Almonds under Different Water Status and Production Systems
Developing water supply reservoir operating rules for large-scale hydrological modelling
Joint optimal operation of the South-to-North Water Diversion Project considering the evenness of water deficit
Employing the generalized Pareto distribution to analyze extreme rainfall events on consecutive rainy days in Thailand's Chi watershed: implications for flood management
Modeling hydropower operations at the scale of a power grid: a demand-based approach
How to account for irrigation withdrawals in a watershed model
Inferring reservoir filling strategies under limited-data-availability conditions using hydrological modeling and Earth observations: the case of the Grand Ethiopian Renaissance Dam (GERD)
Making a case for power-sensitive water modelling: a literature review
The precision of satellite-based net irrigation quantification in the Indus and Ganges basins
Developing a Bayesian network model for understanding river catchment resilience under future change scenarios
Quantifying the trade-offs in re-operating dams for the environment in the Lower Volta River
Dynamically coupling system dynamics and SWAT+ models using Tinamït: application of modular tools for coupled human–water system models
Development of an integrated socio-hydrological modeling framework for assessing the impacts of shelter location arrangement and human behaviors on flood evacuation processes
Cooperation in a transboundary river basin: a large-scale socio-hydrological model of the Eastern Nile
Flexible forecast value metric suitable for a wide range of decisions: application using probabilistic subseasonal streamflow forecasts
An improved model of shade-affected stream temperature in Soil & Water Assessment Tool
Seasonal forecasting of snow resources at Alpine sites
Operationalizing equity in multipurpose water systems
Evaluation of a new observationally based channel parameterization for the National Water Model
High-resolution drought simulations and comparison to soil moisture observations in Germany
Cooperation under conflict: participatory hydrological modeling for science policy dialogues for the Aculeo Lake
Socio-hydrological modeling of the tradeoff between flood control and hydropower provided by the Columbia River Treaty
Challenges and benefits of quantifying irrigation through the assimilation of Sentinel-1 backscatter observations into Noah-MP
A system dynamic model to quantify the impacts of water resources allocation on water–energy–food–society (WEFS) nexus
Net irrigation requirement under different climate scenarios using AquaCrop over Europe
The role of multi-criteria decision analysis in a transdisciplinary process: co-developing a flood forecasting system in western Africa
Unfolding the relationship between seasonal forecast skill and value in hydropower production: a global analysis
Drought impact links to meteorological drought indicators and predictability in Spain
Opportunities for seasonal forecasting to support water management outside the tropics
Probabilistic modelling of the inherent field-level pesticide pollution risk in a small drinking water catchment using spatial Bayesian belief networks
Are maps of nitrate reduction in groundwater altered by climate and land use changes?
Historical simulation of maize water footprints with a new global gridded crop model ACEA
Future upstream water consumption and its impact on downstream water availability in the transboundary Indus Basin
Identifying the dynamic evolution and feedback process of water resources nexus system considering socioeconomic development, ecological protection, and food security: A practical tool for sustainable water use
Optimizing a backscatter forward operator using Sentinel-1 data over irrigated land
Robustness of a parsimonious subsurface drainage model at the French national scale
Spatially distributed impacts of climate change and groundwater demand on the water resources in a wadi system
Delineation of dew formation zones in Iran using long-term model simulations and cluster analysis
Streamflow estimation at partially gaged sites using multiple-dependence conditions via vine copulas
Water resources management and dynamic changes in water politics in the transboundary river basins of Central Asia
Assessing interannual variability in nitrogen sourcing and retention through hybrid Bayesian watershed modeling
Minimizing the impact of vacating instream storage of a multi-reservoir system: a trade-off study of water supply and empty flushing
Amelie Herzog, Jost Hellwig, and Kerstin Stahl
Hydrol. Earth Syst. Sci., 28, 4065–4083, https://doi.org/10.5194/hess-28-4065-2024, https://doi.org/10.5194/hess-28-4065-2024, 2024
Short summary
Short summary
Surface water–groundwater interaction can vary along a river. This study used a groundwater model that reproduced relative observed longitudinal and vertical connectivity patterns in the river network to assess the system's response to imposed stress tests. For the case study, imposed groundwater abstraction appears to influence connectivity relatively more than altered recharge, but a quantification of absolute exchange flows will require further model improvements.
Lisa Tanika, Rika Ratna Sari, Arief Lukman Hakim, Meine van Noordwijk, Marielos Peña-Claros, Beria Leimona, Edi Purwanto, and Erika N. Speelman
Hydrol. Earth Syst. Sci., 28, 3807–3835, https://doi.org/10.5194/hess-28-3807-2024, https://doi.org/10.5194/hess-28-3807-2024, 2024
Short summary
Short summary
The H2Ours game is designed to facilitate knowledge transfer and sharing among stakeholders to trigger commitment and collaborative action to restore hydrological conditions. The adaptability of the H2Ours game was proven in two different landscapes: groundwater recharge in upper to middle sub-watersheds with (over)use of water in the lowland zone and a peatland with drainage, rewetting, oil palm conversion and fire as issues. The game evaluation shows that the H2Ours game meets its purpose.
Pierre Laluet, Luis Olivera-Guerra, Víctor Altés, Vincent Rivalland, Alexis Jeantet, Julien Tournebize, Omar Cenobio-Cruz, Anaïs Barella-Ortiz, Pere Quintana-Seguí, Josep Maria Villar, and Olivier Merlin
Hydrol. Earth Syst. Sci., 28, 3695–3716, https://doi.org/10.5194/hess-28-3695-2024, https://doi.org/10.5194/hess-28-3695-2024, 2024
Short summary
Short summary
Monitoring agricultural drainage flow in irrigated areas is key to water and soil management. In this paper, four simple drainage models are evaluated on two irrigated sub-basins where drainage flow is measured daily. The evaluation of their precision shows that they simulate drainage very well when calibrated with drainage data and that one of them is slightly better. The evaluation of their accuracy shows that only one model can provide rough drainage estimates without calibration data.
Gláuber Pontes Rodrigues, Arlena Brosinsky, Ítalo Sampaio Rodrigues, George Leite Mamede, and José Carlos de Araújo
Hydrol. Earth Syst. Sci., 28, 3243–3260, https://doi.org/10.5194/hess-28-3243-2024, https://doi.org/10.5194/hess-28-3243-2024, 2024
Short summary
Short summary
The research focuses on a 4-million-inhabitant tropical region supplied by a network of open-water reservoirs where the dry season lasts for 8 months (Jun−Dec). We analysed the impact of four climate change scenarios on the evaporation rate and the associated availability (water yield distributed per year). The worst-case scenario shows that by the end of the century (2071−2099), the evaporation rate in the dry season could increase by 6 %, which would reduce stored water by about 80 %.
Anjana Ekka, Yong Jiang, Saket Pande, and Pieter van der Zaag
Hydrol. Earth Syst. Sci., 28, 3219–3241, https://doi.org/10.5194/hess-28-3219-2024, https://doi.org/10.5194/hess-28-3219-2024, 2024
Short summary
Short summary
For the first time, we analyse the economic and ecological performance of existing multiple big reservoirs on a daily timescale for a major river basin (upper Cauvery) in India, where pre-intervention data were not available but where there are increasing calls for such assessments. Results show that smaller reservoirs on smaller streams that maximize the economic value of stored water are better for the basin economy and the environment. The approach can help to prioritize dam removals.
Mohamad El Gharamti, Arezoo Rafieeinasab, and James L. McCreight
Hydrol. Earth Syst. Sci., 28, 3133–3159, https://doi.org/10.5194/hess-28-3133-2024, https://doi.org/10.5194/hess-28-3133-2024, 2024
Short summary
Short summary
This study introduces a hybrid data assimilation scheme for precise streamflow predictions during intense rainfall and hurricanes. Tested in real events, it outperforms traditional methods by up to 50 %, utilizing ensemble and climatological background covariances. The adaptive algorithm ensures reliability with a small ensemble, offering improved forecasts up to 18 h in advance, marking a significant advancement in flood prediction capabilities.
Alexander Herr, Linda E. Merrin, Patrick J. Mitchell, Anthony P. O'Grady, Kate L. Holland, Richard E. Mount, David A. Post, Chris R. Pavey, and Ashley D. Sparrow
Hydrol. Earth Syst. Sci., 28, 1957–1979, https://doi.org/10.5194/hess-28-1957-2024, https://doi.org/10.5194/hess-28-1957-2024, 2024
Short summary
Short summary
We develop an ecohydrological classification for regions with limited hydrological records. It provides causal links of landscape features and their water requirement. The classification is an essential framework for modelling the impact of future coal resource developments via water on the features. A rule set combines diverse data with prioritisation, resulting in a transparent, repeatable and adjustable approach. We show examples of linking ecohydrology with environmental impacts.
