Articles | Volume 17, issue 12
https://doi.org/10.5194/hess-17-5141-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/hess-17-5141-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
A decision analysis framework for stakeholder involvement and learning in groundwater management
T. P. Karjalainen
Thule Institute, University of Oulu, P.O. Box 7300, University of Oulu, 90014 Oulu, Finland
P. M. Rossi
University of Oulu, Department of Process and Environmental Engineering, Water Resources and Environmental Engineering Laboratory, P.O. Box 4300, University of Oulu, 90014 Oulu, Finland
P. Ala-aho
University of Oulu, Department of Process and Environmental Engineering, Water Resources and Environmental Engineering Laboratory, P.O. Box 4300, University of Oulu, 90014 Oulu, Finland
R. Eskelinen
University of Oulu, Department of Process and Environmental Engineering, Water Resources and Environmental Engineering Laboratory, P.O. Box 4300, University of Oulu, 90014 Oulu, Finland
K. Reinikainen
Pöyry Finland Oy, Tutkijantie 2A–D, 90590 Oulu, Finland
B. Kløve
University of Oulu, Department of Process and Environmental Engineering, Water Resources and Environmental Engineering Laboratory, P.O. Box 4300, University of Oulu, 90014 Oulu, Finland
M. Pulido-Velazquez
Research Institute of Water and Environmental Engineering, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
H. Yang
Department of Systems Analysis, Integrated Assessment and Modeling, Swiss Federal Institute for Aquatic Science and Technology, Ueberlandstrasse, 133, 8600 Duebendorf, Switzerland
Department of Environmental Science, University of Basel, Petersplatz 1, 4003, Basel, Switzerland
Related authors
B. Apperl, M. Pulido-Velazquez, J. Andreu, and T. P. Karjalainen
Hydrol. Earth Syst. Sci., 19, 1325–1337, https://doi.org/10.5194/hess-19-1325-2015, https://doi.org/10.5194/hess-19-1325-2015, 2015
Filip Muhic, Pertti Ala-Aho, Matthias Sprenger, Björn Klöve, and Hannu Marttila
Hydrol. Earth Syst. Sci., 28, 4861–4881, https://doi.org/10.5194/hess-28-4861-2024, https://doi.org/10.5194/hess-28-4861-2024, 2024
Short summary
Short summary
The snowmelt event governs the hydrological cycle of sub-arctic areas. In this study, we conducted a tracer experiment on a forested hilltop in Lapland to identify how high-volume infiltration events modify the soil water storage. We found that a strong tracer signal remained in deeper soil layers after the experiment and over the winter, but it got fully displaced during the snowmelt. We propose a conceptual infiltration model that explains how the snowmelt homogenizes the soil water storage.
Jari-Pekka Nousu, Kersti Leppä, Hannu Marttila, Pertti Ala-aho, Giulia Mazzotti, Terhikki Manninen, Mika Korkiakoski, Mika Aurela, Annalea Lohila, and Samuli Launiainen
Hydrol. Earth Syst. Sci., 28, 4643–4666, https://doi.org/10.5194/hess-28-4643-2024, https://doi.org/10.5194/hess-28-4643-2024, 2024
Short summary
Short summary
We used hydrological models, field measurements, and satellite-based data to study the soil moisture dynamics in a subarctic catchment. The role of groundwater was studied with different ways to model the groundwater dynamics and via comparisons to the observational data. The choice of groundwater model was shown to have a strong impact, and representation of lateral flow was important to capture wet soil conditions. Our results provide insights for ecohydrological studies in boreal regions.
Marco M. Lehmann, Josie Geris, Ilja van Meerveld, Daniele Penna, Youri Rothfuss, Matteo Verdone, Pertti Ala-Aho, Matyas Arvai, Alise Babre, Philippe Balandier, Fabian Bernhard, Lukrecija Butorac, Simon Damien Carrière, Natalie C. Ceperley, Zuosinan Chen, Alicia Correa, Haoyu Diao, David Dubbert, Maren Dubbert, Fabio Ercoli, Marius G. Floriancic, Teresa E. Gimeno, Damien Gounelle, Frank Hagedorn, Christophe Hissler, Frédéric Huneau, Alberto Iraheta, Tamara Jakovljević, Nerantzis Kazakis, Zoltan Kern, Karl Knaebel, Johannes Kobler, Jiří Kocum, Charlotte Koeber, Gerbrand Koren, Angelika Kübert, Dawid Kupka, Samuel Le Gall, Aleksi Lehtonen, Thomas Leydier, Philippe Malagoli, Francesca Sofia Manca di Villahermosa, Chiara Marchina, Núria Martínez-Carreras, Nicolas Martin-StPaul, Hannu Marttila, Aline Meyer Oliveira, Gaël Monvoisin, Natalie Orlowski, Kadi Palmik-Das, Aurel Persoiu, Andrei Popa, Egor Prikaziuk, Cécile Quantin, Katja T. Rinne-Garmston, Clara Rohde, Martin Sanda, Matthias Saurer, Daniel Schulz, Michael Paul Stockinger, Christine Stumpp, Jean-Stéphane Venisse, Lukas Vlcek, Stylianos Voudouris, Björn Weeser, Mark E. Wilkinson, Giulia Zuecco, and Katrin Meusburger
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-409, https://doi.org/10.5194/essd-2024-409, 2024
Preprint under review for ESSD
Short summary
Short summary
This study describes a unique large-scale isotope dataset to study water dynamics in European forests. Researchers collected data from 40 beech and spruce forest sites in spring and summer 2023, using a standardized method to ensure consistency. The results show that water sources for trees change between seasons and vary by tree species. This large dataset offers valuable information for understanding plant water use, improving ecohydrological models, and mapping water cycles across Europe.
Teemu Juselius-Rajamäki, Sanna Piilo, Susanna Salminen-Paatero, Emilia Tuomaala, Tarmo Virtanen, Atte Korhola, Anna Autio, Hannu Marttila, Pertti Ala-Aho, Annalea Lohila, and Minna Väliranta
EGUsphere, https://doi.org/10.5194/egusphere-2024-2102, https://doi.org/10.5194/egusphere-2024-2102, 2024
Short summary
Short summary
The vegetation can be used to infer the potential climate feedback of peatlands. New studies have shown recent expansion of peatlands but their plant community succession of has not been studied. Although generally described as dry bog-types, our results show that peatland margins in a subarctic fen initiated as wet fen with high methane emissions and shifted to dryer peatland types only after dryer post Little Ice Age climate. Thus, they have acted as a carbon source for most of their history.
Umer Saleem, Ali Torabi Haghighi, Björn Klöve, and Mourad Oussalah
EGUsphere, https://doi.org/10.5194/egusphere-2024-1170, https://doi.org/10.5194/egusphere-2024-1170, 2024
Short summary
Short summary
This paper discusses the impact of citizen science and remote sensing on water quality monitoring. It explores applications combining citizen science with tools like microwave and optical systems, assessing parameters and techniques via apps such as EyeOnWater and HydroColor. It highlights the transformative potential in addressing water quality research gaps.
