Articles | Volume 18, issue 9
https://doi.org/10.5194/hess-18-3429-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/hess-18-3429-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
High-frequency monitoring of nitrogen and phosphorus response in three rural catchments to the end of the 2011–2012 drought in England
F. N. Outram
School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7T, UK
C. E. M. Lloyd
School of Geographical Sciences, University of Bristol, University Road, Bristol, BS8 1SS, UK
J. Jonczyk
School of Civil Engineering and Geosciences, Cassie Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
C. McW. H. Benskin
Lancaster Environment Centre, Lancaster University, Bailrigg, Lancaster LA1 4YQ, UK
F. Grant
ADAS, Pendeford House, Pendeford Business Park, Wobaston Road, Wolverhampton WV9 5AP, UK
M. T. Perks
Department of Geography, Durham University, Durham DH1 3LE, UK
C. Deasy
Department of Geography, Durham University, Durham DH1 3LE, UK
Lancaster Environment Centre, Lancaster University, Bailrigg, Lancaster LA1 4YQ, UK
S. P. Burke
British Geological Survey, Keyworth, Nottingham NG125GG, UK
A. L. Collins
Sustainable Soils and Grassland Systems Department, Rothamsted Research-North Wyke, Okehampton, EX20 2SB, UK
Geography and Environment, University of Southampton, Highfield, Southampton SO17 1BJ, UK
J. Freer
School of Geographical Sciences, University of Bristol, University Road, Bristol, BS8 1SS, UK
P. M. Haygarth
Lancaster Environment Centre, Lancaster University, Bailrigg, Lancaster LA1 4YQ, UK
K. M. Hiscock
School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7T, UK
P. J. Johnes
School of Geographical Sciences, University of Bristol, University Road, Bristol, BS8 1SS, UK
A. L. Lovett
School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7T, UK
Related authors
No articles found.
Shervan Gharari, Paul H. Whitfield, Alain Pietroniro, Jim Freer, Hongli Liu, and Martyn P. Clark
Hydrol. Earth Syst. Sci., 28, 4383–4405, https://doi.org/10.5194/hess-28-4383-2024, https://doi.org/10.5194/hess-28-4383-2024, 2024
Short summary
Short summary
This study provides insight into the practices that are incorporated into discharge estimation across the national Canadian hydrometric network operated by the Water Survey of Canada (WSC). The procedures used to estimate and correct discharge values are not always understood by end-users. Factors such as ice cover and sedimentation limit accurate discharge estimation. Highlighting these challenges sheds light on difficulties in discharge estimation and the associated uncertainty.
Saskia Salwey, Gemma Coxon, Francesca Pianosi, Rosanna Lane, Chris Hutton, Michael Bliss Singer, Hilary McMillan, and Jim Freer
Hydrol. Earth Syst. Sci., 28, 4203–4218, https://doi.org/10.5194/hess-28-4203-2024, https://doi.org/10.5194/hess-28-4203-2024, 2024
Short summary
Short summary
Reservoirs are essential for water resource management and can significantly impact downstream flow. However, representing reservoirs in hydrological models can be challenging, particularly across large scales. We design a new and simple method for simulating river flow downstream of water supply reservoirs using only open-access data. We demonstrate the approach in 264 reservoir catchments across Great Britain, where we can significantly improve the simulation of reservoir-impacted flow.
Trevor Page, Paul Smith, Keith Beven, Francesca Pianosi, Fanny Sarrazin, Susana Almeida, Liz Holcombe, Jim Freer, Nick Chappell, and Thorsten Wagener
Hydrol. Earth Syst. Sci., 27, 2523–2534, https://doi.org/10.5194/hess-27-2523-2023, https://doi.org/10.5194/hess-27-2523-2023, 2023
Short summary
Short summary
This publication provides an introduction to the CREDIBLE Uncertainty Estimation (CURE) toolbox. CURE offers workflows for a variety of uncertainty estimation methods. One of its most important features is the requirement that all of the assumptions on which a workflow analysis depends be defined. This facilitates communication with potential users of an analysis. An audit trail log is produced automatically from a workflow for future reference.
Heidi Kreibich, Kai Schröter, Giuliano Di Baldassarre, Anne F. Van Loon, Maurizio Mazzoleni, Guta Wakbulcho Abeshu, Svetlana Agafonova, Amir AghaKouchak, Hafzullah Aksoy, Camila Alvarez-Garreton, Blanca Aznar, Laila Balkhi, Marlies H. Barendrecht, Sylvain Biancamaria, Liduin Bos-Burgering, Chris Bradley, Yus Budiyono, Wouter Buytaert, Lucinda Capewell, Hayley Carlson, Yonca Cavus, Anaïs Couasnon, Gemma Coxon, Ioannis Daliakopoulos, Marleen C. de Ruiter, Claire Delus, Mathilde Erfurt, Giuseppe Esposito, Didier François, Frédéric Frappart, Jim Freer, Natalia Frolova, Animesh K. Gain, Manolis Grillakis, Jordi Oriol Grima, Diego A. Guzmán, Laurie S. Huning, Monica Ionita, Maxim Kharlamov, Dao Nguyen Khoi, Natalie Kieboom, Maria Kireeva, Aristeidis Koutroulis, Waldo Lavado-Casimiro, Hong-Yi Li, Maria Carmen LLasat, David Macdonald, Johanna Mård, Hannah Mathew-Richards, Andrew McKenzie, Alfonso Mejia, Eduardo Mario Mendiondo, Marjolein Mens, Shifteh Mobini, Guilherme Samprogna Mohor, Viorica Nagavciuc, Thanh Ngo-Duc, Huynh Thi Thao Nguyen, Pham Thi Thao Nhi, Olga Petrucci, Nguyen Hong Quan, Pere Quintana-Seguí, Saman Razavi, Elena Ridolfi, Jannik Riegel, Md Shibly Sadik, Nivedita Sairam, Elisa Savelli, Alexey Sazonov, Sanjib Sharma, Johanna Sörensen, Felipe Augusto Arguello Souza, Kerstin Stahl, Max Steinhausen, Michael Stoelzle, Wiwiana Szalińska, Qiuhong Tang, Fuqiang Tian, Tamara Tokarczyk, Carolina Tovar, Thi Van Thu Tran, Marjolein H. J. van Huijgevoort, Michelle T. H. van Vliet, Sergiy Vorogushyn, Thorsten Wagener, Yueling Wang, Doris E. Wendt, Elliot Wickham, Long Yang, Mauricio Zambrano-Bigiarini, and Philip J. Ward
Earth Syst. Sci. Data, 15, 2009–2023, https://doi.org/10.5194/essd-15-2009-2023, https://doi.org/10.5194/essd-15-2009-2023, 2023
Short summary
Short summary
As the adverse impacts of hydrological extremes increase in many regions of the world, a better understanding of the drivers of changes in risk and impacts is essential for effective flood and drought risk management. We present a dataset containing data of paired events, i.e. two floods or two droughts that occurred in the same area. The dataset enables comparative analyses and allows detailed context-specific assessments. Additionally, it supports the testing of socio-hydrological models.
Louisa D. Oldham, Jim Freer, Gemma Coxon, Nicholas Howden, John P. Bloomfield, and Christopher Jackson
Hydrol. Earth Syst. Sci., 27, 761–781, https://doi.org/10.5194/hess-27-761-2023, https://doi.org/10.5194/hess-27-761-2023, 2023
Short summary
Short summary
Water can move between river catchments via the subsurface, termed intercatchment groundwater flow (IGF). We show how a perceptual model of IGF can be developed with relatively simple geological interpretation and data requirements. We find that IGF dynamics vary in space, correlated to the dominant underlying geology. We recommend that IGF
loss functionsmay be used in conceptual rainfall–runoff models but should be supported by perceptualisation of IGF processes and connectivities.
Keith J. Beven, Mike J. Kirkby, Jim E. Freer, and Rob Lamb
Hydrol. Earth Syst. Sci., 25, 527–549, https://doi.org/10.5194/hess-25-527-2021, https://doi.org/10.5194/hess-25-527-2021, 2021
Short summary
Short summary
The theory that forms the basis of TOPMODEL was first outlined by Mike Kirkby some 45 years ago. This paper recalls some of the early developments: the rejection of the first journal paper, the early days of digital terrain analysis, model calibration and validation, the various criticisms of the simplifying assumptions, and the relaxation of those assumptions in the dynamic forms of TOPMODEL, and it considers what we might do now with the benefit of hindsight.
Gemma Coxon, Nans Addor, John P. Bloomfield, Jim Freer, Matt Fry, Jamie Hannaford, Nicholas J. K. Howden, Rosanna Lane, Melinda Lewis, Emma L. Robinson, Thorsten Wagener, and Ross Woods
Earth Syst. Sci. Data, 12, 2459–2483, https://doi.org/10.5194/essd-12-2459-2020, https://doi.org/10.5194/essd-12-2459-2020, 2020
Short summary
Short summary
We present the first large-sample catchment hydrology dataset for Great Britain. The dataset collates river flows, catchment attributes, and catchment boundaries for 671 catchments across Great Britain. We characterise the topography, climate, streamflow, land cover, soils, hydrogeology, human influence, and discharge uncertainty of each catchment. The dataset is publicly available for the community to use in a wide range of environmental and modelling analyses.
Wouter J. M. Knoben, Jim E. Freer, and Ross A. Woods
Hydrol. Earth Syst. Sci., 23, 4323–4331, https://doi.org/10.5194/hess-23-4323-2019, https://doi.org/10.5194/hess-23-4323-2019, 2019
Short summary
Short summary
The accuracy of model simulations can be quantified with so-called efficiency metrics. The Nash–Sutcliffe efficiency (NSE) has been often used in hydrology, but recently the Kling–Gupta efficiency (KGE) is gaining in popularity. We show that lessons learned about which NSE scores are
acceptabledo not necessarily translate well into understanding of the KGE metric.
Rosanna A. Lane, Gemma Coxon, Jim E. Freer, Thorsten Wagener, Penny J. Johnes, John P. Bloomfield, Sheila Greene, Christopher J. A. Macleod, and Sim M. Reaney
Hydrol. Earth Syst. Sci., 23, 4011–4032, https://doi.org/10.5194/hess-23-4011-2019, https://doi.org/10.5194/hess-23-4011-2019, 2019
Short summary
Short summary
We evaluated four hydrological model structures and their parameters on over 1100 catchments across Great Britain, considering modelling uncertainties. Models performed well for most catchments but failed in parts of Scotland and south-eastern England. Failures were often linked to inconsistencies in the water balance. This research shows what conceptual lumped models can achieve, gives insights into where and why these models may fail, and provides a benchmark of national modelling capability.
Wouter J. M. Knoben, Jim E. Freer, Keirnan J. A. Fowler, Murray C. Peel, and Ross A. Woods
Geosci. Model Dev., 12, 2463–2480, https://doi.org/10.5194/gmd-12-2463-2019, https://doi.org/10.5194/gmd-12-2463-2019, 2019
Short summary
Short summary
Computer models are used to predict river flows. A good model should represent the river basin to which it is applied so that flow predictions are as realistic as possible. However, many different computer models exist, and selecting the most appropriate model for a given river basin is not always easy. This study combines computer code for 46 different hydrological models into a single coding framework so that models can be compared in an objective way and we can learn about model differences.