Jing Liu, Yue-Ping Xu, Wei Zhang, Shiwu Wang, and Siwei Chen
Hydrol. Earth Syst. Sci., 28, 1325–1350, https://doi.org/10.5194/hess-28-1325-2024, https://doi.org/10.5194/hess-28-1325-2024, 2024
Short summary
Short summary
Applying optimal water allocation models to simultaneously enable economic benefits, water preferences, and environmental demands at different decision levels, timescales, and regions is a challenge. In this study, a process-based three-layer synergistic optimal-allocation model (PTSOA) is established to achieve these goals. Reused, reclaimed water is also coupled to capture environmentally friendly solutions. Network analysis was introduced to reduce competition among different stakeholders.
Manuel Quintanilla-Albornoz, Xavier Miarnau, Ana Pelechá, Héctor Nieto, and Joaquim Bellvert
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-5, https://doi.org/10.5194/hess-2024-5, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
Remote sensing can be a helpful tool for monitoring crop transpiration (T) for agricultural water management. Since remote sensing provides instantaneous data, upscaling techniques are required to estimate T on a daily scale. This study assesses optimal image acquisition times and four upscaling approaches to estimate daily T. The results indicate that the main errors derive from measurement time and water stress levels, which can be mitigated by choosing a proper upscaling approach.
Saskia Salwey, Gemma Coxon, Francesca Pianosi, Rosanna Lane, Chris Hutton, Michael Bliss Singer, Hilary McMillan, and Jim Freer
EGUsphere, https://doi.org/10.5194/egusphere-2024-326, https://doi.org/10.5194/egusphere-2024-326, 2024
Short summary
Short summary
Reservoirs are essential for water resource management and can significantly impact downstream flow. However, representing reservoirs in hydrological models can be challenging, particularly across large-scales. We design a new, simple method for simulating river flow downstream of water supply reservoirs using only open-access data. We demonstrate the approach in 264 reservoir catchments across Great Britain where we can significantly improve the simulation of reservoir-impacted flow.
Bing-Yi Zhou, Guo-Hua Fang, Xin Li, Jian Zhou, and Hua-Yu Zhong
Hydrol. Earth Syst. Sci., 28, 817–832, https://doi.org/10.5194/hess-28-817-2024, https://doi.org/10.5194/hess-28-817-2024, 2024
Short summary
Short summary
The current unreasonable inter-basin water transfer operation leads to the problem of spatial and temporal imbalances in water allocation. This paper defines a water deficit evenness index and incorporates it into a joint optimization model for the Jiangsu section of the South-to-North Water Diversion Project considering ecology and economy. At the same time, the lake storage capacity performs well, and the water transfer efficiency of the river is significantly improved.
Tossapol Phoophiwfa, Prapawan Chomphuwiset, Thanawan Prahadchai, Jeong-Soo Park, Arthit Apichottanakul, Watchara Theppang, and Piyapatr Busababodhin
Hydrol. Earth Syst. Sci., 28, 801–816, https://doi.org/10.5194/hess-28-801-2024, https://doi.org/10.5194/hess-28-801-2024, 2024
Short summary
Short summary
This study examines the impact of extreme rainfall events on flood risk management in Thailand's Chi watershed. By analyzing historical data, we identified regions, notably Udon Thani and Chaiyaphum, with a high risk of flash flooding. To aid in flood risk assessment, visual maps were created. The study underscores the importance of preparing for extreme rainfall events, particularly in the context of climate change, to effectively mitigate potential flood damage.
Laure Baratgin, Jan Polcher, Patrice Dumas, and Philippe Quirion
EGUsphere, https://doi.org/10.5194/egusphere-2023-3106, https://doi.org/10.5194/egusphere-2023-3106, 2024
Short summary
Short summary
Hydrological modeling is valuable for estimating the possible impacts of climate change on hydropower generation. In this study, we present a more comprehensive approach to model the management of hydroelectric reservoirs. The total power-grid demand is distributed to the various power plants according to their reservoir states to compute their release. The method is tested on France, and demonstrates that it succeeds in reproducing the observed behavior of reservoirs.
Elisabeth Brochet, Youen Grusson, Sabine Sauvage, Ludovic Lhuissier, and Valérie Demarez
Hydrol. Earth Syst. Sci., 28, 49–64, https://doi.org/10.5194/hess-28-49-2024, https://doi.org/10.5194/hess-28-49-2024, 2024
Short summary
Short summary
This study aims to take into account irrigation withdrawals in a watershed model. The model we used combines agriculture and hydrological modeling. Two different crop models were compared, the first based on air temperature and the second based on Sentinel-2 satellite data. Results show that including remote sensing data leads to better emergence dates. Both methods allow us to simulate the daily irrigation withdrawals and downstream flow with a good accuracy, especially during low-flow periods.
Awad M. Ali, Lieke A. Melsen, and Adriaan J. Teuling
Hydrol. Earth Syst. Sci., 27, 4057–4086, https://doi.org/10.5194/hess-27-4057-2023, https://doi.org/10.5194/hess-27-4057-2023, 2023
Short summary
Short summary
Using a new approach based on a combination of modeling and Earth observation, useful information about the filling of the Grand Ethiopian Renaissance Dam can be obtained with limited data and proper rainfall selection. While the monthly streamflow into Sudan has decreased significantly (1.2 × 109–5 × 109 m3) with respect to the non-dam scenario, the negative impact has been masked due to higher-than-average rainfall. We reveal that the dam will need 3–5 more years to complete filling.
Rozemarijn ter Horst, Rossella Alba, Jeroen Vos, Maria Rusca, Jonatan Godinez-Madrigal, Lucie V. Babel, Gert Jan Veldwisch, Jean-Philippe Venot, Bruno Bonté, David W. Walker, and Tobias Krueger
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-164, https://doi.org/10.5194/hess-2023-164, 2023
Revised manuscript accepted for HESS
Short summary
Short summary
The exact power of models often remains hidden, especially when neutrality is claimed. Our review of 49 scientific articles shows that in scientific literature little attention is given to the power of hydrological models to influence development processes and outcomes. However, that there is a lot to learn from those who are openly reflexive. Based on lessons from the review, we call for power-sensitive modelling which means that people are critical about how models made and with what effects.
Søren J. Kragh, Rasmus Fensholt, Simon Stisen, and Julian Koch
Hydrol. Earth Syst. Sci., 27, 2463–2478, https://doi.org/10.5194/hess-27-2463-2023, https://doi.org/10.5194/hess-27-2463-2023, 2023
Short summary
Short summary
This study investigates the precision of irrigation estimates from a global hotspot of unsustainable irrigation practice, the Indus and Ganges basins. We show that irrigation water use can be estimated with high precision by comparing satellite and rainfed hydrological model estimates of evapotranspiration. We believe that our work can support sustainable water resource management, as it addresses the uncertainty of a key component of the water balance that remains challenging to quantify.
Kerr J. Adams, Christopher A. J. Macleod, Marc J. Metzger, Nicola Melville, Rachel C. Helliwell, Jim Pritchard, and Miriam Glendell
Hydrol. Earth Syst. Sci., 27, 2205–2225, https://doi.org/10.5194/hess-27-2205-2023, https://doi.org/10.5194/hess-27-2205-2023, 2023
Short summary
Short summary
We applied participatory methods to create a hybrid equation-based Bayesian network (BN) model to increase stakeholder understanding of catchment-scale resilience to the impacts of both climatic and socio-economic stressors to a 2050 time horizon. Our holistic systems-thinking approach enabled stakeholders to gain new perspectives on how future scenarios may influence their specific sectors and how their sector impacted other sectors and environmental conditions within the catchment system.
Afua Owusu, Jazmin Zatarain Salazar, Marloes Mul, Pieter van der Zaag, and Jill Slinger
Hydrol. Earth Syst. Sci., 27, 2001–2017, https://doi.org/10.5194/hess-27-2001-2023, https://doi.org/10.5194/hess-27-2001-2023, 2023
Short summary
Short summary
The construction of two dams in the Lower Volta River, Ghana, adversely affected downstream riverine ecosystems and communities. In contrast, Ghana has enjoyed vast economic benefits from the dams. Herein lies the challenge; there exists a trade-off between water for river ecosystems and water for anthropogenic water demands such hydropower. In this study, we quantify these trade-offs and show that there is room for providing environmental flows under current and future climatic conditions.