Getnet Demil, Ali Torabi Haghighi, Björn Klöve, and Mourad Oussalah
EGUsphere, https://doi.org/10.5194/egusphere-2024-1158, https://doi.org/10.5194/egusphere-2024-1158, 2024
Short summary
Short summary
This review explores using advanced image-based methods to estimate snow parameters for water resource management. Deep learning and satellite imagery improve accuracy in predicting snowmelt and depth. Challenges like data availability persist; addressing them requires novel deep learning architectures and better data synchronization. Integration of image-based approaches can revolutionize snow hydrology modeling and environmental management.
Danny Croghan, Pertti Ala-Aho, Jeffrey Welker, Kaisa-Riikka Mustonen, Kieran Khamis, David M. Hannah, Jussi Vuorenmaa, Bjørn Kløve, and Hannu Marttila
Hydrol. Earth Syst. Sci., 28, 1055–1070, https://doi.org/10.5194/hess-28-1055-2024, https://doi.org/10.5194/hess-28-1055-2024, 2024
Short summary
Short summary
The transport of dissolved organic carbon (DOC) from land into streams is changing due to climate change. We used a multi-year dataset of DOC and predictors of DOC in a subarctic stream to find out how transport of DOC varied between seasons and between years. We found that the way DOC is transported varied strongly seasonally, but year-to-year differences were less apparent. We conclude that the mechanisms of transport show a higher degree of interannual consistency than previously thought.
Jari-Pekka Nousu, Matthieu Lafaysse, Giulia Mazzotti, Pertti Ala-aho, Hannu Marttila, Bertrand Cluzet, Mika Aurela, Annalea Lohila, Pasi Kolari, Aaron Boone, Mathieu Fructus, and Samuli Launiainen
The Cryosphere, 18, 231–263, https://doi.org/10.5194/tc-18-231-2024, https://doi.org/10.5194/tc-18-231-2024, 2024
Short summary
Short summary
The snowpack has a major impact on the land surface energy budget. Accurate simulation of the snowpack energy budget is difficult, and studies that evaluate models against energy budget observations are rare. We compared predictions from well-known models with observations of energy budgets, snow depths and soil temperatures in Finland. Our study identified contrasting strengths and limitations for the models. These results can be used for choosing the right models depending on the use cases.
Anssi Rauhala, Leo-Juhani Meriö, Anton Kuzmin, Pasi Korpelainen, Pertti Ala-aho, Timo Kumpula, Bjørn Kløve, and Hannu Marttila
The Cryosphere, 17, 4343–4362, https://doi.org/10.5194/tc-17-4343-2023, https://doi.org/10.5194/tc-17-4343-2023, 2023
Short summary
Short summary
Snow conditions in the Northern Hemisphere are rapidly changing, and information on snow depth is important for decision-making. We present snow depth measurements using different drones throughout the winter at a subarctic site. Generally, all drones produced good estimates of snow depth in open areas. However, differences were observed in the accuracies produced by the different drones, and a reduction in accuracy was observed when moving from an open mire area to forest-covered areas.
Leo-Juhani Meriö, Anssi Rauhala, Pertti Ala-aho, Anton Kuzmin, Pasi Korpelainen, Timo Kumpula, Bjørn Kløve, and Hannu Marttila
The Cryosphere, 17, 4363–4380, https://doi.org/10.5194/tc-17-4363-2023, https://doi.org/10.5194/tc-17-4363-2023, 2023
Short summary
Short summary
Information on seasonal snow cover is essential in understanding snow processes and operational forecasting. We study the spatiotemporal variability in snow depth and snow processes in a subarctic, boreal landscape using drones. We identified multiple theoretically known snow processes and interactions between snow and vegetation. The results highlight the applicability of the drones to be used for a detailed study of snow depth in multiple land cover types and snow–vegetation interactions.
Xiaowan Liu, Zongxue Xu, Hong Yang, Xiuping Li, and Dingzhi Peng
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2020-71, https://doi.org/10.5194/essd-2020-71, 2020
Revised manuscript not accepted
Short summary
Short summary
The retreat of glaciers over the QTP is intensifying. To understand changes in glaciers, the two inventories (RGI 4.0 and GIC-Ⅱ) provide potential, but glacier volumes are not convincing. The study recalculated and compared glacier volumes in RGI 4.0 and GIC-Ⅱ for the QTP. The results indicate the slope-dependent algorithm performs better than area-volume-based equations. The northern QTP has a larger degree of fragmentation. An obvious offset of glacier volumes in different aspects is observed.
Xingcai Liu, Wenfeng Liu, Hong Yang, Qiuhong Tang, Martina Flörke, Yoshimitsu Masaki, Hannes Müller Schmied, Sebastian Ostberg, Yadu Pokhrel, Yusuke Satoh, and Yoshihide Wada
Hydrol. Earth Syst. Sci., 23, 1245–1261, https://doi.org/10.5194/hess-23-1245-2019, https://doi.org/10.5194/hess-23-1245-2019, 2019
Short summary
Short summary
Human activities associated with water resource management have significantly increased in China during the past decades. This assessment helps us understand how streamflow has been affected by climate and human activities in China. Our analyses indicate that the climate impact has dominated streamflow changes in most areas, and human activities (in terms of water withdrawals) have increasingly decreased streamflow in the northern basins of China which are vulnerable to future climate change.
Nizar Abou Zaki, Ali Torabi Haghighi, Pekka M. Rossi, Mohammad J. Tourian, and Bjørn Klove
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-471, https://doi.org/10.5194/hess-2018-471, 2018
Preprint withdrawn
Short summary
Short summary
Groundwater is considered a main source of fresh water in semi-arid climatic zones, especially for agricultural usage. This study compares in-situ groundwater volume variation measurements with GRACE derived water mass data. The study concludes the possibility of using GRACE data to monitor groundwater depletion in catchments that lack measured data. GRACE data can here help in drawing general conclusions for integrated water resources management, and sustainable usage of this resources.
Marta Zaniolo, Matteo Giuliani, Andrea Francesco Castelletti, and Manuel Pulido-Velazquez
Hydrol. Earth Syst. Sci., 22, 2409–2424, https://doi.org/10.5194/hess-22-2409-2018, https://doi.org/10.5194/hess-22-2409-2018, 2018
Short summary
Short summary
Drought indexes are an effective tool to support drought management in water systems, but their definition must be tailored to the features of the considered basin. In highly regulated contexts, non-generalizable ad hoc methods are usually employed to design these indexes. This paper contributes the novel Framework for Index-based Drought Analysis (FRIDA) that supports the automatic construction of basin-customized drought indexes representing a surrogate of the basin drought conditions.
Pertti Ala-aho, Doerthe Tetzlaff, James P. McNamara, Hjalmar Laudon, and Chris Soulsby
Hydrol. Earth Syst. Sci., 21, 5089–5110, https://doi.org/10.5194/hess-21-5089-2017, https://doi.org/10.5194/hess-21-5089-2017, 2017
Short summary
Short summary
We used the Spatially Distributed Tracer-Aided Rainfall-Runoff model (STARR) to simulate streamflows, stable water isotope ratios, snowpack dynamics, and water ages in three snow-influenced experimental catchments with exceptionally long and rich datasets. Our simulations reproduced the hydrological observations in all three catchments, suggested contrasting stream water age distributions between catchments, and demonstrated the importance of snow isotope processes in tracer-aided modelling.