Gemma Coxon, Jim Freer, Rosanna Lane, Toby Dunne, Wouter J. M. Knoben, Nicholas J. K. Howden, Niall Quinn, Thorsten Wagener, and Ross Woods
Geosci. Model Dev., 12, 2285–2306, https://doi.org/10.5194/gmd-12-2285-2019, https://doi.org/10.5194/gmd-12-2285-2019, 2019
Short summary
Short summary
DECIPHeR (Dynamic fluxEs and ConnectIvity for Predictions of Hydrology) is a new modelling framework that can be applied from small catchment to continental scales for complex river basins. This paper describes the modelling framework and its key components and demonstrates the model’s ability to be applied across a large model domain. This work highlights the potential for catchment- to continental-scale predictions of streamflow to support robust environmental management and policy decisions.
Keith J. Beven, Susana Almeida, Willy P. Aspinall, Paul D. Bates, Sarka Blazkova, Edoardo Borgomeo, Jim Freer, Katsuichiro Goda, Jim W. Hall, Jeremy C. Phillips, Michael Simpson, Paul J. Smith, David B. Stephenson, Thorsten Wagener, Matt Watson, and Kate L. Wilkins
Nat. Hazards Earth Syst. Sci., 18, 2741–2768, https://doi.org/10.5194/nhess-18-2741-2018, https://doi.org/10.5194/nhess-18-2741-2018, 2018
Short summary
Short summary
This paper discusses how uncertainties resulting from lack of knowledge are considered in a number of different natural hazard areas including floods, landslides and debris flows, dam safety, droughts, earthquakes, tsunamis, volcanic ash clouds and pyroclastic flows, and wind storms. As every analysis is necessarily conditional on the assumptions made about the nature of sources of such uncertainties it is also important to follow the guidelines for good practice suggested in Part 2.
Andreas Paul Zischg, Guido Felder, Rolf Weingartner, Niall Quinn, Gemma Coxon, Jeffrey Neal, Jim Freer, and Paul Bates
Hydrol. Earth Syst. Sci., 22, 2759–2773, https://doi.org/10.5194/hess-22-2759-2018, https://doi.org/10.5194/hess-22-2759-2018, 2018
Short summary
Short summary
We developed a model experiment and distributed different rainfall patterns over a mountain river basin. For each rainfall scenario, we computed the flood losses with a model chain. The experiment shows that flood losses vary considerably within the river basin and depend on the timing of the flood peaks from the basin's sub-catchments. Basin-specific characteristics such as the location of the main settlements within the floodplains play an additional important role in determining flood losses.
Simon Brenner, Gemma Coxon, Nicholas J. K. Howden, Jim Freer, and Andreas Hartmann
Nat. Hazards Earth Syst. Sci., 18, 445–461, https://doi.org/10.5194/nhess-18-445-2018, https://doi.org/10.5194/nhess-18-445-2018, 2018
Short summary
Short summary
In this study we simulate groundwater levels with a semi-distributed karst model. Using a percentile approach we can assess the number of days exceeding or falling below selected groundwater level percentiles. We show that our approach is able to predict groundwater levels across all considered timescales up to the 75th percentile. We then use our approach to assess future changes in groundwater dynamics and show that projected climate changes may lead to generally lower groundwater levels.
Benoit P. Guillod, Richard G. Jones, Simon J. Dadson, Gemma Coxon, Gianbattista Bussi, James Freer, Alison L. Kay, Neil R. Massey, Sarah N. Sparrow, David C. H. Wallom, Myles R. Allen, and Jim W. Hall
Hydrol. Earth Syst. Sci., 22, 611–634, https://doi.org/10.5194/hess-22-611-2018, https://doi.org/10.5194/hess-22-611-2018, 2018
Short summary
Short summary
Assessing the potential impacts of extreme events such as drought and flood requires large datasets of such events, especially when looking at the most severe and rare events. Using a state-of-the-art climate modelling infrastructure that is simulating large numbers of weather time series on volunteers' computers, we generate such a large dataset for the United Kingdom. The dataset covers the recent past (1900–2006) as well as two future time periods (2030s and 2080s).
Mary C. Ockenden, Wlodek Tych, Keith J. Beven, Adrian L. Collins, Robert Evans, Peter D. Falloon, Kirsty J. Forber, Kevin M. Hiscock, Michael J. Hollaway, Ron Kahana, Christopher J. A. Macleod, Martha L. Villamizar, Catherine Wearing, Paul J. A. Withers, Jian G. Zhou, Clare McW. H. Benskin, Sean Burke, Richard J. Cooper, Jim E. Freer, and Philip M. Haygarth
Hydrol. Earth Syst. Sci., 21, 6425–6444, https://doi.org/10.5194/hess-21-6425-2017, https://doi.org/10.5194/hess-21-6425-2017, 2017
Short summary
Short summary
This paper describes simple models of phosphorus load which are identified for three catchments in the UK. The models use new hourly observations of phosphorus load, which capture the dynamics of phosphorus transfer in small catchments that are often missed by models with a longer time step. Unlike more complex, process-based models, very few parameters are required, leading to low parameter uncertainty. Interpretation of the dominant phosphorus transfer modes is made based solely on the data.
Katrien Van Eerdenbrugh, Stijn Van Hoey, Gemma Coxon, Jim Freer, and Niko E. C. Verhoest
Hydrol. Earth Syst. Sci., 21, 5315–5337, https://doi.org/10.5194/hess-21-5315-2017, https://doi.org/10.5194/hess-21-5315-2017, 2017
Short summary
Short summary
Consistency in stage–discharge data is investigated using a methodology called Bidirectional Reach (BReach). Various measurement stations in the UK, New Zealand and Belgium are selected based on their historical ratings information and their characteristics related to data consistency. When applying a BReach analysis on them, the methodology provides results that appear consistent with the available knowledge and thus facilitates a reliable assessment of (in)consistency in stage–discharge data.
Catherine M. Heppell, Andrew Binley, Mark Trimmer, Tegan Darch, Ashley Jones, Ed Malone, Adrian L. Collins, Penny J. Johnes, Jim E. Freer, and Charlotte E. M. Lloyd
Hydrol. Earth Syst. Sci., 21, 4785–4802, https://doi.org/10.5194/hess-21-4785-2017, https://doi.org/10.5194/hess-21-4785-2017, 2017
Short summary
Short summary
The role that hydrology plays in controlling the interplay between dissolved organic carbon (DOC) and nitrogen in rivers of lowland, agricultural landscapes is poorly understood, yet important to assess given the potential changes to production and delivery of DOC and nitrate arising from climate change. We measured DOC and nitrate concentrations in river water of the lowland river Hampshire Avon (Wiltshire, southern UK), revealing significant seasonal variations in DOC : nitrate transport.
Remko Nijzink, Christopher Hutton, Ilias Pechlivanidis, René Capell, Berit Arheimer, Jim Freer, Dawei Han, Thorsten Wagener, Kevin McGuire, Hubert Savenije, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 20, 4775–4799, https://doi.org/10.5194/hess-20-4775-2016, https://doi.org/10.5194/hess-20-4775-2016, 2016
Short summary
Short summary
The core component of many hydrological systems, the moisture storage capacity available to vegetation, is typically treated as a calibration parameter in hydrological models and often considered to remain constant in time. In this paper we test the potential of a recently introduced method to robustly estimate catchment-scale root-zone storage capacities exclusively based on climate data to reproduce the temporal evolution of root-zone storage under change (deforestation).
C. E. M. Lloyd, J. E. Freer, P. J. Johnes, and A. L. Collins
Hydrol. Earth Syst. Sci., 20, 625–632, https://doi.org/10.5194/hess-20-625-2016, https://doi.org/10.5194/hess-20-625-2016, 2016
Short summary
Short summary
This paper examines the current methodologies for quantifying storm behaviour through hysteresis analysis, and explores a new method. Each method is systematically tested and the impact on the results is examined. Recommendations are made regarding the most effective method of calculating a hysteresis index. This new method allows storm hysteresis behaviour to be directly compared between storms, parameters, and catchments, meaning it has wide application potential in water quality research.
C. E. M. Lloyd, K. Michaelides, D. R. Chadwick, J. A. J. Dungait, and R. P. Evershed
Biogeosciences, 13, 551–566, https://doi.org/10.5194/bg-13-551-2016, https://doi.org/10.5194/bg-13-551-2016, 2016
Short summary
Short summary
Our interdisciplinary research brings together methodologies from hydrology, soil science and biogeochemistry to address key questions about the transport of cattle slurry in the environment. The paper provides a novel approach to trace dissolved and particulate components of cattle slurry through an experimental hillslope system. This work provides one of the first examples of using biomarkers to assess the effects of slope gradient and rainfall intensity on the movement of slurry derived-OM.
S. Ceola, B. Arheimer, E. Baratti, G. Blöschl, R. Capell, A. Castellarin, J. Freer, D. Han, M. Hrachowitz, Y. Hundecha, C. Hutton, G. Lindström, A. Montanari, R. Nijzink, J. Parajka, E. Toth, A. Viglione, and T. Wagener
Hydrol. Earth Syst. Sci., 19, 2101–2117, https://doi.org/10.5194/hess-19-2101-2015, https://doi.org/10.5194/hess-19-2101-2015, 2015
Short summary
Short summary
We present the outcomes of a collaborative hydrological experiment undertaken by five different international research groups in a virtual laboratory. Moving from the definition of accurate protocols, a rainfall-runoff model was independently applied by the research groups, which then engaged in a comparative discussion. The results revealed that sharing protocols and running the experiment within a controlled environment is fundamental for ensuring experiment repeatability and reproducibility.
C. C. Sampson, T. J. Fewtrell, F. O'Loughlin, F. Pappenberger, P. B. Bates, J. E. Freer, and H. L. Cloke
Hydrol. Earth Syst. Sci., 18, 2305–2324, https://doi.org/10.5194/hess-18-2305-2014, https://doi.org/10.5194/hess-18-2305-2014, 2014
Related subject area
Subject: Catchment hydrology | Techniques and Approaches: Instruments and observation techniques
Exploring the provenance of information across Canadian hydrometric stations: implications for discharge estimation and uncertainty quantification
Using high-frequency solute synchronies to determine simple two-end-member mixing in catchments during storm events
Thermal regime of High Arctic tundra ponds, Nanuit Itillinga (Polar Bear Pass), Nunavut, Canada
Impacts of hydrofacies geometry designed from seismic refraction tomography on estimated hydrogeophysical variables
Seasonal dynamics and spatial patterns of soil moisture in a loess catchment
Effects of urbanization on the water cycle in the Shiyang River basin: based on a stable isotope method
Isotopic variations in surface waters and groundwaters of an extremely arid basin and their responses to climate change
Seasonal variation and influence factors of river water isotopes in the East Asian monsoon region: a case study in the Xiangjiang River basin spanning 13 hydrological years
El Niño–Southern Oscillation (ENSO)-driven hypersedimentation in the Poechos Reservoir, northern Peru
Isotope-derived young water fractions in streamflow across the tropical Andes mountains and Amazon floodplain
Adaptively monitoring streamflow using a stereo computer vision system
Technical Note: Combining undisturbed soil monoliths for hydrological indoor experiments
Hydrodynamics of a high Alpine catchment characterized by four natural tracers
Seasonal variation and release of soluble reactive phosphorus in an agricultural upland headwater in central Germany
Improving the understanding of N transport in a rural catchment under Atlantic climate conditions from the analysis of the concentration–discharge relationship derived from a high-frequency data set
Sources and mean transit times of stream water in an intermittent river system: the upper Wimmera River, southeast Australia
Bedrock depth influences spatial patterns of summer baseflow, temperature and flow disconnection for mountainous headwater streams
Agricultural intensification vs. climate change: what drives long-term changes in sediment load?