Joel Z. Harms, Julien J. Malard-Adam, Jan F. Adamowski, Ashutosh Sharma, and Albert Nkwasa
Hydrol. Earth Syst. Sci., 27, 1683–1693, https://doi.org/10.5194/hess-27-1683-2023, https://doi.org/10.5194/hess-27-1683-2023, 2023
Short summary
Short summary
To facilitate the meaningful participation of stakeholders in water management, model choice is crucial. We show how system dynamics models (SDMs), which are very visual and stakeholder-friendly, can be automatically combined with physically based hydrological models that may be more appropriate for modelling the water processes of a human–water system. This allows building participatory SDMs with stakeholders and delegating hydrological components to an external hydrological model.
Erhu Du, Feng Wu, Hao Jiang, Naliang Guo, Yong Tian, and Chunmiao Zheng
Hydrol. Earth Syst. Sci., 27, 1607–1626, https://doi.org/10.5194/hess-27-1607-2023, https://doi.org/10.5194/hess-27-1607-2023, 2023
Short summary
Short summary
This study develops an integrated socio-hydrological modeling framework that can simulate the entire flood management processes, including flood inundation, flood management policies, public responses, and evacuation activities. The model is able to holistically examine flood evacuation performance under the joint impacts of hydrological conditions, management policies (i.e., shelter location distribution), and human behaviors (i.e., evacuation preparation time and route-searching strategy).
Mohammad Ghoreishi, Amin Elshorbagy, Saman Razavi, Günter Blöschl, Murugesu Sivapalan, and Ahmed Abdelkader
Hydrol. Earth Syst. Sci., 27, 1201–1219, https://doi.org/10.5194/hess-27-1201-2023, https://doi.org/10.5194/hess-27-1201-2023, 2023
Short summary
Short summary
The study proposes a quantitative model of the willingness to cooperate in the Eastern Nile River basin. Our results suggest that the 2008 food crisis may account for Sudan recovering its willingness to cooperate with Ethiopia. Long-term lack of trust among the riparian countries may have reduced basin-wide cooperation. The model can be used to explore the effects of changes in future dam operations and other management decisions on the emergence of basin cooperation.
Richard Laugesen, Mark Thyer, David McInerney, and Dmitri Kavetski
Hydrol. Earth Syst. Sci., 27, 873–893, https://doi.org/10.5194/hess-27-873-2023, https://doi.org/10.5194/hess-27-873-2023, 2023
Short summary
Short summary
Forecasts may be valuable for user decisions, but current practice to quantify it has critical limitations. This study introduces RUV (relative utility value, a new metric that can be tailored to specific decisions and decision-makers. It illustrates how critical this decision context is when evaluating forecast value. This study paves the way for agencies to tailor the evaluation of their services to customer decisions and researchers to study model improvements through the lens of user impact.
Efrain Noa-Yarasca, Meghna Babbar-Sebens, and Chris Jordan
Hydrol. Earth Syst. Sci., 27, 739–759, https://doi.org/10.5194/hess-27-739-2023, https://doi.org/10.5194/hess-27-739-2023, 2023
Short summary
Short summary
Riparian vegetation has been identified as a strategy to control rising stream temperatures by shading streams. Riparian vegetation is included within a sub-basin-scale hydrological model and evaluated for full and efficient restoration scenarios. Results showed average temperature reductions of 0.91 and 0.86 °C for full and efficient riparian restoration, respectively. Notwithstanding the similar benefits, efficient restoration was 14.4 % cheaper than full riparian vegetation restoration.
Silvia Terzago, Giulio Bongiovanni, and Jost von Hardenberg
Hydrol. Earth Syst. Sci., 27, 519–542, https://doi.org/10.5194/hess-27-519-2023, https://doi.org/10.5194/hess-27-519-2023, 2023
Short summary
Short summary
Reliable seasonal forecasts of the abundance of mountain snowpack over the winter/spring ahead provide valuable information for water management, hydropower production and ski tourism. We present a climate service prototype to generate multi-model ensemble seasonal forecasts of mountain snow depth, based on Copernicus seasonal forecast system meteorological data used to force the SNOWPACK model. The prototype shows skill at predicting snow depth below and above normal and extremely dry seasons.
Guang Yang, Matteo Giuliani, and Andrea Castelletti
Hydrol. Earth Syst. Sci., 27, 69–81, https://doi.org/10.5194/hess-27-69-2023, https://doi.org/10.5194/hess-27-69-2023, 2023
Short summary
Short summary
Participatory decision-making is a well-established approach to address the increasing pressure on water systems that searches for system-wise efficient solutions but often does not quantify how the resulting benefits are distributed across stakeholders. In this work, we show how including equity principles into the design of water system operations enriches the solution space by generating more compromise solutions that balance efficiency and justice.
Aaron Heldmyer, Ben Livneh, James McCreight, Laura Read, Joseph Kasprzyk, and Toby Minear
Hydrol. Earth Syst. Sci., 26, 6121–6136, https://doi.org/10.5194/hess-26-6121-2022, https://doi.org/10.5194/hess-26-6121-2022, 2022
Short summary
Short summary
Measurements of channel characteristics are important for accurate forecasting in the NOAA National Water Model (NWM) but are scarcely available. We seek to improve channel representativeness in the NWM by updating channel geometry and roughness parameters using a large, previously unpublished, dataset of approximately 48 000 gauges. We find that the updated channel parameterization from this new dataset leads to improvements in simulated streamflow performance and channel representation.
Friedrich Boeing, Oldrich Rakovec, Rohini Kumar, Luis Samaniego, Martin Schrön, Anke Hildebrandt, Corinna Rebmann, Stephan Thober, Sebastian Müller, Steffen Zacharias, Heye Bogena, Katrin Schneider, Ralf Kiese, Sabine Attinger, and Andreas Marx
Hydrol. Earth Syst. Sci., 26, 5137–5161, https://doi.org/10.5194/hess-26-5137-2022, https://doi.org/10.5194/hess-26-5137-2022, 2022
Short summary
Short summary
In this paper, we deliver an evaluation of the second generation operational German drought monitor (https://www.ufz.de/duerremonitor) with a state-of-the-art compilation of observed soil moisture data from 40 locations and four different measurement methods in Germany. We show that the expressed stakeholder needs for higher resolution drought information at the one-kilometer scale can be met and that the agreement of simulated and observed soil moisture dynamics can be moderately improved.
Anahi Ocampo-Melgar, Pilar Barría, Cristián Chadwick, and Cesar Rivas
Hydrol. Earth Syst. Sci., 26, 5103–5118, https://doi.org/10.5194/hess-26-5103-2022, https://doi.org/10.5194/hess-26-5103-2022, 2022
Short summary
Short summary
This article examines how a hydrological model exploring the causes of a lake desiccation was turned into a 5-step participatory process to better adjust the model to address questions that were causing suspicions and conflicts in the community. Although the process was key in finding a combination of strategies that were of moderate impact and higher local acceptability, we address the challenges of such collaboration in modeling when conflict is deeply embedded in the context.
Ashish Shrestha, Felipe Augusto Arguello Souza, Samuel Park, Charlotte Cherry, Margaret Garcia, David J. Yu, and Eduardo Mario Mendiondo
Hydrol. Earth Syst. Sci., 26, 4893–4917, https://doi.org/10.5194/hess-26-4893-2022, https://doi.org/10.5194/hess-26-4893-2022, 2022
Short summary
Short summary
Equitable sharing of benefits is key to successful cooperation in transboundary water resource management. However, external changes can shift the split of benefits and shifts in the preferences regarding how an actor’s benefits compare to the other’s benefits. To understand how these changes can impact the robustness of cooperative agreements, we develop a socio-hydrological system dynamics model of the benefit sharing provision of the Columbia River Treaty and assess a series of scenarios.
Sara Modanesi, Christian Massari, Michel Bechtold, Hans Lievens, Angelica Tarpanelli, Luca Brocca, Luca Zappa, and Gabriëlle J. M. De Lannoy
Hydrol. Earth Syst. Sci., 26, 4685–4706, https://doi.org/10.5194/hess-26-4685-2022, https://doi.org/10.5194/hess-26-4685-2022, 2022
Short summary
Short summary
Given the crucial impact of irrigation practices on the water cycle, this study aims at estimating irrigation through the development of an innovative data assimilation system able to ingest high-resolution Sentinel-1 radar observations into the Noah-MP land surface model. The developed methodology has important implications for global water resource management and the comprehension of human impacts on the water cycle and identifies main challenges and outlooks for future research.
Yujie Zeng, Dedi Liu, Shenglian Guo, Lihua Xiong, Pan Liu, Jiabo Yin, and Zhenhui Wu
Hydrol. Earth Syst. Sci., 26, 3965–3988, https://doi.org/10.5194/hess-26-3965-2022, https://doi.org/10.5194/hess-26-3965-2022, 2022
Short summary
Short summary
The sustainability of the water–energy–food (WEF) nexus remains challenge, as interactions between WEF and human sensitivity and water resource allocation in water systems are often neglected. We incorporated human sensitivity and water resource allocation into a WEF nexus and assessed their impacts on the integrated system. This study can contribute to understanding the interactions across the water–energy–food–society nexus and improving the efficiency of resource management.