Christoph Müller, Joshua Elliott, James Chryssanthacopoulos, Almut Arneth, Juraj Balkovic, Philippe Ciais, Delphine Deryng, Christian Folberth, Michael Glotter, Steven Hoek, Toshichika Iizumi, Roberto C. Izaurralde, Curtis Jones, Nikolay Khabarov, Peter Lawrence, Wenfeng Liu, Stefan Olin, Thomas A. M. Pugh, Deepak K. Ray, Ashwan Reddy, Cynthia Rosenzweig, Alex C. Ruane, Gen Sakurai, Erwin Schmid, Rastislav Skalsky, Carol X. Song, Xuhui Wang, Allard de Wit, and Hong Yang
Geosci. Model Dev., 10, 1403–1422, https://doi.org/10.5194/gmd-10-1403-2017, https://doi.org/10.5194/gmd-10-1403-2017, 2017
Short summary
Short summary
Crop models are increasingly used in climate change impact research and integrated assessments. For the Agricultural Model Intercomparison and Improvement Project (AgMIP), 14 global gridded crop models (GGCMs) have supplied crop yield simulations (1980–2010) for maize, wheat, rice and soybean. We evaluate the performance of these models against observational data at global, national and grid cell level. We propose an open-access benchmark system against which future model versions can be tested.
Christian Folberth, Joshua Elliott, Christoph Müller, Juraj Balkovic, James Chryssanthacopoulos, Roberto C. Izaurralde, Curtis D. Jones, Nikolay Khabarov, Wenfeng Liu, Ashwan Reddy, Erwin Schmid, Rastislav Skalský, Hong Yang, Almut Arneth, Philippe Ciais, Delphine Deryng, Peter J. Lawrence, Stefan Olin, Thomas A. M. Pugh, Alex C. Ruane, and Xuhui Wang
Biogeosciences Discuss., https://doi.org/10.5194/bg-2016-527, https://doi.org/10.5194/bg-2016-527, 2016
Manuscript not accepted for further review
Short summary
Short summary
Global crop models differ in numerous aspects such as algorithms, parameterization, input data, and management assumptions. This study compares five global crop model frameworks, all based on the same field-scale model, to identify differences induced by the latter three. Results indicate that foremost nutrient supply, soil handling, and crop management induce substantial differences in crop yield estimates whereas crop cultivars primarily result in scaling of yield levels.
B. Kamali, K. C. Abbaspour, A. Lehmann, B. Wehrli, and H. Yang
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-12-5187-2015, https://doi.org/10.5194/hessd-12-5187-2015, 2015
Manuscript not accepted for further review
Short summary
Short summary
This study identified historical patterns of meteorological, hydrological, and agricultural droughts in the Karkheh River Basin in Iran. The SWAT model was used to obtain the variables required for calculating drought indices. Five meteorological droughts were identified, of which four corresponded with the hydrological droughts with 1-3 month lag. The meteorological droughts corresponded with the agricultural droughts during dry months, while the latter lasted for a longer time.
P. Ala-aho, P. M. Rossi, and B. Kløve
Hydrol. Earth Syst. Sci., 19, 1961–1976, https://doi.org/10.5194/hess-19-1961-2015, https://doi.org/10.5194/hess-19-1961-2015, 2015
Short summary
Short summary
We present a novel simulation method for estimating spatially distributed and transient groundwater recharge in unconfined sandy aquifers. The approach uses field data for the most important parameters affecting groundwater recharge and accounts for parameter uncertainty. The results show that tree canopy cover is the most important factor in controlling groundwater recharge at our study area. Tree canopy is thinned by forestry, which may lead to a significant increase of groundwater recharge.
M. Pulido-Velazquez, S. Peña-Haro, A. García-Prats, A. F. Mocholi-Almudever, L. Henriquez-Dole, H. Macian-Sorribes, and A. Lopez-Nicolas
Hydrol. Earth Syst. Sci., 19, 1677–1693, https://doi.org/10.5194/hess-19-1677-2015, https://doi.org/10.5194/hess-19-1677-2015, 2015
Short summary
Short summary
This study presents a modeling framework for estimating potential climate and land use change impacts for the 21st century in the Mancha Oriental aquifer. A watershed agriculturally based hydrological model (SWAT) was sequentially coupled with a groundwater flow model in MODFLOW and a groundwater mass-transport model in MT3DMS for groundwater concentrations. Future projections preview a decrease in groundwater recharge, affecting groundwater quantity, quality and interaction with the Jucar River
B. Apperl, M. Pulido-Velazquez, J. Andreu, and T. P. Karjalainen
Hydrol. Earth Syst. Sci., 19, 1325–1337, https://doi.org/10.5194/hess-19-1325-2015, https://doi.org/10.5194/hess-19-1325-2015, 2015
E. Isokangas, K. Rozanski, P. M. Rossi, A.-K. Ronkanen, and B. Kløve
Hydrol. Earth Syst. Sci., 19, 1247–1262, https://doi.org/10.5194/hess-19-1247-2015, https://doi.org/10.5194/hess-19-1247-2015, 2015
Short summary
Short summary
An iterative isotope mass balance approach was used to quantify the groundwater dependence of 67 kettle lakes and ponds. A quantitative measure for the dependence of a lake on groundwater (G index) introduced in this study revealed generally large groundwater dependency among the lakes. The isotope mass balance approach proved to be especially useful when the groundwater reliance of lakes situated in a relatively small area with similar climatic conditions needs to be determined.