Evaporation from a large lowland reservoir – observed dynamics and drivers during a warm summer
Comment on “A comparison of catchment travel times and storage deduced from deuterium and tritium tracers using StorAge Selection functions” by Rodriguez et al. (2021)
Use of water isotopes and chemistry to infer the type and degree of exchange between groundwater and lakes in an esker complex of northeastern Ontario, Canada
Technical note: Introduction of a superconducting gravimeter as novel hydrological sensor for the Alpine research catchment Zugspitze
CABra: a novel large-sample dataset for Brazilian catchments
Benefits from high-density rain gauge observations for hydrological response analysis in a small alpine catchment
Hydrologic regimes drive nitrate export behavior in human-impacted watersheds
Intensive landscape-scale remediation improves water quality of an alluvial gully located in a Great Barrier Reef catchment
Environmental DNA simultaneously informs hydrological and biodiversity characterization of an Alpine catchment
Technical note: Evaluation of a low-cost evaporation protection method for portable water samplers
New flood frequency estimates for the largest river in Norway based on the combination of short and long time series
The pulse of a montane ecosystem: coupling between daily cycles in solar flux, snowmelt, transpiration, groundwater, and streamflow at Sagehen Creek and Independence Creek, Sierra Nevada, USA
Technical note: A time-integrated sediment trap to sample diatoms for hydrological tracing
Do stream water solute concentrations reflect when connectivity occurs in a small, pre-Alpine headwater catchment?
Soil moisture sensor network design for hydrological applications
Catchment-scale drought: capturing the whole drought cycle using multiple indicators
Field-based estimation and modelling of distributed groundwater recharge in a Mediterranean karst catchment, Wadi Natuf, West Bank
Surface water as a cause of land degradation from dryland salinity
Technical note: A microcontroller-based automatic rain sampler for stable isotope studies
Controls on spatial and temporal variability in streamflow and hydrochemistry in a glacierized catchment
Open-source Arduino-compatible data loggers designed for field research
Water-use dynamics of an alien-invaded riparian forest within the summer rainfall zone of South Africa
Technical note: Mapping surface-saturation dynamics with thermal infrared imagery
Value of uncertain streamflow observations for hydrological modelling
Why has catchment evaporation increased in the past 40 years? A data-based study in Austria
Technical note: GUARD – an automated fluid sampler preventing sample alteration by contamination, evaporation and gas exchange, suitable for remote areas and harsh conditions
Hydrological processes and permafrost regulate magnitude, source and chemical characteristics of dissolved organic carbon export in a peatland catchment of northeastern China
Exploring the influence of citizen involvement on the assimilation of crowdsourced observations: a modelling study based on the 2013 flood event in the Bacchiglione catchment (Italy)
Comment on “Can assimilation of crowdsourced data in hydrological modelling improve flood prediction?” by Mazzoleni et al. (2017)
Multiconfiguration electromagnetic induction survey for paleochannel internal structure imaging: a case study in the alluvial plain of the River Seine, France
Tree-, stand- and site-specific controls on landscape-scale patterns of transpiration
The potamochemical symphony: new progress in the high-frequency acquisition of stream chemical data
Shervan Gharari, Paul H. Whitfield, Alain Pietroniro, Jim Freer, Hongli Liu, and Martyn P. Clark
Hydrol. Earth Syst. Sci., 28, 4383–4405, https://doi.org/10.5194/hess-28-4383-2024, https://doi.org/10.5194/hess-28-4383-2024, 2024
Short summary
Short summary
This study provides insight into the practices that are incorporated into discharge estimation across the national Canadian hydrometric network operated by the Water Survey of Canada (WSC). The procedures used to estimate and correct discharge values are not always understood by end-users. Factors such as ice cover and sedimentation limit accurate discharge estimation. Highlighting these challenges sheds light on difficulties in discharge estimation and the associated uncertainty.
Nicolai Brekenfeld, Solenn Cotel, Mikaël Faucheux, Paul Floury, Colin Fourtet, Jérôme Gaillardet, Sophie Guillon, Yannick Hamon, Hocine Henine, Patrice Petitjean, Anne-Catherine Pierson-Wickmann, Marie-Claire Pierret, and Ophélie Fovet
Hydrol. Earth Syst. Sci., 28, 4309–4329, https://doi.org/10.5194/hess-28-4309-2024, https://doi.org/10.5194/hess-28-4309-2024, 2024
Short summary
Short summary
The proposed methodology consists of simultaneously analysing the concentration variation of solute pairs during a storm event by plotting the concentration variation of one solute against the variation of another solute. This can reveal whether two or more end-members contribute to streamflow during a storm event. Furthermore, the variation of the solute ratios during the events can indicate which catchment processes are dominant and which are negligible.
Kathy L. Young and Laura C. Brown
Hydrol. Earth Syst. Sci., 28, 3931–3945, https://doi.org/10.5194/hess-28-3931-2024, https://doi.org/10.5194/hess-28-3931-2024, 2024
Short summary
Short summary
This work details the temperature and related variables of several High Arctic ponds in the Nanuit Itillinga (Polar Bear Pass) National Wildlife Area through nine seasons. The ponds show much variability in their temperature patterns over time and space. Ponds normally reached 10–15 °C for parts of the summer except in 2013, a cold summer season in which pond temperatures never exceeded 5 °C. This study contributes to the ongoing discussion of climate warming and its impact on Arctic landscapes.
Nolwenn Lesparre, Sylvain Pasquet, and Philippe Ackerer
Hydrol. Earth Syst. Sci., 28, 873–897, https://doi.org/10.5194/hess-28-873-2024, https://doi.org/10.5194/hess-28-873-2024, 2024
Short summary
Short summary
Vertical maps of seismic velocity reflect variations of subsurface porosity. We use such images to design the geometry of subsurface compartments delimited by velocity thresholds. The obtained patterns are inserted into a hydrogeological model to test the influence of random geometries, velocity thresholds, and hydraulic parameters on data estimated from the model: the depth of the groundwater and magnetic resonance sounding is a geophysical method sensitive to subsurface water content.
Shaozhen Liu, Ilja van Meerveld, Yali Zhao, Yunqiang Wang, and James W. Kirchner
Hydrol. Earth Syst. Sci., 28, 205–216, https://doi.org/10.5194/hess-28-205-2024, https://doi.org/10.5194/hess-28-205-2024, 2024
Short summary
Short summary
We study the seasonal and spatial patterns of soil moisture in 0–500 cm soil using 89 monitoring sites in a loess catchment with monsoonal climate. Soil moisture is highest during the months of least precipitation and vice versa. Soil moisture patterns at the hillslope scale are dominated by the aspect-controlled evapotranspiration variations (a local control), not by the hillslope convergence-controlled downslope flow (a nonlocal control), under both dry and wet conditions.
Rui Li, Guofeng Zhu, Siyu Lu, Liyuan Sang, Gaojia Meng, Longhu Chen, Yinying Jiao, and Qinqin Wang
Hydrol. Earth Syst. Sci., 27, 4437–4452, https://doi.org/10.5194/hess-27-4437-2023, https://doi.org/10.5194/hess-27-4437-2023, 2023
Short summary
Short summary
In semi-arid regions, the problem of water shortages is becoming more and more serious with the acceleration of urbanization. Based on isotope data and hydrometeorological data, we analysed the impact of urbanization on the water cycle of the basin. The results showed that urbanization sped up the process of rainfall runoff. The MRT got shorter from upstream to downstream, and the landscape dams that were built during urbanization made the river evaporate even more.
Yu Zhang, Hongbing Tan, Peixin Cong, Dongping Shi, Wenbo Rao, and Xiying Zhang
Hydrol. Earth Syst. Sci., 27, 4019–4038, https://doi.org/10.5194/hess-27-4019-2023, https://doi.org/10.5194/hess-27-4019-2023, 2023
Short summary
Short summary
Rapid climate warming creates barriers for us to investigate water resource states. Using stable and radioactive isotopes, we identified the seasonality and spatiality of the water cycle in the northeastern Tibetan Plateau. Climate warming/humidification accelerates the water cycle in alpine arid basins. Precipitation and meltwater infiltrate along preferential flow paths to facilitate rapid groundwater recharge. Total water resources may show an initially increasing and then decreasing trend.
Xiong Xiao, Xinping Zhang, Zhuoyong Xiao, Zhiguo Rao, Xinguang He, and Cicheng Zhang
Hydrol. Earth Syst. Sci., 27, 3783–3802, https://doi.org/10.5194/hess-27-3783-2023, https://doi.org/10.5194/hess-27-3783-2023, 2023
Short summary
Short summary
With the aim of improving the understanding of seasonal variations in water stable isotopes and catchment hydrological processes, we compared the temporal variations of precipitation and river water isotopes with the hydrometeorological factors in the Xiangjiang River over 13 years. Results showed that the changes in river water isotopes can be variables that reflect the seasonal variations in local environments and extreme events and may show implications for paleoclimate reconstruction.
Anthony Foucher, Sergio Morera, Michael Sanchez, Jhon Orrillo, and Olivier Evrard
Hydrol. Earth Syst. Sci., 27, 3191–3204, https://doi.org/10.5194/hess-27-3191-2023, https://doi.org/10.5194/hess-27-3191-2023, 2023
Short summary
Short summary
The current research investigated, as a representative study case, the sediment accumulated in the Poechos Reservoir (located on the west coast of northern Peru) for retrospectively reconstructing the impact on sediment dynamics (1978–2019) of extreme phases of the El Niño–Southern Oscillation, land cover changes after humid periods and agricultural expansion along the riverine system.
Emily I. Burt, Daxs Herson Coayla Rimachi, Adan Julian Ccahuana Quispe, Abra Atwood, and A. Joshua West
Hydrol. Earth Syst. Sci., 27, 2883–2898, https://doi.org/10.5194/hess-27-2883-2023, https://doi.org/10.5194/hess-27-2883-2023, 2023
Short summary
Short summary
Mountains store and release water, serving as water towers for downstream regions and affecting global sediment and carbon fluxes. We use stream and rain chemistry to calculate how much streamflow comes from recent rainfall across seven sites in the Andes mountains and the nearby Amazon lowlands. We find that the type of rock and the intensity of rainfall control water retention and release, challenging assumptions that mountain topography exerts the primary effect on watershed hydrology.