Louise Busschaert, Shannon de Roos, Wim Thiery, Dirk Raes, and Gabriëlle J. M. De Lannoy
Hydrol. Earth Syst. Sci., 26, 3731–3752, https://doi.org/10.5194/hess-26-3731-2022, https://doi.org/10.5194/hess-26-3731-2022, 2022
Short summary
Short summary
Increasing amounts of water are used for agriculture. Therefore, we looked into how irrigation requirements will evolve under a changing climate over Europe. Our results show that, by the end of the century and under high emissions, irrigation water will increase by 30 % on average compared to the year 2000. Also, the irrigation requirement is likely to vary more from 1 year to another. However, if emissions are mitigated, these effects are reduced.
Judit Lienert, Jafet C. M. Andersson, Daniel Hofmann, Francisco Silva Pinto, and Martijn Kuller
Hydrol. Earth Syst. Sci., 26, 2899–2922, https://doi.org/10.5194/hess-26-2899-2022, https://doi.org/10.5194/hess-26-2899-2022, 2022
Short summary
Short summary
Many western Africans encounter serious floods every year. The FANFAR project co-designed a pre-operational flood forecasting system (FEWS) with 50 key western African stakeholders. Participatory multi-criteria decision analysis (MCDA) helped prioritize a FEWS that meets their needs: it should provide accurate, clear, and timely flood risk information and work reliably in tough conditions. As a theoretical contribution, we propose an assessment framework for transdisciplinary hydrology research.
Donghoon Lee, Jia Yi Ng, Stefano Galelli, and Paul Block
Hydrol. Earth Syst. Sci., 26, 2431–2448, https://doi.org/10.5194/hess-26-2431-2022, https://doi.org/10.5194/hess-26-2431-2022, 2022
Short summary
Short summary
To fully realize the potential of seasonal streamflow forecasts in the hydropower industry, we need to understand the relationship between reservoir design specifications, forecast skill, and value. Here, we rely on realistic forecasts and simulated hydropower operations for 753 dams worldwide to unfold such relationship. Our analysis shows how forecast skill affects hydropower production, what type of dams are most likely to benefit from seasonal forecasts, and where these dams are located.
Herminia Torelló-Sentelles and Christian L. E. Franzke
Hydrol. Earth Syst. Sci., 26, 1821–1844, https://doi.org/10.5194/hess-26-1821-2022, https://doi.org/10.5194/hess-26-1821-2022, 2022
Short summary
Short summary
Drought affects many regions worldwide, and future climate projections imply that drought severity and frequency will increase. Hence, the impacts of drought on the environment and society will also increase considerably. Monitoring and early warning systems for drought rely on several indicators; however, assessments on how these indicators are linked to impacts are still lacking. Our results show that meteorological indices are best linked to impact occurrences.
Leah A. Jackson-Blake, François Clayer, Elvira de Eyto, Andrew S. French, María Dolores Frías, Daniel Mercado-Bettín, Tadhg Moore, Laura Puértolas, Russell Poole, Karsten Rinke, Muhammed Shikhani, Leon van der Linden, and Rafael Marcé
Hydrol. Earth Syst. Sci., 26, 1389–1406, https://doi.org/10.5194/hess-26-1389-2022, https://doi.org/10.5194/hess-26-1389-2022, 2022
Short summary
Short summary
We explore, together with stakeholders, whether seasonal forecasting of water quantity, quality, and ecology can help support water management at five case study sites, primarily in Europe. Reliable forecasting, a season in advance, has huge potential to improve decision-making. However, managers were reluctant to use the forecasts operationally. Key barriers were uncertainty and often poor historic performance. The importance of practical hands-on experience was also highlighted.
Mads Troldborg, Zisis Gagkas, Andy Vinten, Allan Lilly, and Miriam Glendell
Hydrol. Earth Syst. Sci., 26, 1261–1293, https://doi.org/10.5194/hess-26-1261-2022, https://doi.org/10.5194/hess-26-1261-2022, 2022
Short summary
Short summary
Pesticides continue to pose a threat to surface water quality worldwide. Here, we present a spatial Bayesian belief network (BBN) for assessing inherent pesticide risk to water quality. The BBN was applied in a small catchment with limited data to simulate the risk of five pesticides and evaluate the likely effectiveness of mitigation measures. The probabilistic graphical model combines diverse data and explicitly accounts for uncertainties, which are often ignored in pesticide risk assessments.
Ida Karlsson Seidenfaden, Torben Obel Sonnenborg, Jens Christian Refsgaard, Christen Duus Børgesen, Jørgen Eivind Olesen, and Dennis Trolle
Hydrol. Earth Syst. Sci., 26, 955–973, https://doi.org/10.5194/hess-26-955-2022, https://doi.org/10.5194/hess-26-955-2022, 2022
Short summary
Short summary
This study investigates how the spatial nitrate reduction in the subsurface may shift under changing climate and land use conditions. This change is investigated by comparing maps showing the spatial nitrate reduction in an agricultural catchment for current conditions, with maps generated for future projected climate and land use conditions. Results show that future climate flow paths may shift the catchment reduction noticeably, while implications of land use changes were less substantial.
Oleksandr Mialyk, Joep F. Schyns, Martijn J. Booij, and Rick J. Hogeboom
Hydrol. Earth Syst. Sci., 26, 923–940, https://doi.org/10.5194/hess-26-923-2022, https://doi.org/10.5194/hess-26-923-2022, 2022
Short summary
Short summary
As the global demand for crops is increasing, it is vital to understand spatial and temporal patterns of crop water footprints (WFs). Previous studies looked into spatial patterns but not into temporal ones. Here, we present a new process-based gridded crop model to simulate WFs and apply it for maize in 1986–2016. We show that despite the average unit WF reduction (−35 %), the global WF of maize production has increased (+50 %), which might harm ecosystems and human livelihoods in some regions.
Wouter J. Smolenaars, Sanita Dhaubanjar, Muhammad K. Jamil, Arthur Lutz, Walter Immerzeel, Fulco Ludwig, and Hester Biemans
Hydrol. Earth Syst. Sci., 26, 861–883, https://doi.org/10.5194/hess-26-861-2022, https://doi.org/10.5194/hess-26-861-2022, 2022
Short summary
Short summary
The arid plains of the lower Indus Basin rely heavily on the water provided by the mountainous upper Indus. Rapid population growth in the upper Indus is expected to increase the water that is consumed there. This will subsequently reduce the water that is available for the downstream plains, where the population and water demand are also expected to grow. In future, this may aggravate tensions over the division of water between the countries that share the Indus Basin.
Yaogeng Tan, Zengchuan Dong, Sandra M. Guzman, Xinkui Wang, and Wei Yan
Hydrol. Earth Syst. Sci., 25, 6495–6522, https://doi.org/10.5194/hess-25-6495-2021, https://doi.org/10.5194/hess-25-6495-2021, 2021
Short summary
Short summary
The rapid increase in economic development and urbanization is contributing to the imbalances and conflicts between water supply and demand and further deteriorates river ecological health, which intensifies their interactions and causes water unsustainability. This paper proposes a methodology for sustainable development of water resources, considering socioeconomic development, food safety, and ecological protection, and the dynamic interactions across those water users are further assessed.
Sara Modanesi, Christian Massari, Alexander Gruber, Hans Lievens, Angelica Tarpanelli, Renato Morbidelli, and Gabrielle J. M. De Lannoy
Hydrol. Earth Syst. Sci., 25, 6283–6307, https://doi.org/10.5194/hess-25-6283-2021, https://doi.org/10.5194/hess-25-6283-2021, 2021
Short summary
Short summary
Worldwide, the amount of water used for agricultural purposes is rising and the quantification of irrigation is becoming a crucial topic. Land surface models are not able to correctly simulate irrigation. Remote sensing observations offer an opportunity to fill this gap as they are directly affected by irrigation. We equipped a land surface model with an observation operator able to transform Sentinel-1 backscatter observations into realistic vegetation and soil states via data assimilation.
Alexis Jeantet, Hocine Henine, Cédric Chaumont, Lila Collet, Guillaume Thirel, and Julien Tournebize
Hydrol. Earth Syst. Sci., 25, 5447–5471, https://doi.org/10.5194/hess-25-5447-2021, https://doi.org/10.5194/hess-25-5447-2021, 2021
Short summary
Short summary
The hydrological subsurface drainage model SIDRA-RU is assessed at the French national scale, using a unique database representing the large majority of the French drained areas. The model is evaluated following its capacity to simulate the drainage discharge variability and the annual drained water balance. Eventually, the temporal robustness of SIDRA-RU is assessed to demonstrate the utility of this model as a long-term management tool.