Related subject area
Subject: Water Resources Management | Techniques and Approaches: Modelling approaches
Assessment of upscaling methodologies for daily crop transpiration using sap flows and two-source energy balance models in almonds under different water statuses and production systems
Making a case for power-sensitive water modelling: a literature review
Developing water supply reservoir operating rules for large-scale hydrological modelling
An investigation of anthropogenic influences on hydrologic connectivity using model stress tests
The H2Ours game to explore water use, resources and sustainability: connecting issues in two landscapes in Indonesia
Drainage assessment of irrigation districts: on the precision and accuracy of four parsimonious models
Impact of reservoir evaporation on future water availability in north-eastern Brazil: a multi-scenario assessment
How economically and environmentally viable are multiple dams in the upper Cauvery Basin, India? A hydro-economic analysis using a landscape-based hydrological model
Leveraging a novel hybrid ensemble and optimal interpolation approach for enhanced streamflow and flood prediction
The interprovincial green water flow in China and its tele-connected effects on socio-economy
Spatially explicit assessment of water scarcity and potential mitigating solutions in a large water-limited basin: the Yellow River basin in China
A generalised ecohydrological landscape classification for assessing ecosystem risk in Australia due to an altering water regime
Determining the threshold of issuing flash flood warnings based on people’s response process simulation
Modeling water balance components of conifer species using the Noah-MP model in an eastern Mediterranean ecosystem
A scalable and modular reservoir implementation for large scale integrated hydrologic simulations
Process-based three-layer synergistic optimal-allocation model for complex water resource systems considering reclaimed water
Joint optimal operation of the South-to-North Water Diversion Project considering the evenness of water deficit
Employing the generalized Pareto distribution to analyze extreme rainfall events on consecutive rainy days in Thailand's Chi watershed: implications for flood management
Modeling hydropower operations at the scale of a power grid: a demand-based approach
How to account for irrigation withdrawals in a watershed model
Inferring reservoir filling strategies under limited-data-availability conditions using hydrological modeling and Earth observations: the case of the Grand Ethiopian Renaissance Dam (GERD)
The precision of satellite-based net irrigation quantification in the Indus and Ganges basins
Developing a Bayesian network model for understanding river catchment resilience under future change scenarios
Quantifying the trade-offs in re-operating dams for the environment in the Lower Volta River
Dynamically coupling system dynamics and SWAT+ models using Tinamït: application of modular tools for coupled human–water system models
Development of an integrated socio-hydrological modeling framework for assessing the impacts of shelter location arrangement and human behaviors on flood evacuation processes
Cooperation in a transboundary river basin: a large-scale socio-hydrological model of the Eastern Nile
Flexible forecast value metric suitable for a wide range of decisions: application using probabilistic subseasonal streamflow forecasts
An improved model of shade-affected stream temperature in Soil & Water Assessment Tool
Seasonal forecasting of snow resources at Alpine sites
Operationalizing equity in multipurpose water systems
Evaluation of a new observationally based channel parameterization for the National Water Model
High-resolution drought simulations and comparison to soil moisture observations in Germany
Cooperation under conflict: participatory hydrological modeling for science policy dialogues for the Aculeo Lake
Socio-hydrological modeling of the tradeoff between flood control and hydropower provided by the Columbia River Treaty
Challenges and benefits of quantifying irrigation through the assimilation of Sentinel-1 backscatter observations into Noah-MP
A system dynamic model to quantify the impacts of water resources allocation on water–energy–food–society (WEFS) nexus
Net irrigation requirement under different climate scenarios using AquaCrop over Europe
The role of multi-criteria decision analysis in a transdisciplinary process: co-developing a flood forecasting system in western Africa
Unfolding the relationship between seasonal forecast skill and value in hydropower production: a global analysis
Drought impact links to meteorological drought indicators and predictability in Spain
Opportunities for seasonal forecasting to support water management outside the tropics
Probabilistic modelling of the inherent field-level pesticide pollution risk in a small drinking water catchment using spatial Bayesian belief networks
Are maps of nitrate reduction in groundwater altered by climate and land use changes?
Historical simulation of maize water footprints with a new global gridded crop model ACEA
Future upstream water consumption and its impact on downstream water availability in the transboundary Indus Basin
Identifying the dynamic evolution and feedback process of water resources nexus system considering socioeconomic development, ecological protection, and food security: A practical tool for sustainable water use
Optimizing a backscatter forward operator using Sentinel-1 data over irrigated land
Robustness of a parsimonious subsurface drainage model at the French national scale
Spatially distributed impacts of climate change and groundwater demand on the water resources in a wadi system
Manuel Quintanilla-Albornoz, Xavier Miarnau, Ana Pelechá, Héctor Nieto, and Joaquim Bellvert
Hydrol. Earth Syst. Sci., 28, 4797–4818, https://doi.org/10.5194/hess-28-4797-2024, https://doi.org/10.5194/hess-28-4797-2024, 2024
Short summary
Short summary
Remote sensing can be a helpful tool for monitoring crop transpiration (T) for agricultural water management. Since remote sensing provides instantaneous data, upscaling techniques are required to estimate T on a daily scale. This study assesses optimal image acquisition times and four upscaling approaches to estimate daily T. The results indicate that the main errors derive from measurement time and water stress levels, which can be mitigated by choosing a proper upscaling approach.
Rozemarijn ter Horst, Rossella Alba, Jeroen Vos, Maria Rusca, Jonatan Godinez-Madrigal, Lucie V. Babel, Gert Jan Veldwisch, Jean-Philippe Venot, Bruno Bonté, David W. Walker, and Tobias Krueger
Hydrol. Earth Syst. Sci., 28, 4157–4186, https://doi.org/10.5194/hess-28-4157-2024, https://doi.org/10.5194/hess-28-4157-2024, 2024
Short summary
Short summary
The exact power of models often remains hidden, especially when neutrality is claimed. Our review of 61 scientific articles shows that in the scientific literature little attention is given to the power of water models to influence development processes and outcomes. However, there is a lot to learn from those who are openly reflexive. Based on lessons from the review, we call for power-sensitive modelling, which means that people are critical about how models are made and with what effects.
Saskia Salwey, Gemma Coxon, Francesca Pianosi, Rosanna Lane, Chris Hutton, Michael Bliss Singer, Hilary McMillan, and Jim Freer
Hydrol. Earth Syst. Sci., 28, 4203–4218, https://doi.org/10.5194/hess-28-4203-2024, https://doi.org/10.5194/hess-28-4203-2024, 2024
Short summary
Short summary
Reservoirs are essential for water resource management and can significantly impact downstream flow. However, representing reservoirs in hydrological models can be challenging, particularly across large scales. We design a new and simple method for simulating river flow downstream of water supply reservoirs using only open-access data. We demonstrate the approach in 264 reservoir catchments across Great Britain, where we can significantly improve the simulation of reservoir-impacted flow.
Amelie Herzog, Jost Hellwig, and Kerstin Stahl
Hydrol. Earth Syst. Sci., 28, 4065–4083, https://doi.org/10.5194/hess-28-4065-2024, https://doi.org/10.5194/hess-28-4065-2024, 2024
Short summary
Short summary
Surface water–groundwater interaction can vary along a river. This study used a groundwater model that reproduced relative observed longitudinal and vertical connectivity patterns in the river network to assess the system's response to imposed stress tests. For the case study, imposed groundwater abstraction appears to influence connectivity relatively more than altered recharge, but a quantification of absolute exchange flows will require further model improvements.
Lisa Tanika, Rika Ratna Sari, Arief Lukman Hakim, Meine van Noordwijk, Marielos Peña-Claros, Beria Leimona, Edi Purwanto, and Erika N. Speelman
Hydrol. Earth Syst. Sci., 28, 3807–3835, https://doi.org/10.5194/hess-28-3807-2024, https://doi.org/10.5194/hess-28-3807-2024, 2024
Short summary
Short summary
The H2Ours game is designed to facilitate knowledge transfer and sharing among stakeholders to trigger commitment and collaborative action to restore hydrological conditions. The adaptability of the H2Ours game was proven in two different landscapes: groundwater recharge in upper to middle sub-watersheds with (over)use of water in the lowland zone and a peatland with drainage, rewetting, oil palm conversion and fire as issues. The game evaluation shows that the H2Ours game meets its purpose.