Nicholas Reece Hutley, Ryan Beecroft, Daniel Wagenaar, Josh Soutar, Blake Edwards, Nathaniel Deering, Alistair Grinham, and Simon Albert
Hydrol. Earth Syst. Sci., 27, 2051–2073, https://doi.org/10.5194/hess-27-2051-2023, https://doi.org/10.5194/hess-27-2051-2023, 2023
Short summary
Short summary
Measuring flows in streams allows us to manage crucial water resources. This work shows the automated application of a dual camera computer vision stream gauging (CVSG) system for measuring streams. Comparing between state-of-the-art technologies demonstrated that camera-based methods were capable of performing within the best available error margins. CVSG offers significant benefits towards improving stream data and providing a safe way for measuring floods while adapting to changes over time.
David Ramler and Peter Strauss
Hydrol. Earth Syst. Sci., 27, 1745–1754, https://doi.org/10.5194/hess-27-1745-2023, https://doi.org/10.5194/hess-27-1745-2023, 2023
Short summary
Short summary
Undisturbed soil monoliths combine advantages of outdoor and indoor experiments; however, there are often size limitations. A promising approach is the combination of smaller blocks to form a single large monolith. We compared the runoff properties of monoliths cut in half and recombined with uncut blocks. The effect of the combination procedure was negligible compared to the inherent soil heterogeneity, and we conclude that advantages outweigh possible adverse effects.
Anthony Michelon, Natalie Ceperley, Harsh Beria, Joshua Larsen, Torsten Vennemann, and Bettina Schaefli
Hydrol. Earth Syst. Sci., 27, 1403–1430, https://doi.org/10.5194/hess-27-1403-2023, https://doi.org/10.5194/hess-27-1403-2023, 2023
Short summary
Short summary
Streamflow generation processes in high-elevation catchments are largely influenced by snow accumulation and melt. For this work, we collected and analyzed more than 2800 water samples (temperature, electric conductivity, and stable isotopes of water) to characterize the hydrological processes in such a high Alpine environment. Our results underline the critical role of subsurface flow during all melt periods and the presence of snowmelt even during the winter periods.
Michael Rode, Jörg Tittel, Frido Reinstorf, Michael Schubert, Kay Knöller, Benjamin Gilfedder, Florian Merensky-Pöhlein, and Andreas Musolff
Hydrol. Earth Syst. Sci., 27, 1261–1277, https://doi.org/10.5194/hess-27-1261-2023, https://doi.org/10.5194/hess-27-1261-2023, 2023
Short summary
Short summary
Agricultural catchments show elevated phosphorus (P) concentrations during summer low flow. In an agricultural stream, we found that phosphorus in groundwater was a major source of stream water phosphorus during low flow, and stream sediments derived from farmland are unlikely to have increased stream phosphorus concentrations during low water. We found no evidence that riparian wetlands contributed to soluble reactive (SR) P loads. Agricultural phosphorus was largely buffered in the soil zone.
María Luz Rodríguez-Blanco, María Teresa Taboada-Castro, and María Mercedes Taboada-Castro
Hydrol. Earth Syst. Sci., 27, 1243–1259, https://doi.org/10.5194/hess-27-1243-2023, https://doi.org/10.5194/hess-27-1243-2023, 2023
Short summary
Short summary
We examine the N dynamics in an Atlantic headwater catchment in the NW Iberian Peninsula, using high-frequency measurements of NO3 and TKN (total Kjeldahl N) during runoff events. The divergence dynamics observed between N components exemplifies the complexity of and variability in NO3 and TKN processes, highlighting the need to understand dominant hydrological pathways for the development of N-specific management plans to ensure that control measures are most effective at the catchment scale.
Zibo Zhou, Ian Cartwright, and Uwe Morgenstern
Hydrol. Earth Syst. Sci., 26, 4497–4513, https://doi.org/10.5194/hess-26-4497-2022, https://doi.org/10.5194/hess-26-4497-2022, 2022
Short summary
Short summary
Streams may receive water from different sources in their catchment. There is limited understanding of which water stores intermittent streams are connected to. Using geochemistry we show that the intermittent streams in southeast Australia are connected to younger smaller near-river water stores rather than regional groundwater. This makes these streams more vulnerable to the impacts of climate change and requires management of the riparian zone for their protection.
Martin A. Briggs, Phillip Goodling, Zachary C. Johnson, Karli M. Rogers, Nathaniel P. Hitt, Jennifer B. Fair, and Craig D. Snyder
Hydrol. Earth Syst. Sci., 26, 3989–4011, https://doi.org/10.5194/hess-26-3989-2022, https://doi.org/10.5194/hess-26-3989-2022, 2022
Short summary
Short summary
The geologic structure of mountain watersheds may control how groundwater and streamwater exchange, influencing where streams dry. We measured bedrock depth at 191 locations along eight headwater streams paired with stream temperature records, baseflow separation and observations of channel dewatering. The data indicated a prevalence of shallow bedrock generally less than 3 m depth, and local variation in that depth can drive stream dewatering but also influence stream baseflow supply.
Shengping Wang, Borbala Szeles, Carmen Krammer, Elmar Schmaltz, Kepeng Song, Yifan Li, Zhiqiang Zhang, Günter Blöschl, and Peter Strauss
Hydrol. Earth Syst. Sci., 26, 3021–3036, https://doi.org/10.5194/hess-26-3021-2022, https://doi.org/10.5194/hess-26-3021-2022, 2022
Short summary
Short summary
This study explored the quantitative contribution of agricultural intensification and climate change to the sediment load of a small agricultural watershed. Rather than a change in climatic conditions, changes in the land structure notably altered sediment concentrations under high-flow conditions, thereby contributing most to the increase in annual sediment loads. More consideration of land structure improvement is required when combating the transfer of soil from land to water.
Femke A. Jansen, Remko Uijlenhoet, Cor M. J. Jacobs, and Adriaan J. Teuling
Hydrol. Earth Syst. Sci., 26, 2875–2898, https://doi.org/10.5194/hess-26-2875-2022, https://doi.org/10.5194/hess-26-2875-2022, 2022
Short summary
Short summary
We studied the controls on open water evaporation with a focus on Lake IJssel, the Netherlands, by analysing eddy covariance observations over two summer periods at two locations at the borders of the lake. Wind speed and the vertical vapour pressure gradient can explain most of the variation in observed evaporation, which is in agreement with Dalton's model. We argue that the distinct characteristics of inland waterbodies need to be taken into account when parameterizing their evaporation.
Michael Kilgour Stewart, Uwe Morgenstern, and Ian Cartwright
Hydrol. Earth Syst. Sci., 25, 6333–6338, https://doi.org/10.5194/hess-25-6333-2021, https://doi.org/10.5194/hess-25-6333-2021, 2021
Short summary
Short summary
The combined use of deuterium and tritium to determine travel time distributions in streams is an important development in catchment hydrology (Rodriguez et al., 2021). This comment, however, argues that their results do not generally invalidate the truncation hypothesis of Stewart et al. (2010) (i.e. that stable isotopes underestimate travel times through catchments), as they imply, but asserts instead that the hypothesis still applies to many other catchments.
Maxime P. Boreux, Scott F. Lamoureux, and Brian F. Cumming
Hydrol. Earth Syst. Sci., 25, 6309–6332, https://doi.org/10.5194/hess-25-6309-2021, https://doi.org/10.5194/hess-25-6309-2021, 2021
Short summary
Short summary
The investigation of groundwater–lake-water interactions in highly permeable boreal terrain using several indicators showed that lowland lakes are embedded into the groundwater system and are thus relatively resilient to short-term hydroclimatic change, while upland lakes rely more on precipitation as their main water input, making them more sensitive to evaporative drawdown. This suggests that landscape position controls the vulnerability of lake-water levels to hydroclimatic change.
Christian Voigt, Karsten Schulz, Franziska Koch, Karl-Friedrich Wetzel, Ludger Timmen, Till Rehm, Hartmut Pflug, Nico Stolarczuk, Christoph Förste, and Frank Flechtner
Hydrol. Earth Syst. Sci., 25, 5047–5064, https://doi.org/10.5194/hess-25-5047-2021, https://doi.org/10.5194/hess-25-5047-2021, 2021
Short summary
Short summary
A continuously operating superconducting gravimeter at the Zugspitze summit is introduced to support hydrological studies of the Partnach spring catchment known as the Zugspitze research catchment. The observed gravity residuals reflect total water storage variations at the observation site. Hydro-gravimetric analysis show a high correlation between gravity and the snow water equivalent, with a gravimetric footprint of up to 4 km radius enabling integral insights into this high alpine catchment.
André Almagro, Paulo Tarso S. Oliveira, Antônio Alves Meira Neto, Tirthankar Roy, and Peter Troch
Hydrol. Earth Syst. Sci., 25, 3105–3135, https://doi.org/10.5194/hess-25-3105-2021, https://doi.org/10.5194/hess-25-3105-2021, 2021
Short summary
Short summary
We have collected and synthesized catchment attributes from multiple sources into an extensive dataset, the Catchment Attributes for Brazil (CABra). CABra contains streamflow and climate daily series for 735 catchments in the 1980–2010 period, aside from dozens of attributes of topography, climate, streamflow, groundwater, soil, geology, land cover, and hydrologic disturbance. The CABra intends to pave the way for a better understanding of catchments' behavior in Brazil and the world.
Anthony Michelon, Lionel Benoit, Harsh Beria, Natalie Ceperley, and Bettina Schaefli
Hydrol. Earth Syst. Sci., 25, 2301–2325, https://doi.org/10.5194/hess-25-2301-2021, https://doi.org/10.5194/hess-25-2301-2021, 2021
Short summary
Short summary
Rainfall observation remains a challenge, particularly in mountain environments. Unlike most studies which are model based, this analysis of the rainfall–runoff response of a 13.4 km2 alpine catchment is purely data based and relies on measurements from a network of 12 low-cost rain gauges over 3 months. It assesses the importance of high-density rainfall observations in informing hydrological processes and helps in designing a permanent rain gauge network.
Galen Gorski and Margaret A. Zimmer
Hydrol. Earth Syst. Sci., 25, 1333–1345, https://doi.org/10.5194/hess-25-1333-2021, https://doi.org/10.5194/hess-25-1333-2021, 2021
Short summary
Short summary
Understanding when, where, and how nitrate is exported from watersheds is the key to addressing the challenges that excess nutrients pose. We analyzed daily nitrate and streamflow data for five nested, agricultural watersheds that export high levels of nitrate over a 4-year time period. Nutrient export patterns varied seasonally during baseflow but were stationary during stormflow. Additionally, anthropogenic and geologic factors drove nutrient export during both baseflow and stormflow.