Nariman Mahmoodi, Jens Kiesel, Paul D. Wagner, and Nicola Fohrer
Hydrol. Earth Syst. Sci., 25, 5065–5081, https://doi.org/10.5194/hess-25-5065-2021, https://doi.org/10.5194/hess-25-5065-2021, 2021
Short summary
Short summary
In this study, we assessed the sustainability of water resources in a wadi region with the help of a hydrologic model. Our assessment showed that the increases in groundwater demand and consumption exacerbate the negative impact of climate change on groundwater sustainability and hydrologic regime alteration. These alterations have severe consequences for a downstream wetland and its ecosystem. The approach may be applicable in other wadi regions with different climate and water use systems.
Nahid Atashi, Dariush Rahimi, Victoria A. Sinclair, Martha A. Zaidan, Anton Rusanen, Henri Vuollekoski, Markku Kulmala, Timo Vesala, and Tareq Hussein
Hydrol. Earth Syst. Sci., 25, 4719–4740, https://doi.org/10.5194/hess-25-4719-2021, https://doi.org/10.5194/hess-25-4719-2021, 2021
Short summary
Short summary
Dew formation potential during a long-term period (1979–2018) was assessed in Iran to identify dew formation zones and to investigate the impacts of long-term variation in meteorological parameters on dew formation. Six dew formation zones were identified based on cluster analysis of the time series of the simulated dew yield. The distribution of dew formation zones in Iran was closely aligned with topography and sources of moisture. The dew formation trend was significantly negative.
Kuk-Hyun Ahn
Hydrol. Earth Syst. Sci., 25, 4319–4333, https://doi.org/10.5194/hess-25-4319-2021, https://doi.org/10.5194/hess-25-4319-2021, 2021
Short summary
Short summary
This study proposes a multiple-dependence model for estimating streamflow at partially gaged sites. The evaluations are conducted on a case study of the eastern USA and show that the proposed model is suited for infilling missing values. The performance is further evaluated with six other infilling models. Results demonstrate that the proposed model produces more reliable streamflow estimates than the other approaches. The model can be applicable to other hydro-climatological variables.
Xuanxuan Wang, Yaning Chen, Zhi Li, Gonghuan Fang, Fei Wang, and Haichao Hao
Hydrol. Earth Syst. Sci., 25, 3281–3299, https://doi.org/10.5194/hess-25-3281-2021, https://doi.org/10.5194/hess-25-3281-2021, 2021
Short summary
Short summary
The growing water crisis in Central Asia and the complex water politics of the region's transboundary rivers are a hot topic for research, while the dynamic changes of water politics in Central Asia have yet to be studied in depth. Based on the Gini coefficient, water political events and social network analysis, we analyzed the matching degree between water and socio-economic elements and the dynamics of hydropolitics in transboundary river basins of Central Asia.
Jonathan W. Miller, Kimia Karimi, Arumugam Sankarasubramanian, and Daniel R. Obenour
Hydrol. Earth Syst. Sci., 25, 2789–2804, https://doi.org/10.5194/hess-25-2789-2021, https://doi.org/10.5194/hess-25-2789-2021, 2021
Short summary
Short summary
Within a watershed, nutrient export can vary greatly over time and space. In this study, we develop a model to leverage over 30 years of streamflow, precipitation, and nutrient sampling data to characterize nitrogen export from various livestock and land use types across a range of precipitation conditions. Modeling results reveal that urban lands developed before 1980 have remarkably high levels of nitrogen export, while agricultural export is most responsive to precipitation.
Chia-Wen Wu, Frederick N.-F. Chou, and Fong-Zuo Lee
Hydrol. Earth Syst. Sci., 25, 2063–2087, https://doi.org/10.5194/hess-25-2063-2021, https://doi.org/10.5194/hess-25-2063-2021, 2021
Short summary
Short summary
This paper promotes the feasibility of emptying instream storage through joint operation of multiple reservoirs. The trade-off between water supply and emptying reservoir storage and alleviating impacts on downstream environment are thoroughly discussed. Operation of reservoirs is optimized to calibrate the optimal parameters defining the activation and termination of emptying reservoir. The optimized strategy limits the water shortage and maximizes the expected benefits of emptying reservoir.
Cited articles
Abatzoglou, J. T.: Development of gridded surface meteorological data for ecological applications and modelling, Int. J. Climatol., 33, 121–131, https://doi.org/10.1002/joc.3413, 2013.
Abatzoglou, J. T. and Brown, T. J.: A comparison of statistical downscaling methods suited for wildfire applications, Int. J. Climatol., 32, 772–780, https://doi.org/10.1002/joc.2312, 2012.
Abbaspour, K. C., Faramarzi, M., Ghasemi, S. S., and Yang, H.: Assessing the impact of climate change on water resources in Iran, Water Resour. Res., 45, W10434, https://doi.org/10.1029/2008WR007615, 2010.
Ahmadi, M., Records, R., and Arabi, M.: Impact of climate change on diffuse pollutant fluxes at the watershed scale, Hydrol. Process., 28, 1962–1972, https://doi.org/10.1002/hyp.9723, 2014.
Almendinger, J. E., Murphy, M. S., and Ulrich, J. S.: Use of the Soil and Water Assessment Tool to scale sediment delivery from field to watershed in an agricultural landscape with topographic depressions, J. Environ. Qual., 43, 9–17, https://doi.org/10.2134/jeq2011.0340, 2012.
American Society of Agricultural and Biological Engineers: ASAE D384.2 MAR2005 Manure production and characteristics, ASABE, St. Joseph, Minnesota, USA, 2006.
Arnold, J. G., Srinivasan, R., Muttiah, R. S., and Williams, J. R.: Large area hydrologic modeling and assessment, part I: model development, J. Am. Water Resour. Assoc., 34, 73–89, 1998.
Beechie, T., Imaki, H., Greene, J., Wade, A., Wu, H., Pess, G., Roni, P., Kimball, J., Stanford, J., Kiffney, P., and Mantua, N.: Restoring salmon habitat for a changing climate, River Res. Appl., 29, 939–960, https://doi.org/10.1002/rra.2590, 2013.
Bosch, N. S.: The influence of impoundments on riverine nutrient transport: an evaluation using the Soil and Water Assessment Tool, J. Hydrol., 355, 131–147, https://doi.org/10.1016/j.jhydrol.2008.03.012, 2008.
Bouraoui, F., Galbiati, L., and Bidoglio, G.: Climate change impacts on nutrient loads in the Yorkshire Ouse catchment (UK), Hydrol. Earth Syst. Sci., 6, 197–209, https://doi.org/10.5194/hess-6-197-2002, 2002.
Boyd, M., Kirk, S., Wiltsey, M., and Kasper, B.: Upper Klamath Lake Drainage Total Maximum Daily Load (TMDL) and Water Quality Management Plan (WQMP), State of Oregon Department of Environmental Quality, Portland, Oregon, USA, 2002.
Bracmort, K. S., Arabi, M., Frankenberger, J. R., Engel, B. A., and Arnold, J. G.: Modeling long-term water quality impact of structural BMPs, Trans. ASABE, 49, 367–374, 2006.
Brown, L. C. and Barnwell, T. O.: The enhanced water quality models QUAL2E and QUAL2E-UNCAS documentation and user manual, Technical Report EPA Document EPA/600/3-87/007, Athens, Georgia, USA, 1987.
Burkett, V. and Kusler, J.: Climate change: potential impacts and interactions in wetlands of the United States, J. Am. Water Resour. Assoc., 36, 313–320, 2000.
Cahoon, J.: Soil survey report of Klamath County, Oregon, southern part, US Soil Conservation Service, Oregon State University, and Agricultural Experiment Station, Washington, D.C., USA, 1985.
Candela, L., von Igel, W., Javier Elorza, F., and Aronica, G.: Impact assessment of combined climate and management scenarios on groundwater resources and associated wetland (Majorca, Spain), J. Hydrol., 376, 510–527, https://doi.org/10.1016/j.jhydrol.2009.07.057, 2009.
CH2MHILL: Approaches to water quality treatment by wetlands in the Upper Klamath Basin, Prepared for PacifiCorp Energy, Portland, Oregon, USA, 2012.
Chaplot, V.: Water and soil resources response to rising levels of atmospheric CO2 concentration and to changes in precipitation and air temperature, J. Hydrol., 337, 159–171, https://doi.org/10.1016/j.jhydrol.2007.01.026, 2007.