Pierre Laluet, Luis Olivera-Guerra, Víctor Altés, Vincent Rivalland, Alexis Jeantet, Julien Tournebize, Omar Cenobio-Cruz, Anaïs Barella-Ortiz, Pere Quintana-Seguí, Josep Maria Villar, and Olivier Merlin
Hydrol. Earth Syst. Sci., 28, 3695–3716, https://doi.org/10.5194/hess-28-3695-2024, https://doi.org/10.5194/hess-28-3695-2024, 2024
Short summary
Short summary
Monitoring agricultural drainage flow in irrigated areas is key to water and soil management. In this paper, four simple drainage models are evaluated on two irrigated sub-basins where drainage flow is measured daily. The evaluation of their precision shows that they simulate drainage very well when calibrated with drainage data and that one of them is slightly better. The evaluation of their accuracy shows that only one model can provide rough drainage estimates without calibration data.
Gláuber Pontes Rodrigues, Arlena Brosinsky, Ítalo Sampaio Rodrigues, George Leite Mamede, and José Carlos de Araújo
Hydrol. Earth Syst. Sci., 28, 3243–3260, https://doi.org/10.5194/hess-28-3243-2024, https://doi.org/10.5194/hess-28-3243-2024, 2024
Short summary
Short summary
The research focuses on a 4-million-inhabitant tropical region supplied by a network of open-water reservoirs where the dry season lasts for 8 months (Jun−Dec). We analysed the impact of four climate change scenarios on the evaporation rate and the associated availability (water yield distributed per year). The worst-case scenario shows that by the end of the century (2071−2099), the evaporation rate in the dry season could increase by 6 %, which would reduce stored water by about 80 %.
Anjana Ekka, Yong Jiang, Saket Pande, and Pieter van der Zaag
Hydrol. Earth Syst. Sci., 28, 3219–3241, https://doi.org/10.5194/hess-28-3219-2024, https://doi.org/10.5194/hess-28-3219-2024, 2024
Short summary
Short summary
For the first time, we analyse the economic and ecological performance of existing multiple big reservoirs on a daily timescale for a major river basin (upper Cauvery) in India, where pre-intervention data were not available but where there are increasing calls for such assessments. Results show that smaller reservoirs on smaller streams that maximize the economic value of stored water are better for the basin economy and the environment. The approach can help to prioritize dam removals.
Mohamad El Gharamti, Arezoo Rafieeinasab, and James L. McCreight
Hydrol. Earth Syst. Sci., 28, 3133–3159, https://doi.org/10.5194/hess-28-3133-2024, https://doi.org/10.5194/hess-28-3133-2024, 2024
Short summary
Short summary
This study introduces a hybrid data assimilation scheme for precise streamflow predictions during intense rainfall and hurricanes. Tested in real events, it outperforms traditional methods by up to 50 %, utilizing ensemble and climatological background covariances. The adaptive algorithm ensures reliability with a small ensemble, offering improved forecasts up to 18 h in advance, marking a significant advancement in flood prediction capabilities.
Shan Sang, Yan Li, Chengcheng Hou, Shuangshuang Zi, and Huiqing Lin
EGUsphere, https://doi.org/10.5194/egusphere-2024-1420, https://doi.org/10.5194/egusphere-2024-1420, 2024
Short summary
Short summary
Green water flow among each province in China embodies substantial socio-economic values. Green water flow and its tele-connected socio-economic effects should be considered in water resources management in additional to blue water.
Weibin Zhang, Xining Zhao, Xuerui Gao, Wei Liang, Junyi Li, and Baoqing Zhang
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-88, https://doi.org/10.5194/hess-2024-88, 2024
Revised manuscript under review for HESS
Short summary
Short summary
An integrated framework was applied in the Yellow River basin to assess the water crisis. Results indicate worsening water scarcity during 1965‒2013, driven by irrigation and climate changes. Local water yield and upstream flows are key drivers of sub-basin water availability. To reduce the water deficit of 10 km3 by 2030s, enhancing irrigation efficiency and water transfer project are crucial, emphasizing the imperative of combining supply and demand-oriented measures to solve the water crisis.
Alexander Herr, Linda E. Merrin, Patrick J. Mitchell, Anthony P. O'Grady, Kate L. Holland, Richard E. Mount, David A. Post, Chris R. Pavey, and Ashley D. Sparrow
Hydrol. Earth Syst. Sci., 28, 1957–1979, https://doi.org/10.5194/hess-28-1957-2024, https://doi.org/10.5194/hess-28-1957-2024, 2024
Short summary
Short summary
We develop an ecohydrological classification for regions with limited hydrological records. It provides causal links of landscape features and their water requirement. The classification is an essential framework for modelling the impact of future coal resource developments via water on the features. A rule set combines diverse data with prioritisation, resulting in a transparent, repeatable and adjustable approach. We show examples of linking ecohydrology with environmental impacts.
Ruikang Zhang, Dedi Liu, Lihua Xiong, Jie Chen, Hua Chen, and Jiabo Yin
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-130, https://doi.org/10.5194/hess-2024-130, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
Flash flood warnings cannot be effective without people’s responses to them. We propose a method to determine the threshold of issuing the warnings based on the people’s response process simulation. The results show that adjusting the warning threshold according to the people’s tolerance levels of the failed warnings can improve warning effectiveness, but the prerequisite is to increase the forecasting accuracy and decrease the forecasting variance.
Mohsen Amini Fasakhodi, Hakan Djuma, Ioannis Sofokleous, Marinos Eliades, and Adriana Bruggeman
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-107, https://doi.org/10.5194/hess-2024-107, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
This study examined the water use of pine and cypress trees in a semi-arid Mediterranean forest environment. We applied a widely used land surface model (Noah-MP) to simulate the water balance of the ecosystem. We found good modeling results for soil moisture. However, the model underestimated the transpiration of the trees during the dry summer months. These findings indicate that more research is needed to improve the modeling of ecosystem responses to climate and land use change.
Benjamin D. West, Reed M. Maxwell, and Laura E. Condon
EGUsphere, https://doi.org/10.5194/egusphere-2024-965, https://doi.org/10.5194/egusphere-2024-965, 2024
Short summary
Short summary
This article describes the addition of reservoirs to the hydrologic model, ParFlow. ParFlow is particularly good at helping us understand some of the broader drivers behind different parts of the water cycle. By having reservoirs in such a model we hope to be better able to understand both our impacts on the environment, and how to adjust our management of reservoirs to changing conditions.
Jing Liu, Yue-Ping Xu, Wei Zhang, Shiwu Wang, and Siwei Chen
Hydrol. Earth Syst. Sci., 28, 1325–1350, https://doi.org/10.5194/hess-28-1325-2024, https://doi.org/10.5194/hess-28-1325-2024, 2024
Short summary
Short summary
Applying optimal water allocation models to simultaneously enable economic benefits, water preferences, and environmental demands at different decision levels, timescales, and regions is a challenge. In this study, a process-based three-layer synergistic optimal-allocation model (PTSOA) is established to achieve these goals. Reused, reclaimed water is also coupled to capture environmentally friendly solutions. Network analysis was introduced to reduce competition among different stakeholders.