Nicholas J. C. Doriean, William W. Bennett, John R. Spencer, Alexandra Garzon-Garcia, Joanne M. Burton, Peter R. Teasdale, David T. Welsh, and Andrew P. Brooks
Hydrol. Earth Syst. Sci., 25, 867–883, https://doi.org/10.5194/hess-25-867-2021, https://doi.org/10.5194/hess-25-867-2021, 2021
Short summary
Short summary
Gully erosion is a major contributor to suspended sediment and associated nutrient pollution (e.g. gullies generate approximately 40 % of the sediment pollution impacting the Great Barrier Reef). This study used a new method of monitoring to demonstrate how large-scale earthworks used to remediated large gullies (i.e. eroding landforms > 1 ha) can drastically improve the water quality of connected waterways and, thus, protect vulnerable ecosystems in downstream-receiving waters.
Elvira Mächler, Anham Salyani, Jean-Claude Walser, Annegret Larsen, Bettina Schaefli, Florian Altermatt, and Natalie Ceperley
Hydrol. Earth Syst. Sci., 25, 735–753, https://doi.org/10.5194/hess-25-735-2021, https://doi.org/10.5194/hess-25-735-2021, 2021
Short summary
Short summary
In this study, we collected water from an Alpine catchment in Switzerland and compared the genetic information of eukaryotic organisms conveyed by eDNA with the hydrologic information conveyed by naturally occurring hydrologic tracers. At the intersection of two disciplines, our study provides complementary knowledge gains and identifies the next steps to be addressed for using eDNA to achieve complementary insights into Alpine water sources.
Jana von Freyberg, Julia L. A. Knapp, Andrea Rücker, Bjørn Studer, and James W. Kirchner
Hydrol. Earth Syst. Sci., 24, 5821–5834, https://doi.org/10.5194/hess-24-5821-2020, https://doi.org/10.5194/hess-24-5821-2020, 2020
Short summary
Short summary
Automated water samplers are often used to collect precipitation and streamwater samples for subsequent isotope analysis, but the isotopic signal of these samples may be altered due to evaporative fractionation occurring during the storage inside the autosamplers in the field. In this article we present and evaluate a cost-efficient modification to the Teledyne ISCO automated water sampler that prevents isotopic enrichment through evaporative fractionation of the water samples.
Kolbjørn Engeland, Anna Aano, Ida Steffensen, Eivind Støren, and Øyvind Paasche
Hydrol. Earth Syst. Sci., 24, 5595–5619, https://doi.org/10.5194/hess-24-5595-2020, https://doi.org/10.5194/hess-24-5595-2020, 2020
Short summary
Short summary
We combine systematic, historical, and paleo information to obtain flood information from the last 10 300 years for the Glomma River in Norway. We identify periods with increased flood activity (4000–2000 years ago and the recent 1000 years) that correspond broadly to periods with low summer temperatures and glacier growth. The design floods in Glomma were more than 20 % higher during the 18th century than today. We suggest that trends in flood variability are linked to snow in late spring.
James W. Kirchner, Sarah E. Godsey, Madeline Solomon, Randall Osterhuber, Joseph R. McConnell, and Daniele Penna
Hydrol. Earth Syst. Sci., 24, 5095–5123, https://doi.org/10.5194/hess-24-5095-2020, https://doi.org/10.5194/hess-24-5095-2020, 2020
Short summary
Short summary
Streams and groundwaters often show daily cycles in response to snowmelt and evapotranspiration. These typically have a roughly 6 h time lag, which is often interpreted as a travel-time lag. Here we show that it is instead primarily a phase lag that arises because aquifers integrate their inputs over time. We further show how these cycles shift seasonally, mirroring the springtime retreat of snow cover to higher elevations and the seasonal advance and retreat of photosynthetic activity.
Jasper Foets, Carlos E. Wetzel, Núria Martínez-Carreras, Adriaan J. Teuling, Jean-François Iffly, and Laurent Pfister
Hydrol. Earth Syst. Sci., 24, 4709–4725, https://doi.org/10.5194/hess-24-4709-2020, https://doi.org/10.5194/hess-24-4709-2020, 2020
Short summary
Short summary
Diatoms (microscopic algae) are regarded as useful tracers in catchment hydrology. However, diatom analysis is labour-intensive; therefore, only a limited number of samples can be analysed. To reduce this number, we explored the potential for a time-integrated mass-flux sampler to provide a representative sample of the diatom assemblage for a whole storm run-off event. Our results indicate that the Phillips sampler did indeed sample representative communities during two of the three events.
Leonie Kiewiet, Ilja van Meerveld, Manfred Stähli, and Jan Seibert
Hydrol. Earth Syst. Sci., 24, 3381–3398, https://doi.org/10.5194/hess-24-3381-2020, https://doi.org/10.5194/hess-24-3381-2020, 2020
Short summary
Short summary
The sources of stream water are important, for instance, for predicting floods. The connectivity between streams and different (ground-)water sources can change during rain events, which affects the stream water composition. We investigated this for stream water sampled during four events and found that stream water came from different sources. The stream water composition changed gradually, and we showed that changes in solute concentrations could be partly linked to changes in connectivity.
Lu Zhuo, Qiang Dai, Binru Zhao, and Dawei Han
Hydrol. Earth Syst. Sci., 24, 2577–2591, https://doi.org/10.5194/hess-24-2577-2020, https://doi.org/10.5194/hess-24-2577-2020, 2020
Short summary
Short summary
Soil moisture plays an important role in hydrological modelling. However, most existing in situ observation networks rarely provide sufficient coverage to capture soil moisture variations. Clearly, there is a need to develop a systematic approach, so that with the minimal number of sensors the soil moisture information could be captured accurately. In this study, a simple and low-data requirement method is proposed (WRF, PCA, CA), which can provide very efficient soil moisture estimations.
Abraham J. Gibson, Danielle C. Verdon-Kidd, Greg R. Hancock, and Garry Willgoose
Hydrol. Earth Syst. Sci., 24, 1985–2002, https://doi.org/10.5194/hess-24-1985-2020, https://doi.org/10.5194/hess-24-1985-2020, 2020
Short summary
Short summary
To be better prepared for drought, we need to be able to characterize how they begin, translate to on-ground impacts and how they end. We created a 100-year drought record for an area on the east coast of Australia and compared this with soil moisture and vegetation data. Drought reduces vegetation and soil moisture, but recovery rates are different across different catchments. Our methods can be universally applied and show the need to develop area-specific data to inform drought management.
Clemens Messerschmid, Martin Sauter, and Jens Lange
Hydrol. Earth Syst. Sci., 24, 887–917, https://doi.org/10.5194/hess-24-887-2020, https://doi.org/10.5194/hess-24-887-2020, 2020
Short summary
Short summary
Recharge assessment in the shared transboundary Western Aquifer Basin is highly relevant, scientifically as well as hydropolitically (in Israeli–Palestinian water negotiations). Our unique combination of field-measured soil characteristics and soil moisture time series with soil moisture saturation excess modelling provides a new basis for the spatial differentiation of formation-specific groundwater recharge (at any scale), applicable also in other previously ungauged basins around the world.
J. Nikolaus Callow, Matthew R. Hipsey, and Ryan I. J. Vogwill
Hydrol. Earth Syst. Sci., 24, 717–734, https://doi.org/10.5194/hess-24-717-2020, https://doi.org/10.5194/hess-24-717-2020, 2020
Short summary
Short summary
Secondary dryland salinity is a global land degradation issue. Our understanding of causal processes is adapted from wet and hydrologically connected landscapes and concludes that low end-of-catchment runoff indicates land clearing alters water balance in favour of increased infiltration and rising groundwater that bring salts to the surface causing salinity. This study shows surface flows play an important role in causing valley floor recharge and dryland salinity in low-gradient landscapes.
Nils Michelsen, Gerrit Laube, Jan Friesen, Stephan M. Weise, Ali Bakhit Ali Bait Said, and Thomas Müller
Hydrol. Earth Syst. Sci., 23, 2637–2645, https://doi.org/10.5194/hess-23-2637-2019, https://doi.org/10.5194/hess-23-2637-2019, 2019
Short summary
Short summary
Most commercial automatic rain samplers are costly and do not prevent evaporation from the collection bottles. Hence, we have developed a microcontroller-based collector enabling timer-actuated integral rain sampling. The simple, low-cost device is robust and effectively minimizes post-sampling evaporation. The excellent performance of the collector during an evaporation experiment in a lab oven suggests that even multi-week field deployments in warm climates are feasible.
Michael Engel, Daniele Penna, Giacomo Bertoldi, Gianluca Vignoli, Werner Tirler, and Francesco Comiti
Hydrol. Earth Syst. Sci., 23, 2041–2063, https://doi.org/10.5194/hess-23-2041-2019, https://doi.org/10.5194/hess-23-2041-2019, 2019
Short summary
Short summary
Hydrometric and geochemical dynamics are controlled by interplay of meteorological conditions, topography and geological heterogeneity. Nivo-meteorological indicators (such as global solar radiation, temperature and decreasing snow depth) explain monthly conductivity and isotopic dynamics best. These insights are important for better understanding hydrochemical responses of glacierized catchments under a changing cryosphere.
Andrew D. Wickert, Chad T. Sandell, Bobby Schulz, and Gene-Hua Crystal Ng
Hydrol. Earth Syst. Sci., 23, 2065–2076, https://doi.org/10.5194/hess-23-2065-2019, https://doi.org/10.5194/hess-23-2065-2019, 2019
Short summary
Short summary
Measuring Earth's changing environment is a critical part of natural science, but to date most of the equipment to do so is expensive, proprietary, and difficult to customize. We addressed this challenge by developing and deploying the ALog, a low-power, lightweight, Arduino-compatible data logger. We present our hardware schematics and layouts, as well as our customizable code library that operates the ALog and helps users to link it to off-the-shelf sensors.
Bruce C. Scott-Shaw and Colin S. Everson
Hydrol. Earth Syst. Sci., 23, 1553–1565, https://doi.org/10.5194/hess-23-1553-2019, https://doi.org/10.5194/hess-23-1553-2019, 2019
Short summary
Short summary
The research undertaken for this study has allowed for an accurate direct comparison of indigenous and introduced tree water use. The measurements of trees growing in the understorey indicate significant water use in the subcanopy layer. The results showed that individual tree water use is largely inter-species specific. The introduced species remain active during the dry winter periods, resulting in their cumulative water use being significantly greater than that of the indigenous species.
Barbara Glaser, Marta Antonelli, Marco Chini, Laurent Pfister, and Julian Klaus
Hydrol. Earth Syst. Sci., 22, 5987–6003, https://doi.org/10.5194/hess-22-5987-2018, https://doi.org/10.5194/hess-22-5987-2018, 2018
Short summary
Short summary
We demonstrate how thermal infrared images can be used for mapping the appearance and disappearance of water at the surface. The use of thermal infrared images allows for mapping this appearance and disappearance for various temporal and spatial resolutions, and the images can be understood intuitively. We explain the necessary steps in detail, from image acquisition to final processing, by relying on image examples and experience from an 18-month mapping campaign.