Cho, J., Vellidis, G., Bosch, D. D., Lowrance, R., and Strickland, T.: Water quality effects of simulated conservation practice scenarios in the Little River Experimental Watershed, J. Soil Water Conserv., 65, 463–473, https://doi.org/10.2489/jswc.65.6.463, 2010a.
Cho, J., Lowrance, R. R., Bosch, D. D., Strickland, T. C., Her, Y., and Vellidis, G.: Effect of watershed subdivision and filter width on SWAT simulation of a coastal plain watershed, J. Am. Water Resour. Assoc., 46, 586–602, https://doi.org/10.1111/j.1752-1688.2010.00436.x, 2010b.
Ciotti, D. C.: Water quality of runoff from flood irrigated pasture in the Klamath Basin, Oregon, M.S. thesis, Oregon State University, Corvallis, Oregon, USA, 2005.
Ciotti, D., Griffith, S. M., Kann, J., and Baham, J.: Nutrient and sediment transport on flood-irrigated pasture in the Klamath Basin, Oregon, Rangel. Ecol. Manage., 63, 308–316, https://doi.org/10.2111/08-127.1, 2010.
Diffenbaugh, N. S., Scherer, M., Ashfaq, M., and Ortega, V.: Response of snow-dependent hydrologic extremes to continued global warming, Nat. Clim. Change, 3, 379–384, https://doi.org/10.1038/NCLIMATE1732, 2013.
Durre, I., Menne, M. J., Gleason, B. E., Houston, T. G., and Vose, R. S.: Comprehensive automated quality assurance of daily surface observations, J. Appl. Meteorol. Climatol., 49, 1615–1633, https://doi.org/10.1175/2010JAMC2375.1, 2010.
Eldridge, S. L. C., Wood, T. W., and Echols, K. R.: Spatial and temporal dynamics of cyanotoxins and their relation to other water quality variables in Upper Klamath Lake, Oregon, 2007-09, Scientific Investigations Report 2012-5069, US Geological Survey, Reston, Virginia, USA, 2012.
Engel, B., Storm, D., White, M., Arnold, J., and Arabi, M.: A hydrologic/water quality model application protocol, J. Am. Water Resour. Assoc., 43, 1223–1236, https://doi.org/10.1111/j.1752-1688.2007.00105.x, 2007.
Ficklin, D. L., Luo, Y., Luedeling, E., Gatzke, S. E., and Zhang, M.: Sensitivity of agricultural runoff loads to rising levels of CO2 and climate change in the San Joaquin Valley watershed of California, Environ. Pollut., 158, 223–234, https://doi.org/10.1016/j.envpol.2009.07.016, 2010.
Ficklin, D. L., Stewart, I. T., and Maurer, E. P.: Effects of climate change on stream temperature, dissolved oxygen, and sediment concentration in the Sierra Nevada in California, Water Resour. Res., 49, 2765–2782, https://doi.org/10.1002/wrcr.20248, 2013.
Flint, L. E. and Flint, A. L.: Estimation of stream temperature in support of fish production modeling under future climates in the Klamath River Basin, Scientific Investigations Report 2011-5171, US Geological Survey, Reston, Virginia, USA, 2011.
Gannett, M. W., Lite Jr., K. E., La Marche, J. L., Fisher, B. J., and Polette, D. J.: Ground-water hydrology of the Upper Klamath Basin, Oregon and California, Scientific Investigations Report 2007-5050, Reston, Virginia, USA, 2007.
Gassman, P. W., Reyes, M. R., Green, C. H., and Arnold, J. G.: The Soil and Water Assessment Tool: historical development, applications, and future research directions, Trans. ASABE, 50, 1211–1250, 2007.
Gearheart, R. A., Anderson, J. K., Forbes, M. G., Osburn, M., and Oros, D.: Watershed strategies for improving water quality in Upper Klamath Lake, Oregon, Volumes I, Humboldt State University, Arcata, California, USA, 1995.
Graham Matthews and Associates: Sprague River watershed: streamflow, sediment transport and a preliminary sediment budget, WY2004–2006, Weaverville, California, USA, 2007.
Graham, S. A., Craft, C. B., McCormick, P. V., and Aldous, A.: Forms and accumulation of soil P in natural and recently restored peatlands – Upper Klamath Lake, Oregon, USA, Wetlands, 25, 594–606, 2005.
Gu, A. Z., Liu, L., Neethling, J. B., Stensel, H. D., and Murthy, S.: Treatability and fate of various phosphorus fractions in different wastewater treatment processes, Water Sci. Technol., 29, 804–810, 2011.
Hamlet, A. F., Mote, P. W., Clark, M. P., and Lettenmaier, D. P.: Twentieth-century trends in runoff, evapotranspiration, and soil moisture in the Western United States, J. Climate, 20, 1468–1486, https://doi.org/10.1175/JCLI4051.1, 2007.
Helsel, D. R. and Hirsch, R. M.: Chapter A3: Statistical Methods in Water Resources, in: Techniques of Water-Resources Investigations of the United States Geologic Survey: Book 4, Hydrologic Analysis and Interpretation, vol. 36, US Geological Survey, Reston, Virginia, USA, 1–510, 2002.
Hoffmann, C. C., Kjaergaard, C., Uusi–Kämppä, J., Hansen, H. C. B., and Kronvang, B.: Phosphorus retention in riparian buffers: review of their efficiency, J. Environ. Qual., 38, 1942–1955, https://doi.org/10.2134/jeq2008.0087, 2009.
Homer, C., Huang, C., Yang, L., Wylie, B., and Coan, M.: Development of a 2001 national land-cover database for the United States, Photogramm. Eng. Remote Sens., 70, 829–840, 2004.
Homer, C., Dewitz, J., Fry, J., Coan, M., Hossain, N., Larson, C., Herold, N., McKerrow, A., VanDriel, J. N., and Wickham, J.: Completion of the 2001 National Land Cover Database for the conterminous United States, Photogramm. Eng. Remote Sens., 73, 337–341, 2007.
Isaak, D. J., Luce, C. H., Rieman, B. E., Nagel, D. E., Peterson, E. E., Horan, D. L., Parkes, S., and Chandler, G. L.: Effects of climate change and wildfire on stream temperatures and salmonid thermal habitat in a mountain river network, Ecol. Appl., 20, 1350–1371, 2010.
Jefferson, A. J.: Seasonal versus transient snow and the elevation dependence of climate sensitivity in maritime mountainous regions, Geophys. Res. Lett., 38, L16402, https://doi.org/10.1029/2011GL048346, 2011.
Jeppesen, E., Kronvang, B., Meerhoff, M., Søndergaard, M., Hansen, K. M., Andersen, H. E., Lauridsen, T. L., Liboriussen, L., Beklioglu, M., Ozen, A., and Olesen, J. E.: Climate change effects on runoff, catchment phosphorus loading and lake ecological state, and potential adaptations, J. Environ. Qual., 38, 1930–1941, https://doi.org/10.2134/jeq2008.0113, 2009.
Jha, M. K., Gassman, P. W., and Arnold, J. G.: Water quality modeling for the Raccoon River watershed using SWAT, Trans. ASABE, 50, 479–494, 2007.
Jha, M., Pan, Z., Takle, E. S., and Gu, R.: Impacts of climate change on streamflow in the Upper Mississippi River Basin: a regional climate model perspective, J. Geophys. Res., 109, D09105, https://doi.org/10.1029/2003JD003686, 2004.
Johnston, C. A., Detenbeck, N. E., and Niemi, G. J.: The cumulative effect of wetlands on stream water quality and approach quantity: A landscape approach, Biogeochemistry, 10, 105–141, 1990.
Klamath Tribes: Quality Assurance Project Plan (QAPP) project: baseline water quality monitoring project, Chiloquin, Oregon, USA, 2008.
Krysanova, V., Hattermann, F., and Wechsung, F.: Development of the ecohydrological model SWIM for regional impact studies and vulnerability assessment, Hydrol. Process., 19, 763–783, https://doi.org/10.1002/hyp.5619, 2005.
Kundzewicz, Z. W., Mata, L. J., Arnell, N. W., Doll, P., Jimenez, B., Miller, K., Oki, T., Sen, Z., and Shiklomanov, I.: The implications of projected climate change for freshwater resources and their management, Hydrol. Sci., 53, 3–10, 2009.
Lam, Q. D., Schmalz, B., and Fohrer, N.: The impact of agricultural Best Management Practices on water quality in a North German lowland catchment, Environ. Monit. Assess., 183, 351–379, https://doi.org/10.1007/s10661-011-1926-9, 2011.
Li, H., Sheffield, J., and Wood, E. F.: Bias correction of monthly precipitation and temperature fields from Intergovernmental Panel on Climate Change AR4 models using equidistant quantile matching, J. Geophys. Res.-Atmos., 115, D10101, https://doi.org/10.1029/2009JD012882, 2010.