Bing-Yi Zhou, Guo-Hua Fang, Xin Li, Jian Zhou, and Hua-Yu Zhong
Hydrol. Earth Syst. Sci., 28, 817–832, https://doi.org/10.5194/hess-28-817-2024, https://doi.org/10.5194/hess-28-817-2024, 2024
Short summary
Short summary
The current unreasonable inter-basin water transfer operation leads to the problem of spatial and temporal imbalances in water allocation. This paper defines a water deficit evenness index and incorporates it into a joint optimization model for the Jiangsu section of the South-to-North Water Diversion Project considering ecology and economy. At the same time, the lake storage capacity performs well, and the water transfer efficiency of the river is significantly improved.
Tossapol Phoophiwfa, Prapawan Chomphuwiset, Thanawan Prahadchai, Jeong-Soo Park, Arthit Apichottanakul, Watchara Theppang, and Piyapatr Busababodhin
Hydrol. Earth Syst. Sci., 28, 801–816, https://doi.org/10.5194/hess-28-801-2024, https://doi.org/10.5194/hess-28-801-2024, 2024
Short summary
Short summary
This study examines the impact of extreme rainfall events on flood risk management in Thailand's Chi watershed. By analyzing historical data, we identified regions, notably Udon Thani and Chaiyaphum, with a high risk of flash flooding. To aid in flood risk assessment, visual maps were created. The study underscores the importance of preparing for extreme rainfall events, particularly in the context of climate change, to effectively mitigate potential flood damage.
Laure Baratgin, Jan Polcher, Patrice Dumas, and Philippe Quirion
EGUsphere, https://doi.org/10.5194/egusphere-2023-3106, https://doi.org/10.5194/egusphere-2023-3106, 2024
Short summary
Short summary
Hydrological modeling is valuable for estimating the possible impacts of climate change on hydropower generation. In this study, we present a more comprehensive approach to model the management of hydroelectric reservoirs. The total power-grid demand is distributed to the various power plants according to their reservoir states to compute their release. The method is tested on France, and demonstrates that it succeeds in reproducing the observed behavior of reservoirs.
Elisabeth Brochet, Youen Grusson, Sabine Sauvage, Ludovic Lhuissier, and Valérie Demarez
Hydrol. Earth Syst. Sci., 28, 49–64, https://doi.org/10.5194/hess-28-49-2024, https://doi.org/10.5194/hess-28-49-2024, 2024
Short summary
Short summary
This study aims to take into account irrigation withdrawals in a watershed model. The model we used combines agriculture and hydrological modeling. Two different crop models were compared, the first based on air temperature and the second based on Sentinel-2 satellite data. Results show that including remote sensing data leads to better emergence dates. Both methods allow us to simulate the daily irrigation withdrawals and downstream flow with a good accuracy, especially during low-flow periods.
Awad M. Ali, Lieke A. Melsen, and Adriaan J. Teuling
Hydrol. Earth Syst. Sci., 27, 4057–4086, https://doi.org/10.5194/hess-27-4057-2023, https://doi.org/10.5194/hess-27-4057-2023, 2023
Short summary
Short summary
Using a new approach based on a combination of modeling and Earth observation, useful information about the filling of the Grand Ethiopian Renaissance Dam can be obtained with limited data and proper rainfall selection. While the monthly streamflow into Sudan has decreased significantly (1.2 × 109–5 × 109 m3) with respect to the non-dam scenario, the negative impact has been masked due to higher-than-average rainfall. We reveal that the dam will need 3–5 more years to complete filling.
Søren J. Kragh, Rasmus Fensholt, Simon Stisen, and Julian Koch
Hydrol. Earth Syst. Sci., 27, 2463–2478, https://doi.org/10.5194/hess-27-2463-2023, https://doi.org/10.5194/hess-27-2463-2023, 2023
Short summary
Short summary
This study investigates the precision of irrigation estimates from a global hotspot of unsustainable irrigation practice, the Indus and Ganges basins. We show that irrigation water use can be estimated with high precision by comparing satellite and rainfed hydrological model estimates of evapotranspiration. We believe that our work can support sustainable water resource management, as it addresses the uncertainty of a key component of the water balance that remains challenging to quantify.
Kerr J. Adams, Christopher A. J. Macleod, Marc J. Metzger, Nicola Melville, Rachel C. Helliwell, Jim Pritchard, and Miriam Glendell
Hydrol. Earth Syst. Sci., 27, 2205–2225, https://doi.org/10.5194/hess-27-2205-2023, https://doi.org/10.5194/hess-27-2205-2023, 2023
Short summary
Short summary
We applied participatory methods to create a hybrid equation-based Bayesian network (BN) model to increase stakeholder understanding of catchment-scale resilience to the impacts of both climatic and socio-economic stressors to a 2050 time horizon. Our holistic systems-thinking approach enabled stakeholders to gain new perspectives on how future scenarios may influence their specific sectors and how their sector impacted other sectors and environmental conditions within the catchment system.
Afua Owusu, Jazmin Zatarain Salazar, Marloes Mul, Pieter van der Zaag, and Jill Slinger
Hydrol. Earth Syst. Sci., 27, 2001–2017, https://doi.org/10.5194/hess-27-2001-2023, https://doi.org/10.5194/hess-27-2001-2023, 2023
Short summary
Short summary
The construction of two dams in the Lower Volta River, Ghana, adversely affected downstream riverine ecosystems and communities. In contrast, Ghana has enjoyed vast economic benefits from the dams. Herein lies the challenge; there exists a trade-off between water for river ecosystems and water for anthropogenic water demands such hydropower. In this study, we quantify these trade-offs and show that there is room for providing environmental flows under current and future climatic conditions.
Joel Z. Harms, Julien J. Malard-Adam, Jan F. Adamowski, Ashutosh Sharma, and Albert Nkwasa
Hydrol. Earth Syst. Sci., 27, 1683–1693, https://doi.org/10.5194/hess-27-1683-2023, https://doi.org/10.5194/hess-27-1683-2023, 2023
Short summary
Short summary
To facilitate the meaningful participation of stakeholders in water management, model choice is crucial. We show how system dynamics models (SDMs), which are very visual and stakeholder-friendly, can be automatically combined with physically based hydrological models that may be more appropriate for modelling the water processes of a human–water system. This allows building participatory SDMs with stakeholders and delegating hydrological components to an external hydrological model.
Erhu Du, Feng Wu, Hao Jiang, Naliang Guo, Yong Tian, and Chunmiao Zheng
Hydrol. Earth Syst. Sci., 27, 1607–1626, https://doi.org/10.5194/hess-27-1607-2023, https://doi.org/10.5194/hess-27-1607-2023, 2023
Short summary
Short summary
This study develops an integrated socio-hydrological modeling framework that can simulate the entire flood management processes, including flood inundation, flood management policies, public responses, and evacuation activities. The model is able to holistically examine flood evacuation performance under the joint impacts of hydrological conditions, management policies (i.e., shelter location distribution), and human behaviors (i.e., evacuation preparation time and route-searching strategy).