Simon Etter, Barbara Strobl, Jan Seibert, and H. J. Ilja van Meerveld
Hydrol. Earth Syst. Sci., 22, 5243–5257, https://doi.org/10.5194/hess-22-5243-2018, https://doi.org/10.5194/hess-22-5243-2018, 2018
Short summary
Short summary
To evaluate the potential value of streamflow estimates for hydrological model calibration, we created synthetic streamflow datasets in various temporal resolutions based on the errors in streamflow estimates of 136 citizens. Our results show that streamflow estimates of untrained citizens are too inaccurate to be useful for model calibration. If, however, the errors can be reduced by training or filtering, the estimates become useful if also a sufficient number of estimates are available.
Doris Duethmann and Günter Blöschl
Hydrol. Earth Syst. Sci., 22, 5143–5158, https://doi.org/10.5194/hess-22-5143-2018, https://doi.org/10.5194/hess-22-5143-2018, 2018
Short summary
Short summary
We analyze changes in catchment evaporation estimated from the water balances of 156 catchments in Austria over 1977–2014, as well as the possible causes of these changes. Our results show that catchment evaporation increased on average by 29 ± 14 mm yr−1 decade−1. We attribute this increase to changes in atmospheric demand (based on reference and pan evaporation), changes in vegetation (quantified by a satellite-based vegetation index), and changes in precipitation.
Arno Hartmann, Marc Luetscher, Ralf Wachter, Philipp Holz, Elisabeth Eiche, and Thomas Neumann
Hydrol. Earth Syst. Sci., 22, 4281–4293, https://doi.org/10.5194/hess-22-4281-2018, https://doi.org/10.5194/hess-22-4281-2018, 2018
Short summary
Short summary
We have developed a new mobile automated water sampling device for environmental research and other applications where waters need to be tested for compliance with environmental/health regulations. It has two main advantages over similar devices: firstly, it injects water samples directly into airtight vials to prevent any change in sample properties through contamination, evaporation and gas exchange. Secondly, it can hold up to 160 sample vials, while other devices only hold up to 24 vials.
Yuedong Guo, Changchun Song, Wenwen Tan, Xianwei Wang, and Yongzheng Lu
Hydrol. Earth Syst. Sci., 22, 1081–1093, https://doi.org/10.5194/hess-22-1081-2018, https://doi.org/10.5194/hess-22-1081-2018, 2018
Short summary
Short summary
The study examined dynamics of DOC export from a permafrost peatland catchment located in northeastern China. The findings indicated that the DOC export is a transport-limited process and the DOC load was significant for the net carbon balance in the studied catchment. The flowpath shift process is key to observed DOC concentration, resources and chemical characteristics in discharge. Permafrost degradation would likely elevate the proportion of microbe-originated DOC in baseflow.
Maurizio Mazzoleni, Vivian Juliette Cortes Arevalo, Uta Wehn, Leonardo Alfonso, Daniele Norbiato, Martina Monego, Michele Ferri, and Dimitri P. Solomatine
Hydrol. Earth Syst. Sci., 22, 391–416, https://doi.org/10.5194/hess-22-391-2018, https://doi.org/10.5194/hess-22-391-2018, 2018
Short summary
Short summary
We investigate the usefulness of assimilating crowdsourced observations from a heterogeneous network of sensors for different scenarios of citizen involvement levels during the flood event occurred in the Bacchiglione catchment in May 2013. We achieve high model performance by integrating crowdsourced data, in particular from citizens motivated by their feeling of belonging to a community. Satisfactory model performance can still be obtained even for decreasing citizen involvement over time.
Daniele P. Viero
Hydrol. Earth Syst. Sci., 22, 171–177, https://doi.org/10.5194/hess-22-171-2018, https://doi.org/10.5194/hess-22-171-2018, 2018
Fayçal Rejiba, Cyril Schamper, Antoine Chevalier, Benoit Deleplancque, Gaghik Hovhannissian, Julien Thiesson, and Pierre Weill
Hydrol. Earth Syst. Sci., 22, 159–170, https://doi.org/10.5194/hess-22-159-2018, https://doi.org/10.5194/hess-22-159-2018, 2018
Short summary
Short summary
The internal variability of paleomeanders strongly influence water fluxes in alluvial plains. This study presents the results of a hydrogeophysical investigation that provide a very detailed characterization of the geometry of a wide paleomeander. The presented case study, situated in the Seine River basin (France), represents a common sedimentary and geomorphological structure in alluvial plains worldwide.
Sibylle Kathrin Hassler, Markus Weiler, and Theresa Blume
Hydrol. Earth Syst. Sci., 22, 13–30, https://doi.org/10.5194/hess-22-13-2018, https://doi.org/10.5194/hess-22-13-2018, 2018
Short summary
Short summary
We use sap velocity measurements from 61 trees on 132 days to gain knowledge about the controls of landscape-scale transpiration, distinguishing tree-, stand- and site-specific controls on sap velocity and sap flow patterns and examining their dynamics during the vegetation period. Our results show that these patterns are not exclusively determined by tree characteristics. Thus, including site characteristics such as geology and aspect could be beneficial for modelling or management purposes.
Paul Floury, Jérôme Gaillardet, Eric Gayer, Julien Bouchez, Gaëlle Tallec, Patrick Ansart, Frédéric Koch, Caroline Gorge, Arnaud Blanchouin, and Jean-Louis Roubaty
Hydrol. Earth Syst. Sci., 21, 6153–6165, https://doi.org/10.5194/hess-21-6153-2017, https://doi.org/10.5194/hess-21-6153-2017, 2017
Short summary
Short summary
We present a new prototype
lab in the fieldnamed River Lab (RL) designed for water quality monitoring to perform a complete analysis at sub-hourly frequency of major dissolved species in river water. The article is an analytical paper to present the proof of concept, its performances and improvements. Our tests reveal a significant improvement of reproducibility compared to conventional analysis in the laboratory. First results are promising for understanding the critical zone.
Cited articles
Allen, D. J., Darling, W. G., Davies, J., Newell, A. J., Gooddy, D. C., and Collins, A. L.: Groundwater conceptual models: implications for evaluating diffuse pollution mitigation measures, Quart. J. Eng. Geol. Hydrogeol., 47, 65–80, 2014.
Ballantine, D. J., Walling, D. E., Collins, A. L., and Leeks, G. J. L.: The content and storage of phosphorus in fine-grained channel bed sediment in contrasting lowland agricultural catchments in the UK, Geoderma, 151, 141–149, 2009.
Billen, G., Silvestre, M., Grizzetti, B., Leip, A., Garnier, J., Voss, M., Howarth, R., Bouraoui, F., Lepistö, A., Kortelainen, P., Johnes, P., Curtis, C., Humborg, C., Smedberg, E., Kaste, Ø., Ganeshram, R., Beusen, A., and Lancelot, C.: Nitrogen flows from European regional watersheds, in: The European Nitrogen Assessment: Sources, Effects and Policy Perspectives, edited by: Sutton, M. A., Howard, C. M., Erisman, J. W., Billen, G., Grennfelt, P., van Grinsven, H., and Grizzetti, B., Cambridge University Press, Cambridge, UK, 271–297, 2011.
Boar, R. R., Lister, D. H., and Clough, W. T.: Phosphorus loads in a small groundwater-fed river during the 1989–1992 East Anglian drought, Water Res., 29, 2167–2173, https://doi.org/10.1016/0043-1354(95)00034-I, 1995.
Bowes, M. J., House, W. A., Hodgkinson, R. A., and Leach, D. V.: Phosphorus-discharge hysteresis during storm events along a river catchment: the River Swale, UK, Water Res., 39, 751–762, https://doi.org/10.1016/j.watres.2004.11.027, 2005.
Burt, T. P., Arkell, B. P., Trudgill, S. T., and Walling, D. E.: Stream nitrate levels in a small catchment in south west England over a period of 15 years (1970–1985), Hydrol. Process., 2, 267–284, https://doi.org/10.1002/hyp.3360020307, 1988.
Butcher, A., Lawrence, A., Mansour, M., Burke, S., Ingram, J., and Merrin, P.: Investigation of Rising Nitrate Concentrations in Groundwater in the Eden Valley, Cumbria, British Geological Survey Keyworth, Nottingham, 2008.
Chanat, J. G., Rice, K. C., and Hornberger, G. M.: Consistency of patterns in concentration-discharge plots, Water Resour. Res., 38, 22-21-22-10, https://doi.org/10.1029/2001WR000971, 2002.
Cherry, K. A., Shepherd, M., Withers, P. J. A., and Mooney, S. J.: Assessing the effectiveness of actions to mitigate nutrient loss from agriculture: a review of methods, Sci. Total Environ., 406, 1–23, https://doi.org/10.1016/j.scitotenv.2008.07.015, 2008.
Collins, A., Ohandja, D. G., Hoare, D., and Voulvoulis, N.: Implementing the water framework directive: a transition from established monitoring networks in England and Wales, Environ. Sci. Policy, 17, 49–61, https://doi.org/10.1016/j.envsci.2011.11.003, 2012.
Collins, A. L., Walling, D. E., Stroud, R. W., Robson, M., and Peet, L. M.: Assessing damaged road verges as a suspended sediment source in the Hampshire Avon catchment, southern United Kingdom, Hydrol. Process., 24, 1106–1122, https://doi.org/10.1002/hyp.7573, 2010.
Cooper, R. J., Rawlins, B. G., Lézé, B., Krueger, T., and Hiscock, K. M.: Combining two filter paper-based analytical methods to monitor temporal variations in the geochemical properties of fluvial suspended particulate matter, Hydrol. Process., https://doi.org/10.1002/hyp.9945, 2013.
De la Cueva, P.: Identification of Agricultural Areas in Europe Subject to Different Types of Field Drainage. MSc Thesis, School of Applied Sciences, National Soil Resources Institute, Cranfield University, Silsoe, UK, 2006.
Deasy, C., Heathwaite, A. L. H., Brazier, R. E., and Hodgkinson, R.: Pathways of runoff and sediment transfer in small agricultural catchments, Hydrol. Process., 23, 1349–1358, https://doi.org/10.1002/hyp.7257, 2009a.
Deasy, C., Quinton, J. N., Silgram, M., Stoate, C., Jackson, R., Stevens, C. J., and Bailey, A. P.: Mitigation Options for Phosphorus and Sediment: Reducing Pollution in Runoff from Arable Fields, The Environmentalist, 180, 12–17, 2010.
Deasy, C., Quinton, J. N., Silgram, M. S., Jackson, R., Bailey, A. P., and Stevens, C. J.: Mitigation options for sediment and phosphorus losses from winter-sown arable crops, J. Environ. Qual., 38, 2121–2130, https://doi.org/10.2134/jeq2009.0028, 2009b.
Di, H. J. and Cameron, K. C.: Nitrate leaching in temperate agroecosystems: sources, factors and mitigating strategies, Nutr. Cycl. Agroecosyst., 64, 237–256, https://doi.org/10.1023/A:1021471531188, 2002.