Li, Y., Chen, B. M., Wang, Z. G., and Peng, S. L.: Effects of temperature change on water discharge, and sediment and nutrient loading in the lower Pearl River basin based on SWAT modelling, Hydrolog. Sci. J., 56, 68–83, https://doi.org/10.1080/02626667.2010.538396, 2011.
Liu, J., You, L., Amini, M., Obersteiner, M., Herrero, M., Zehnder, A. J. B., and Yang, H.: A high-resolution assessment on global nitrogen flows in cropland, P. Natl. Acad. Sci. USA, 107, 8035–8040, https://doi.org/10.1073/pnas.0913658107, 2010.
Liu, Y., Yang, W., and Wang, X.: GIS-based integration of SWAT and REMM for estimating water quality benefits of riparian buffers in agricultural watersheds, Trans. ASABE, 50, 1549–1563, 2007.
Liu, Y., Yang, W., and Wang, X.: Development of a SWAT extension module to simulate riparian wetland hydrologic processes at a watershed scale, Hydrol. Process., 22, 2901–2915, https://doi.org/10.1002/hyp.6874, 2008.
Lowrance, R., Altier, L. S., Newbold, J. D., Schnabel, R. R., Groffman, P. M., Denver, J. M., Correll, D. L., Gilliam, J. W., Robinson, J. L., Todd, A. H., Brinsfield, R. B., Staver, K. W., Lucas, W., and Todd, A. H.: Water quality functions of riparian forest buffers in Chesapeake Bay watersheds, Environ. Manage., 21, 687–712, 1997.
Ma, K., You, L., Liu, J., and Zhang, M.: A hybrid wetland map for China: a synergistic approach using census and spatially explicit datasets, PLOS ONE, 7, e47814, https://doi.org/10.1371/journal.pone.0047814, 2012.
Mayer, T. D. and Naman, S. W.: Streamflow response to climate as influenced by geology and elevation, J. Am. Water Resour. Assoc., 47, 724–738, https://doi.org/10.1111/j.1752-1688.2011.00537.x, 2011.
Melles, S. J., Benoy, G., Booty, B., Leon, L., Vanrobaeys, J., and Wong, I: Scenarios to Investigate the Effect of Wetland Position in a Watershed on nutrient loadings, in: Proceedings of International Environmental Modelling and Software Society, 2010 International Congress on Environmental Modelling and Software Modelling for Environment's Sake, Fifth Biennial Meeting, Ottawa, Canada, 2010.
Meyer, J. L., Sale, M. J., Mulholland, P. J., and Poff, N. L.: Impacts of climate change on aquatic ecosystem functioning and health, J. Am. Water Resour. Assoc., 35, 1373–1386, 1999.
Mitsch, W. J. and Gosselink, J. G.: The value of wetlands: importance of scale and landscape setting, Ecol. Econ., 35, 25–33, 2000a.
Mitsch, W. J. and Gosselink, J. G.: Wetlands, 3rd Edn., John Wiley and Sons, Inc., New York, USA, 2000b.
Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D., and Veith, T. L.: Model evaluation guidelines for systematic quantification of accuracy in watershed simulations, Trans. ASABE, 50, 885–900, 2007.
Moriasi, D. N., Steiner, J. L., and Arnold, J. G.: Sediment measurement and transport modeling: impact of riparian and filter strip buffers, J. Environ. Qual., 40, 807–814, https://doi.org/10.2134/jeq2010.0066, 2011.
Morris, M. D.: Factorial sampling plans for preliminary computational experiments, Technometrics, 33, 161–174, 1991.
Mote, P. W.: Trends in snow water equivalent in the Pacific Northwest and their climatic causes, Geophys. Res. Lett., 30, 3-1–3-4, https://doi.org/10.1029/2003GL017258, 2003.
Mote, P. W. and Salathé Jr., E. P.: Future climate in the Pacific Northwest, Climatic Change, 102, 29–50, https://doi.org/10.1007/s10584-010-9848-z, 2010.
Mulholland, P. J. and Sale, M. J.: Impacts of climate change on water resources: findings of the IPCC Regional Assessment of Vulnerability for North America, J. Contemp. Water Res. Educ., 112, 10–15, 2011.
Murdoch, P. S., Baron, J. S., and Miller, T. L.: Potential effects of climate change on surface-water quality in North America, J. Am. Water Resour. Assoc., 36, 347–366, 2000.
Neitsch, S. L., Arnold, J. G., Kiniry, J. R., and Williams, J. R.: Soil and Water Assessment Tool Theoretical Documentation Version 2005, Texas A & M University, College Station, Texas, USA, 2005.
Neitsch, S. L., Arnold, J. G., Kiniry, J. R., and Williams, J. R.: Soil and Water Assessment Tool Theoretical Documentation Version 2009, Texas Water Resources Institute Technical Report No. 406, Texas A & M University, College Station, Texas, USA, 2009.
Novotny, V.: Water Quality: Diffuse Pollution and Watershed Management, 2nd Edn., J. Wiley, Hoboken, New Jersey, USA, 2003.
Oregon Climate Change Research Institute: Oregon Climate Assessment Report, edited by: Dello, K. D. and Mote, P. W., College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, Oregon, USA, 2010.
Oregon Natural Heritage Information Center and the Wetlands Conservancy: Oregon Wetland Geodatabase vector digital data, available at http://spatialdata.oregonexplorer.info/ (last access: 28 July 2012), 2009.
Oregon Water Resources Department: Oregon Water Rights Places of Use (POUs), by administrative basin vector digital data, available at: http://www.oregon.gov/owrd/pages/wr/index.aspx (last access: 22 July 2011), 2008.
Park, J. Y., Park, M. J., Ahn, S. R., Park, G. A., Yi, J. E., Kim, G. S., Srinivasan, R., and Kim, S. J.: Assessment of future climate change impacts on water quantity and quality for a mountainous dam watershed using SWAT, Trans. ASABE, 54, 1725–1737, 2011.
Perry, L. G., Andersen, D. C., Reynolds, L. V., Nelson, S. M., and Shafroth, P. B.: Vulnerability of riparian ecosystems to elevated CO2 and climate change in arid and semiarid western North America, Global Change Biol., 18, 821–842, https://doi.org/10.1111/j.1365-2486.2011.02588.x, 2012.
Pierce, D. W., Westerling, A. L., and Oyler, J.: Future humidity trends over the western United States in the CMIP5 global climate models and variable infiltration capacity hydrological modeling system, Hydrol. Earth Syst. Sci., 17, 1833–1850, https://doi.org/10.5194/hess-17-1833-2013, 2013.
Pionke, H. B., Gburek, W. J., and Sharpley, A. N.: Critical source area controls on water quality in an agricultural watershed located in the Chesapeake Basin, Ecol. Eng., 14, 325–335, 2000.
PRISM Climate Group at Oregon State University: United States Average Monthly or Annual Maximum Temperature, Minimum Temperature, and Precipitation, 1981–2010, available at: http://prism.nacse.org/normals/ (last access: 2 February 2013), 2012.
Rabe, A. and Calonje, C.: Lower Sprague-Lower Williamson watershed assessment, Prepared for Klamath Watershed Partnership, Klamath Falls, Oregon, USA, 2009.
Risley, J., Hay, L. E., and Markstrom, S.: Watershed scale response to climate change – Sprague River Basin, Oregon, US Geological Survey Fact Sheet 2011-3120, Denver, US Geological Survey, Colorado, USA, 2012.
Runkel, R. L., Crawford, C. G. and Cohn, T. A.: Load Estimator (LOADEST): a FORTRAN program for estimating constituent loads in streams and rivers, Techniques and Methods Book 4, Chapter A5, US Geological Survey, Reston, Virginia, USA, 1–56, 2004.
Rupp, D. E., Abatzoglou, J. T., Hegewisch, K. C., and Mote, P. W.: Evaluation of CMIP5 20$^th$ century climate simulations for the Pacific Northwest USA, J. Geophys. Res.-Atmos., 118, 1–23, https://doi.org/10.1002/jgrd.50843, 2013.
Sahu, M. and Gu, R. R.: Modeling the effects of riparian buffer zone and contour strips on stream water quality, Ecol. Eng., 35, 1167–1177, https://doi.org/10.1016/j.ecoleng.2009.03.015, 2009.
SalathéJr., E. P., Mote, W., and Wiley, M. W.: Review of scenario selection and downscaling methods for the assessment of climate change impacts on hydrology in the United States Pacific Northwest, Int. J. Climatol., 1621, 1611–1621, https://doi.org/10.1002/joc.1540, 2007.