Mohammad Ghoreishi, Amin Elshorbagy, Saman Razavi, Günter Blöschl, Murugesu Sivapalan, and Ahmed Abdelkader
Hydrol. Earth Syst. Sci., 27, 1201–1219, https://doi.org/10.5194/hess-27-1201-2023, https://doi.org/10.5194/hess-27-1201-2023, 2023
Short summary
Short summary
The study proposes a quantitative model of the willingness to cooperate in the Eastern Nile River basin. Our results suggest that the 2008 food crisis may account for Sudan recovering its willingness to cooperate with Ethiopia. Long-term lack of trust among the riparian countries may have reduced basin-wide cooperation. The model can be used to explore the effects of changes in future dam operations and other management decisions on the emergence of basin cooperation.
Richard Laugesen, Mark Thyer, David McInerney, and Dmitri Kavetski
Hydrol. Earth Syst. Sci., 27, 873–893, https://doi.org/10.5194/hess-27-873-2023, https://doi.org/10.5194/hess-27-873-2023, 2023
Short summary
Short summary
Forecasts may be valuable for user decisions, but current practice to quantify it has critical limitations. This study introduces RUV (relative utility value, a new metric that can be tailored to specific decisions and decision-makers. It illustrates how critical this decision context is when evaluating forecast value. This study paves the way for agencies to tailor the evaluation of their services to customer decisions and researchers to study model improvements through the lens of user impact.
Efrain Noa-Yarasca, Meghna Babbar-Sebens, and Chris Jordan
Hydrol. Earth Syst. Sci., 27, 739–759, https://doi.org/10.5194/hess-27-739-2023, https://doi.org/10.5194/hess-27-739-2023, 2023
Short summary
Short summary
Riparian vegetation has been identified as a strategy to control rising stream temperatures by shading streams. Riparian vegetation is included within a sub-basin-scale hydrological model and evaluated for full and efficient restoration scenarios. Results showed average temperature reductions of 0.91 and 0.86 °C for full and efficient riparian restoration, respectively. Notwithstanding the similar benefits, efficient restoration was 14.4 % cheaper than full riparian vegetation restoration.
Silvia Terzago, Giulio Bongiovanni, and Jost von Hardenberg
Hydrol. Earth Syst. Sci., 27, 519–542, https://doi.org/10.5194/hess-27-519-2023, https://doi.org/10.5194/hess-27-519-2023, 2023
Short summary
Short summary
Reliable seasonal forecasts of the abundance of mountain snowpack over the winter/spring ahead provide valuable information for water management, hydropower production and ski tourism. We present a climate service prototype to generate multi-model ensemble seasonal forecasts of mountain snow depth, based on Copernicus seasonal forecast system meteorological data used to force the SNOWPACK model. The prototype shows skill at predicting snow depth below and above normal and extremely dry seasons.
Guang Yang, Matteo Giuliani, and Andrea Castelletti
Hydrol. Earth Syst. Sci., 27, 69–81, https://doi.org/10.5194/hess-27-69-2023, https://doi.org/10.5194/hess-27-69-2023, 2023
Short summary
Short summary
Participatory decision-making is a well-established approach to address the increasing pressure on water systems that searches for system-wise efficient solutions but often does not quantify how the resulting benefits are distributed across stakeholders. In this work, we show how including equity principles into the design of water system operations enriches the solution space by generating more compromise solutions that balance efficiency and justice.
Aaron Heldmyer, Ben Livneh, James McCreight, Laura Read, Joseph Kasprzyk, and Toby Minear
Hydrol. Earth Syst. Sci., 26, 6121–6136, https://doi.org/10.5194/hess-26-6121-2022, https://doi.org/10.5194/hess-26-6121-2022, 2022
Short summary
Short summary
Measurements of channel characteristics are important for accurate forecasting in the NOAA National Water Model (NWM) but are scarcely available. We seek to improve channel representativeness in the NWM by updating channel geometry and roughness parameters using a large, previously unpublished, dataset of approximately 48 000 gauges. We find that the updated channel parameterization from this new dataset leads to improvements in simulated streamflow performance and channel representation.
Friedrich Boeing, Oldrich Rakovec, Rohini Kumar, Luis Samaniego, Martin Schrön, Anke Hildebrandt, Corinna Rebmann, Stephan Thober, Sebastian Müller, Steffen Zacharias, Heye Bogena, Katrin Schneider, Ralf Kiese, Sabine Attinger, and Andreas Marx
Hydrol. Earth Syst. Sci., 26, 5137–5161, https://doi.org/10.5194/hess-26-5137-2022, https://doi.org/10.5194/hess-26-5137-2022, 2022
Short summary
Short summary
In this paper, we deliver an evaluation of the second generation operational German drought monitor (https://www.ufz.de/duerremonitor) with a state-of-the-art compilation of observed soil moisture data from 40 locations and four different measurement methods in Germany. We show that the expressed stakeholder needs for higher resolution drought information at the one-kilometer scale can be met and that the agreement of simulated and observed soil moisture dynamics can be moderately improved.
Anahi Ocampo-Melgar, Pilar Barría, Cristián Chadwick, and Cesar Rivas
Hydrol. Earth Syst. Sci., 26, 5103–5118, https://doi.org/10.5194/hess-26-5103-2022, https://doi.org/10.5194/hess-26-5103-2022, 2022
Short summary
Short summary
This article examines how a hydrological model exploring the causes of a lake desiccation was turned into a 5-step participatory process to better adjust the model to address questions that were causing suspicions and conflicts in the community. Although the process was key in finding a combination of strategies that were of moderate impact and higher local acceptability, we address the challenges of such collaboration in modeling when conflict is deeply embedded in the context.
Ashish Shrestha, Felipe Augusto Arguello Souza, Samuel Park, Charlotte Cherry, Margaret Garcia, David J. Yu, and Eduardo Mario Mendiondo
Hydrol. Earth Syst. Sci., 26, 4893–4917, https://doi.org/10.5194/hess-26-4893-2022, https://doi.org/10.5194/hess-26-4893-2022, 2022
Short summary
Short summary
Equitable sharing of benefits is key to successful cooperation in transboundary water resource management. However, external changes can shift the split of benefits and shifts in the preferences regarding how an actor’s benefits compare to the other’s benefits. To understand how these changes can impact the robustness of cooperative agreements, we develop a socio-hydrological system dynamics model of the benefit sharing provision of the Columbia River Treaty and assess a series of scenarios.
Sara Modanesi, Christian Massari, Michel Bechtold, Hans Lievens, Angelica Tarpanelli, Luca Brocca, Luca Zappa, and Gabriëlle J. M. De Lannoy
Hydrol. Earth Syst. Sci., 26, 4685–4706, https://doi.org/10.5194/hess-26-4685-2022, https://doi.org/10.5194/hess-26-4685-2022, 2022
Short summary
Short summary
Given the crucial impact of irrigation practices on the water cycle, this study aims at estimating irrigation through the development of an innovative data assimilation system able to ingest high-resolution Sentinel-1 radar observations into the Noah-MP land surface model. The developed methodology has important implications for global water resource management and the comprehension of human impacts on the water cycle and identifies main challenges and outlooks for future research.