Djodjic, F., Ulén, B., and Bergström, L.: Temporal and spatial variations of phosphorus losses and drainage in a structured clay soil, Water Res., 34, 1687–1695, https://doi.org/10.1016/S0043-1354(99)00312-7, 2000.
Drewry, J. J., Newham, L. T. H., and Croke, B. F. W.: Suspended sediment, nitrogen and phosphorus concentrations and exports during storm-events to the Tuross estuary, Australia, J. Environ. Manage., 90, 879–887, https://doi.org/10.1016/j.jenvman.2008.02.004, 2009.
Dworak, T., Gonzalez, C., Laaser, C., and Interwies, E.: The need for new monitoring tools to implement the WFD, Environ. Sci. Policy, 8, 301–306, https://doi.org/10.1016/j.envsci.2005.03.007, 2005.
Eder, A., Exner-Kittridge, M., Strauss, P., and Blöschl, G.: Re-suspension of bed sediment in a small stream – results from two flushing experiments, Hydrol. Earth Syst. Sci., 18, 1043–1052, https://doi.org/10.5194/hess-18-1043-2014, 2014.
Eder, A., Strauss, P., Krueger, T., and Quinton, J. N.: Comparative calculation of suspended sediment loads with respect to hysteresis effects (in the Petzenkirchen catchment, Austria), J. Hydrol., 389, 168–176, https://doi.org/10.1016/j.jhydrol.2010.05.043, 2010.
Edwards, A. C. and Withers, P. J. A.: Transport and delivery of suspended solids, nitrogen and phosphorus from various sources to freshwaters in the UK, J. Hydrol., 350, 144–153, https://doi.org/10.1016/j.jhydrol.2007.10.053, 2008.
Evans, C. and Davies, T. D.: Causes of concentration/discharge hysteresis and its potential as a tool for analysis of episode hydrochemistry, Water Resour. Res., 34, 129–137, https://doi.org/10.1029/97WR01881, 1998.
Evans, D. J. and Johnes, P. J.: Physico-chemical controls on phosphorus cycling in two lowland streams – Part 1: The water column, Sci. Total Environ., 329, 145–163, 2004.
Evans, D. J., Johnes, P. J., and Lawrence, D. S.: Physico-chemical controls on phosphorus cycling in two lowland streams. Part 2: – The sediment phase, Sci. Total Environ., 329, 165–182, https://doi.org/10.1016/j.scitotenv.2004.02.023, 2004.
Ferrant, S., Laplanche, C., Durbe, G., Probst, A., Dugast, P., Durand, P., Sanchez-Perez, J. M., and Probst, J. L.: Continuous measurement of nitrate concentration in a highly event-responsive agricultural catchment in south-west of France: is the gain of information useful?, Hydrol. Process., 27, 1751–1763, https://doi.org/10.1002/hyp.9324, 2013.
Foster, I. D. L. and Walling, D. E.: The effects of the 1976 drought and autumn rainfall on stream solute levels, Earth Surf. Proc., 3, 393–406, https://doi.org/10.1002/esp.3290030407, 1978.
Gooddy, D. C., Darling, W. G., Abesser, C., and Lapworth, D. J.: Using chlorofluorocarbons (CFCs) and sulphur hexafluoride (SF6) to characterise groundwater movement and residence time in a lowland Chalk catchment, J. Hydrol., 330, 44–52, https://doi.org/10.1016/j.jhydrol.2006.04.011, 2006.
Grizzetti, B., Bouraoui, F., Billen, G., van Grinsven, H., Cardoso, A. C., Thieu, V., Garnier, J., Curtis, C., Howarth, R. W., and Johnes, P. J: Nitrogen as a threat to European water quality, in: European Nitrogen Assessment, edited by: Sutton, M. A., Howard, C. M., Erisman, J. W., Billen, G., Bleeker, A., Grennfelt, P., van Grinsven, H., and Grizzetti, B., Cambridge University Press, Cambridge, UK, 379–404, 2011.
Halliday, S., Skeffington, R., Bowes, M., Gozzard, E., Newman, J., Loewenthal, M., Palmer-Felgate, E., Jarvie, H., and Wade, A.: The Water Quality of the River Enborne, UK: Observations from High-Frequency Monitoring in a Rural, Lowland River System, Water, 6, 150–180, 2014.
Hansen, E. M., Eriksen, J., and Vinther, F. P.: Catch crop strategy and nitrate leaching following grazed grass-clover, Soil Use Manage., 23, 348–358, https://doi.org/10.1111/j.1475-2743.2007.00106.x, 2007.
Haygarth, P. M., Warwick, M. S., and House, W. A.: Size distribution of colloidal molybdate reactive phosphorus in river waters and soil solution, Water Res., 31, 439–448, https://doi.org/10.1016/S0043-1354(96)00270-9, 1997.
Haygarth, P., Turner, B. L., Fraser, A., Jarvis, S., Harrod, T., Nash, D., Halliwell, D., Page, T., and Beven, K.: Temporal variability in phosphorus transfers: classifying concentration-discharge event dynamics, Hydrol. Earth Syst. Sci., 8, 88–97, https://doi.org/10.5194/hess-8-88-2004, 2004.
Haygarth, P. M., Wood, F. L., Heathwaite, A. L., and Butler, P. J.: Phosphorus dynamics observed through increasing scales in a nested headwater-to-river channel study, Sci. Total Environ., 344, 83–106, 2005.
Haygarth, P. M., Page, T. J. C., Beven, K. J., Freer, J., Joynes, A., Butler, P., Wood, G. A., and Owens, P. N.: Scaling up the phosphorus signal from soil hillslopes to headwater catchments, Freshwater Biol., 57, 7–25, https://doi.org/10.1111/j.1365-2427.2012.02748.x, 2012.
Heathwaite, A. L., Burke, S. P., and Bolton, L.: Field drains as a route of rapid nutrient export from agricultural land receiving biosolids., Sci. Total Environ., 365, 33–46, 2006.
Hiscock, K. M.: The influence of pre-Devensian glacial deposits on the hydrogeochemistry of the chalk aquifer system of north Norfolk, UK., J. Hydrol., 144, 335–369, 1993.
Hiscock, K. M., Dennis, P. F., Saynor, P. R., and Thomas, M. O.: Hydrochemical and stable isotope evidence for the extent and nature of the Chalk aquifer of north Norfolk, UK, J. Hydrol., 180, 79–107, 1996.
Hively, W. D., Bryant, R. B., and Fahey, T. J.: Phosphorus concentrations in overland flow from diverse locations on a New York dairy farm, J. Environ. Qual., 34, 1224–1233, https://doi.org/10.2134/jeq2004.0116, 2005.
Hooker, K. V., Coxon, C. E., Hackett, R., Kirwan, L. E., O'Keeffe, E., and Richards, K. G.: Evaluation of Cover Crop and Reduced Cultivation for Reducing Nitrate Leaching in Ireland, J. Environ. Qual., 37, 138–145, https://doi.org/10.2134/jeq2006.0547, 2008.
House, W. A. and Warwick, M. S.: Hysteresis of the solute concentration/discharge relationship in rivers during storms, Water Res., 32, 2279–2290, https://doi.org/10.1016/S0043-1354(97)00473-9, 1998.
Ide, J. i., Haga, H., Chiwa, M., and Otsuki, K.: Effects of antecedent rain history on particulate phosphorus loss from a small forested watershed of Japanese cypress (Chamaecyparis obtusa), J. Hydrol., 352, 322–335, https://doi.org/10.1016/j.jhydrol.2008.01.012, 2008.
Jackson, B. M., Wheater, H. S., Mathias, S. A., McIntyre, N., and Butler, A. P.: A simple model of variable residence time flow and nutrient transport in the chalk, J. Hydrol., 330, 221–234, https://doi.org/10.1016/j.jhydrol.2006.04.045, 2006.
Jackson, B. M., Browne, C. A., Butler, A. P., Peach, D., Wade, A. J., and Wheater, H. S.: Nitrate transport in Chalk catchments: monitoring, modelling and policy implications, Environ. Sci. Policy, 11, 125–135, https://doi.org/10.1016/j.envsci.2007.10.006, 2008.
Jarvie, H. P., Neal, C., Williams, R. J., Neal, M., Wickham, H. D., Hill, L. K., Wade, A. J., Warwick, A., and White, J.: Phosphorus sources, speciation and dynamics in the lowland eutrophic River Kennet, UK, Sci. Total Environ., 282–283, 175–203, https://doi.org/10.1016/S0048-9697(01)00951-2, 2002.
Jarvie, H. P., Withers, P. J. A., Bowes, M. J., Palmer-Felgate, E. J., Harper, D. M., Wasiak, K., Wasiak, P., Hodgkinson, R. A., Bates, A., Stoate, C., Neal, M., Wickham, H. D., Harman, S. A., and Armstrong, L. K.: Streamwater phosphorus and nitrogen across a gradient in rural–agricultural land use intensity, Agr. Ecosyst. Environ., 135, 238–252, https://doi.org/10.1016/j.agee.2009.10.002, 2010.
Johnes, P. J. and Burt, T. P.: Nitrate in surface waters, in: Nitrate: processes, patterns and management, edited by: Burt, T. P., Heathwaite, A. L., and Trudgill, S. T., 269–317, 1993.
Johnes, P. J.: Meeting ecological restoration targets in European Waters: a challenge for animal agriculture, in: Redesigning Animal Agriculture: The Challenge for the 21st Century, edited by: SSwain, D. L., Charmley, E., Steel, J., and Coffey, S., CAB International, Wallingford, 185–203, 2007a.
Johnes, P. J.: Uncertainties in annual riverine phosphorus load estimation: impact of load estimation methodology, sampling frequency, baseflow index and catchment population density, J. Hydrol., 332, 241–258, https://doi.org/10.1016/j.jhydrol.2006.07.006, 2007b.
Jordan, P., Arnscheidt, A., McGrogan, H., and McCormick, S.: Characterising phosphorus transfers in rural catchments using a continuous bank-side analyser, Hydrol. Earth Syst. Sci., 11, 372–381, https://doi.org/10.5194/hess-11-372-2007, 2007.
Jordan, P., Arnscheidt, J., McGrogan, H., and McCormick, S.: High-resolution phosphorus transfers at the catchment scale: the hidden importance of non-storm transfers, Hydrol. Earth Syst. Sci., 9, 685–691, https://doi.org/10.5194/hess-9-685-2005, 2005. Jordan, P., and Cassidy, R.: Technical Note: Assessing a 24/7 solution for monitoring water quality loads in small river catchments, Hydrol. Earth Syst. Sci., 15, 3093-3100, https://doi.org/ 10.5194/hess-15-3093-2011, 2011.
Jose, P.: Long-term nitrate trends in the river trent and four major tributaries, Regul. River, 4, 43–57, https://doi.org/10.1002/rrr.3450040105, 1989.
Kirchner, J. W., Feng, X. H., Neal, C., and Robson, A. J.: The fine structure of water-quality dynamics: the (high-frequency) wave of the future, Hydrol. Process., 18, 1353–1359, https://doi.org/10.1002/Hyp.5537, 2004.