Santhi, C., Arnold, J. G., Williams, J. R., Dugas, W. A., Srinivasan, R., and Hauck, L. M.: Validation of the SWAT model on a large river basin with point and nonpoint sources, J. Am. Water Resour. Assoc., 37, 1169–1188, 2001.
Serreze, M. C., Clark, M. P., Armstrong, R. L., McGinnis, D. A., and Pulwarty, R. S.: Characteristics of the western United States snowpack from snowpack telemetry (SNOTEL) data, Water Resour., 35, 2145–2160, 1999.
Sharpley, A. N. and Williams, J. R. (Eds.): EPIC – Erosion Productivity Impact Calculator, 1. Model documentation, US Department of Agriculture, Agricultural Research Service, Technical Bulletin 1768, Durant, Oklahoma, USA, 1990.
Shrestha, R. R., Dibike, Y. B., and Prowse, T. D.: Modeling climate change impacts on hydrology and nutrient loading in the Upper Assiniboine Catchment, J. Am. Water Resour. Assoc., 48, 74–89, https://doi.org/10.1111/j.1752-1688.2011.00592.x, 2012.
Solheim, A. L., Austnes, K., Eriksen, T. E., Seifert, I., and Holen, S.: Climate change impacts on water quality and biodiversity: background report for EEAA European Environment State and Outlook Report 2010, ETC Water Technical Report 1/2010, EEAA, Prague, Czech Republic, 2010.
Sproles, E. A., Nolin, A. W., Rittger, K., and Painter, T. H.: Climate change impacts on maritime mountain snowpack in the Oregon Cascades, Hydrol. Earth Syst. Sci., 17, 2581–2597, https://doi.org/10.5194/hess-17-2581-2013, 2013.
Stewart, I. T., Cayan, D. R., and Dettinger, M. D.: Changes toward earlier streamflow timing across western North America, J. Climate, 18, 1136–1155, 2005.
Strahler, A. N.: Dynamic basis of geomorphology, Geol. Soc. Am. Bull., 63, 923–938, 1952.
Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An overview of CMIP5 and the experiment design, B. Am. Meteorol. Soc., 93, 485–498, https://doi.org/10.1175/BAMS-D-11-00094.1, 2012.
Tillman, P. and Siemann, D.: Climate change effects and adaptation approaches in freshwater aquatic and riparian ecosystems in the North Pacific landscape conservation cooperative region, National Wildlife Federation, Seattle, Washington, USA, 2011.
Tolson, B. A. and Shoemaker, C. A.: Dynamically dimensioned search algorithm for computationally efficient watershed model calibration, Water Resour. Res., 43, W01413, https://doi.org/10.1029/2005WR004723, 2007.
Tomer, M. D., Gosskey, M. G., Burkart, M. R., James, D. E.. and Helmers, M. J.: Methods to prioritize placement of riparian buffers for improved water quality, Agroforest Syst., 75, 17–25, 2009.
US Department of Agriculture Agricultural Research Service: ArcSWAT 2009.93.7b, available at: http://swat.tamu.edu/, last access: 1 December 2011.
US Department of Agriculture Natural Resources Conservation Service: Sprague River CEAP Study Report, Portland, Oregon, USA, 2009.
US Department of Agriculture Natural Resources Conservation Service: the National Easement Dataset vector digital data, US Department of Agriculture, Natural Resources Conservation Service, National Cartography and Geospatial Center, Fort Worth, Texas, USA, 2011.
US Environmental Protection Agency: An approach for using Load Duration Curves in the development of TMDLs, Wetlands Branch, Office of Wetlands and Watersheds, US Environmental Protection Agency, Washington, D.C., USA, 2007.
US Fish and Wildlife Service: Classification of wetlands and deepwater habitats of the United States vector digital data, US Fish and Wildlife Service Division of Habitat and Resource Conservation, Washington, D.C., USA, available at: http://www.fws.gov/wetlands/data/Data-Download.html, last access: 19 February 2011.
US Geological Survey: 1-Arc Second National Elevation Dataset SDE raster digital data, available at: http://seamless.usgs.gov (last access: 20 May 2010), 2009.
US Geological Survey: NHD Flowline vector digital data, NHD High Resolution. pre-staged by sub-basin, available at: ftp://nhdftp.usgs.gov/DataSets/Staged/SubRegions/FileGDB/HighResolution/ (last access: 28 March 2012), 2010a.
US Geological Survey: NHD Waterbody vector digital data, available at: ftp://nhdftp.usgs.gov/DataSets/Staged/SubRegions/FileGDB/HighResolution/ (last access: 8 August 2011), 2010b.
US Geological Survey: USGS 11501000 Sprague River near Chiloquin, OR, peak streamflow Oregon, available at: http://nwis.waterdata.usgs.gov/or/nwis/peak?site_no=11501000&agency_cd=USGS&format=brief_list, last access: 10 October 2012.
VanderKooi, S., Thorsteinson, L., and Clark, M.: Chapter 2: Environmental and historical setting, in: Proceedings of the Klamath Basin Science Conference, 1–5 February 2010, Medford, Oregon, 31–36, 2011.
Van Liew, M. W., Feng, S., and Pathak, T. B.: Climate change impacts on streamflow, water quality, and best management practices for the Shell and Logan creek watersheds in Nebraska, Int. J. Agric. Biol. Eng., 5, 13–34, 2012.
Verhoeven, J. T. A., Arheimer, B., Yin, C., and Hefting, M. M.: Regional and global concerns over wetlands and water quality, Trends Ecol. Evol., 21, 96–103, https://doi.org/10.1016/j.tree.2005.11.015, 2006.
Waibel, M. S., Gannett, M. W., Chang, H., and Hulbe, C. L.: Spatial variability of the response to climate change in regional groundwater systems – Examples from simulations in the Deschutes Basin, Oregon, J. Hydrol., 486, 187–201, https://doi.org/10.1016/j.jhydrol.2013.01.019, 2013.
Walker, W., Walker, J., and Kann, J.: Evaluation of water and nutrient balances for the Upper Klamath Lake Basin in water years 1992–2010, Technical report to the Klamath Tribes Natural Resources Department, Chiloquin, Oregon, USA, 2012.
Wang, X., Yang, W., and Melesse, A. M.: Using hydrologic equivalent wetland concept within SWAT to estimate streamflow in watersheds with numerous wetlands, Trans. ASABE, 51, 55–72, 2008.
Wang, X., Shang, S., Qu, Z., Liu, T., Melesse, A. M., and Yang, W.: Simulated wetland conservation-restoration effects on water quantity and quality at watershed scale, J. Environ. Manage., 91, 1511–1525, https://doi.org/10.1016/j.jenvman.2010.02.023, 2010.
Whitehead, P. G., Wilby, R. L., Butterfield, D., and Wade, A. J.: Impacts of climate change on in-stream nitrogen in a lowland chalk stream: an appraisal of adaptation strategies, Sci. Total Environ., 365, 260–273, https://doi.org/10.1016/j.scitotenv.2006.02.040, 2006.
Winter, T. C: The vulnerability of wetlands to climate change: a hydrologic landscape perspective, J. Am. Water Resour. Assoc., 36, 305–311, https://doi.org/10.1111/j.1752-1688.2000.tb04269.x, 2000.
Withers, P. J. A. and Jarvie, H. P.: Delivery and cycling of phosphorus in rivers: a review, Sci. Total Environ., 400, 379–395, https://doi.org/10.1016/j.scitotenv.2008.08.002, 2008.
Wong, S. and Bienz, C.: Summary of Water Quality Sampling at Sycan Marsh, Oregon, 2010–2011, The Nature Conservancy, Klamath Falls, OR, USA, 2011.
Woznicki, S. A., Nejadhashemi, A. P., and Smith, C. M.: Assessing best management practice implementation strategies under climate change scenarios, Trans. ASABE, 54, 171–190, 2011.
Wu, K. and Johnston, C. A.: Hydrologic comparison between a forested and a wetland/lake dominated watershed using SWAT, Hydrol. Process., 22, 1431–1442, https://doi.org/10.1002/hyp.6695, 2008.
Zang, C. F., Liu, J., van der Velde, M., and Kraxner, F.: Assessment of spatial and temporal patterns of green and blue water flows under natural conditions in inland river basins in Northwest China, Hydrol. Earth Syst. Sci., 16, 2859–2870, https://doi.org/10.5194/hess-16-2859-2012, 2012.
Short summary
We demonstrate a framework to assess system sensitivity to combined climate and land cover change scenarios. In the western United States study watershed, findings suggest that mid-21st-century nutrient and sediment loads could increase significantly or show little change under no wetland losses, depending on climate scenario, but that the combined impact of climate change and wetland losses on nutrients could be large.
We demonstrate a framework to assess system sensitivity to combined climate and land cover...