Laubel, A., Kronvang, B., Larsen, S. E., Pedersen, M. L., and Svendsen, L. M.: Bank erosion as a source of sediment and phosphorus delivery to small Danish streams. In: The role of erosion and sediment transport in nutrient and contaminant transfer, Wallingford, UK, 75–82, 2000.
Lawler, D. M., Petts, G. E., Foster, I. D. L., and Harper, S.: Turbidity dynamics during spring storm events in an urban headwater river system: the Upper Tame, West Midlands, UK, Sci. Total Environ., 360, 109–126, https://doi.org/10.1016/j.scitotenv.2005.08.032, 2006.
Leip, A., Achermann, B., Billen, G., Bleeker, A., Bouwman, A., de Vries, W., Dragosits, U., Doring, U., Fernall, D., Geupel, M., Herolstab, J., Johnes, P. J., Le Gall, A. C., Monni, S., Neveceral, R., Orlandini, L., Prud'homme, M., Reuter, H., Simpson, D., Seufert, G., Spranger, T., Sutton, M., van Aardenne, J., Voss, M., and Winiwarter, W: Integrating nitrogen fluxes at the European scale, in: European Nitrogen Assessment, edited by: Sutton, M. A., Howard, C. M., Erisman, J. W., Billen, G., Bleeker, A., Grennfelt, P., van Grinsven, H., and Grizzetti, B., Cambridge University Press, Cambridge, UK, 345–376, 2011.
Lewis, M. A. and Gooddy, D.: Borehole drilling and sampling in the Wensum Demonstration Test Catchment (Draft), British Geological Survey Commissioned Report, CR/11/162, 38, 2014.
Liefferink, D., Wiering, M., and Uitenboogaart, Y.: The EU water framework directive: a multi-dimensional analysis of implementation and domestic impact, Land Use Policy, 28, 712–722, https://doi.org/10.1016/j.landusepol.2010.12.006, 2011.
Lloyd, C. E. M., Freer, J. E., Collins, A. L., Johnes, P. J., and Jones, J. I.: Methods for detecting change in hydrochemical time series in response to targeted pollutant mitigation in river catchments, J. Hydrol., 514, 297–312, https://doi.org/10.1016/j.jhydrol.2014.04.036, 2014.
LWEC: Demonstration Test Catchments: available at: http://www.lwec.org.uk/activities/demonstration-test-catchments, last access: 13 January 2013.
Marsh, T. and Parry, S.: An overview of the 2010-12 drought and its dramatic termination, NERC/Centre for Ecology & Hydrology, Wallingford, UK, 4, 2012.
Marsh, T. J. and Hannaford, J.: Hydrometric Register. Hydrological Data UK Series., Centre for Ecology and Hydrology, Wallingford, 2008.
McKee, L., Eyre, B., and Hossain, S.: Intra- and interannual export of nitrogen and phosphorus in the subtropical Richmond River catchment, Australia, Hydrol. Process., 14, 1787–1809, https://doi.org/10.1002/1099-1085(200007)14:10<1787::AID-HYP42>3.0.CO;2-Z, 2000.
Melland, A. R., Mc Caskill, M. R., White, R. E., and Chapman, D. F.: Loss of phosphorus and nitrogen in runoff and subsurface drainage from high and low input pastures grazed by sheep in southern Australia, Soil Res., 46, 161–172, https://doi.org/10.1071/SR07084, 2008.
Melland, A. R., Mellander, P. E., Murphy, P. N. C., Wall, D. P., Mechan, S., Shine, O., Shortle, G., and Jordan, P.: Stream water quality in intensive cereal cropping catchments with regulated nutrient management, Environ. Sci. Policy, 24, 58–70, https://doi.org/10.1016/j.envsci.2012.06.006, 2012.
Mellander, P.-E., Melland, A. R., Jordan, P., Wall, D. P., Murphy, P. N. C., and Shortle, G.: Quantifying nutrient transfer pathways in agricultural catchments using high temporal resolution data, Environ. Sci. Policy, 24, 44–57, https://doi.org/10.1016/j.envsci.2012.06.004, 2012.
Moliere, D. R., Evans, K. G., Saynor, M. J., and Erskine, W. D.: Estimation of suspended sediment loads in a seasonal stream in the wet-dry tropics, Northern Territory, Australia, Hydrol. Process., 18, 531–544, https://doi.org/10.1002/hyp.1336, 2004.
O'Connor, E. M., McConnell, C., Lembcke, D., and Winter, J. G.: Estimation of total phosphorus loads for a large, flashy river of a highly developed watershed–seasonal and hysteresis effects, J. Great Lakes Res., 37, 26–35, https://doi.org/10.1016/j.jglr.2011.04.004, 2011.
Ockenden, M. C., Deasy, C., Quinton, J. N., Bailey, A. P., Surridge, B., and Stoate, C.: Evaluation of field wetlands for mitigation of diffuse pollution from agriculture: sediment retention, cost and effectiveness, Environ. Sci. Pol., 24, 110–119, https://doi.org/10.1016/j.envsci.2012.06.003, 2012.
Ockenden, M. C., Deasy, C., Quinton, J. N., Surridge, B., and Stoate, C.: Keeping agricultural soils out of rivers: sediment and nutrient retention in field wetlands created for mitigation of diffuse pollution from agriculture, J. Environ. Manage., 13, 54–62, https://doi.org/10.1016/j.jenvman.2014.01.015, 2014.
Oeurng, C., Sauvage, S., and Sanchez-Perez, J. M.: Temporal variability of nitrate transport through hydrological response during flood events within a large agricultural catchment in south-west France, Sci. Total Environ., 409, 140–149, https://doi.org/10.1016/j.scitotenv.2010.09.006, 2010.
Owen, G. J., Perks, M. T., Benskin, C. M. H., Wilkinson, M. E., Jonczyk, J., and Quinn, P. F.: Monitoring agricultural diffuse pollution through a dense monitoring network in the River Eden Demonstration Test Catchment, Cumbria, UK, Area, 44, 443–453, https://doi.org/10.1111/j.1475-4762.2012.01107.x, 2012.
Palmer-Felgate, E. J., Jarvie, H. P., Williams, R. J., Mortimer, R. J. G., Loewenthal, M., and Neal, C.: Phosphorus dynamics and productivity in a sewage-impacted lowland chalk stream, J. Hydrol., 351, 87–97, https://doi.org/10.1016/j.jhydrol.2007.11.036, 2008.
Premrov, A., Coxon, C. E., Hackett, R., Kirwan, L., and Richards, K. G.: Effects of over-winter green cover on groundwater nitrate and dissolved organic carbon concentrations beneath tillage land, Sci. Total Environ., 438, 144–153, https://doi.org/10.1016/j.scitotenv.2012.08.043, 2012.
Prior, H. and Johnes, P. J.: Regulation of surface water quality in a Cretaceous Chalk catchment, UK: an assessment of the relative importance of instream and wetland processes, Sci. Total Environ., 282–283, 159–174, https://doi.org/10.1016/S0048-9697(01)00950-0, 2002.
Robson, A. and Reed, D.: Flood estimation handbook – FEH CD-ROM 3, Institute of Hydrology, Wallingford, 1999.
Rozemeijer, J. C. and Broers, H. P.: The groundwater contribution to surface water contamination in a region with intensive agricultural land use (Noord-Brabant, the Netherlands), Environ. Pollut., 148, 695–706, https://doi.org/10.1016/j.envpol.2007.01.028, 2007.
Saxton, K. E., and Lenz, A. T.: Antecedent retention indexes predict soil moisture, Proceedings of American Society of Civil Engineering, J. Hydraul. Division, 93, 223–241, 1967.
Scholefield, D., Le Goff, T., Braven, J., Ebdon, L., Long, T., and Butler, M.: Concerted diurnal patterns in riverine nutrient concentrations and physical conditions, Sci. Total Environ., 344, 201–210, https://doi.org/10.1016/j.scitotenv.2005.02.014, 2005.
Siwek, J., Siwek, J. P., and \.Zelazny, M.: Environmental and land use factors affecting phosphate hysteresis patterns of stream water during flood events (Carpathian Foothills, Poland), Hydrol. Process., 27, 3674–3684, https://doi.org/10.1002/hyp.9484, 2013.
Soley, R. W. N., Power, T., Mortimore, R. N., Shaw, P., Dottridge, J., Bryan, G., and Colley, I.: Modelling the hydrogeology and managed aquifer system of the Chalk across southern England, Geol. Soc., Lond., Special Publications, 364, 129–154, https://doi.org/10.1144/sp364.10, 2012.
Stutter, M. I., Langan, S. J., and Cooper, R. J.: Spatial contributions of diffuse inputs and within-channel processes to the form of stream water phosphorus over storm events, J. Hydrol., 350, 203–214, https://doi.org/10.1016/j.jhydrol.2007.10.045, 2008.
Wade, A. J., Palmer-Felgate, E. J., Halliday, S. J., Skeffington, R. A., Loewenthal, M., Jarvie, H. P., Bowes, M. J., Greenway, G. M., Haswell, S. J., Bell, I. M., Joly, E., Fallatah, A., Neal, C., Williams, R. J., Gozzard, E., and Newman, J. R.: Hydrochemical processes in lowland rivers: insights from in situ, high-resolution monitoring, Hydrol. Earth Syst. Sci., 16, 4323–4342, https://doi.org/10.5194/hess-16-4323-2012, 2012.
Wilkinson, M. E., Quinn, P. F., and Welton, P.: Runoff management during the September 2008 floods in the Belford catchment, Northumberland, J. Flood Manage., 3, 285–295, 2010.
Wilkinson, M. E., Quinn, P. F., and Hewett, C. J. M.: The Floods and Agriculture Risk Matrix: a decision support tool for effectively communicating flood risk from farmed landscapes, Int. J. River Basin Manage., 11, 237–252, https://doi.org/10.1080/15715124.2013.794145, 2013.
Wilkinson, M. E., Quinn, P. F., Barber, N. J., and Jonczyk, J.: A framework for managing runoff and pollution in the rural landscape using a Catchment Systems Engineering approach, Sci. Total Environ., 468–469, 1245–1254, https://doi.org/10.1016/j.scitotenv.2013.07.055, 2014.
Withers, P. J. A. and Lord, E. I.: Agricultural nutrient inputs to rivers and groundwaters in the UK: policy, environmental management and research needs, Sci. Total Environ., 282–283, 9–24, 2002.
Withers, P. J. A., Jarvie, H. P., Hodgkinson, R. A., Palmer-Felgate, E. J., Bates, A., Neal, M., Howells, R., Withers, C. M., and Wickham, H. D.: Characterization of phosphorus sources in rural watersheds, J. Environ. Qual., 38, 1998–2011, https://doi.org/10.2134/jeq2008.0096, 2009.
Yates, C. A. and Johnes, P. J.: Nitrogen speciation and phosphorus fractionation dynamics in a lowland Chalk catchment, Sci. Total Environ., 444, 466–479, https://doi.org/10.1016/j.scitotenv.2012.12.002, 2013.