Yujie Zeng, Dedi Liu, Shenglian Guo, Lihua Xiong, Pan Liu, Jiabo Yin, and Zhenhui Wu
Hydrol. Earth Syst. Sci., 26, 3965–3988, https://doi.org/10.5194/hess-26-3965-2022, https://doi.org/10.5194/hess-26-3965-2022, 2022
Short summary
Short summary
The sustainability of the water–energy–food (WEF) nexus remains challenge, as interactions between WEF and human sensitivity and water resource allocation in water systems are often neglected. We incorporated human sensitivity and water resource allocation into a WEF nexus and assessed their impacts on the integrated system. This study can contribute to understanding the interactions across the water–energy–food–society nexus and improving the efficiency of resource management.
Louise Busschaert, Shannon de Roos, Wim Thiery, Dirk Raes, and Gabriëlle J. M. De Lannoy
Hydrol. Earth Syst. Sci., 26, 3731–3752, https://doi.org/10.5194/hess-26-3731-2022, https://doi.org/10.5194/hess-26-3731-2022, 2022
Short summary
Short summary
Increasing amounts of water are used for agriculture. Therefore, we looked into how irrigation requirements will evolve under a changing climate over Europe. Our results show that, by the end of the century and under high emissions, irrigation water will increase by 30 % on average compared to the year 2000. Also, the irrigation requirement is likely to vary more from 1 year to another. However, if emissions are mitigated, these effects are reduced.
Judit Lienert, Jafet C. M. Andersson, Daniel Hofmann, Francisco Silva Pinto, and Martijn Kuller
Hydrol. Earth Syst. Sci., 26, 2899–2922, https://doi.org/10.5194/hess-26-2899-2022, https://doi.org/10.5194/hess-26-2899-2022, 2022
Short summary
Short summary
Many western Africans encounter serious floods every year. The FANFAR project co-designed a pre-operational flood forecasting system (FEWS) with 50 key western African stakeholders. Participatory multi-criteria decision analysis (MCDA) helped prioritize a FEWS that meets their needs: it should provide accurate, clear, and timely flood risk information and work reliably in tough conditions. As a theoretical contribution, we propose an assessment framework for transdisciplinary hydrology research.
Donghoon Lee, Jia Yi Ng, Stefano Galelli, and Paul Block
Hydrol. Earth Syst. Sci., 26, 2431–2448, https://doi.org/10.5194/hess-26-2431-2022, https://doi.org/10.5194/hess-26-2431-2022, 2022
Short summary
Short summary
To fully realize the potential of seasonal streamflow forecasts in the hydropower industry, we need to understand the relationship between reservoir design specifications, forecast skill, and value. Here, we rely on realistic forecasts and simulated hydropower operations for 753 dams worldwide to unfold such relationship. Our analysis shows how forecast skill affects hydropower production, what type of dams are most likely to benefit from seasonal forecasts, and where these dams are located.
Herminia Torelló-Sentelles and Christian L. E. Franzke
Hydrol. Earth Syst. Sci., 26, 1821–1844, https://doi.org/10.5194/hess-26-1821-2022, https://doi.org/10.5194/hess-26-1821-2022, 2022
Short summary
Short summary
Drought affects many regions worldwide, and future climate projections imply that drought severity and frequency will increase. Hence, the impacts of drought on the environment and society will also increase considerably. Monitoring and early warning systems for drought rely on several indicators; however, assessments on how these indicators are linked to impacts are still lacking. Our results show that meteorological indices are best linked to impact occurrences.
Leah A. Jackson-Blake, François Clayer, Elvira de Eyto, Andrew S. French, María Dolores Frías, Daniel Mercado-Bettín, Tadhg Moore, Laura Puértolas, Russell Poole, Karsten Rinke, Muhammed Shikhani, Leon van der Linden, and Rafael Marcé
Hydrol. Earth Syst. Sci., 26, 1389–1406, https://doi.org/10.5194/hess-26-1389-2022, https://doi.org/10.5194/hess-26-1389-2022, 2022
Short summary
Short summary
We explore, together with stakeholders, whether seasonal forecasting of water quantity, quality, and ecology can help support water management at five case study sites, primarily in Europe. Reliable forecasting, a season in advance, has huge potential to improve decision-making. However, managers were reluctant to use the forecasts operationally. Key barriers were uncertainty and often poor historic performance. The importance of practical hands-on experience was also highlighted.
Mads Troldborg, Zisis Gagkas, Andy Vinten, Allan Lilly, and Miriam Glendell
Hydrol. Earth Syst. Sci., 26, 1261–1293, https://doi.org/10.5194/hess-26-1261-2022, https://doi.org/10.5194/hess-26-1261-2022, 2022
Short summary
Short summary
Pesticides continue to pose a threat to surface water quality worldwide. Here, we present a spatial Bayesian belief network (BBN) for assessing inherent pesticide risk to water quality. The BBN was applied in a small catchment with limited data to simulate the risk of five pesticides and evaluate the likely effectiveness of mitigation measures. The probabilistic graphical model combines diverse data and explicitly accounts for uncertainties, which are often ignored in pesticide risk assessments.
Ida Karlsson Seidenfaden, Torben Obel Sonnenborg, Jens Christian Refsgaard, Christen Duus Børgesen, Jørgen Eivind Olesen, and Dennis Trolle
Hydrol. Earth Syst. Sci., 26, 955–973, https://doi.org/10.5194/hess-26-955-2022, https://doi.org/10.5194/hess-26-955-2022, 2022
Short summary
Short summary
This study investigates how the spatial nitrate reduction in the subsurface may shift under changing climate and land use conditions. This change is investigated by comparing maps showing the spatial nitrate reduction in an agricultural catchment for current conditions, with maps generated for future projected climate and land use conditions. Results show that future climate flow paths may shift the catchment reduction noticeably, while implications of land use changes were less substantial.
Oleksandr Mialyk, Joep F. Schyns, Martijn J. Booij, and Rick J. Hogeboom
Hydrol. Earth Syst. Sci., 26, 923–940, https://doi.org/10.5194/hess-26-923-2022, https://doi.org/10.5194/hess-26-923-2022, 2022
Short summary
Short summary
As the global demand for crops is increasing, it is vital to understand spatial and temporal patterns of crop water footprints (WFs). Previous studies looked into spatial patterns but not into temporal ones. Here, we present a new process-based gridded crop model to simulate WFs and apply it for maize in 1986–2016. We show that despite the average unit WF reduction (−35 %), the global WF of maize production has increased (+50 %), which might harm ecosystems and human livelihoods in some regions.
Wouter J. Smolenaars, Sanita Dhaubanjar, Muhammad K. Jamil, Arthur Lutz, Walter Immerzeel, Fulco Ludwig, and Hester Biemans
Hydrol. Earth Syst. Sci., 26, 861–883, https://doi.org/10.5194/hess-26-861-2022, https://doi.org/10.5194/hess-26-861-2022, 2022
Short summary
Short summary
The arid plains of the lower Indus Basin rely heavily on the water provided by the mountainous upper Indus. Rapid population growth in the upper Indus is expected to increase the water that is consumed there. This will subsequently reduce the water that is available for the downstream plains, where the population and water demand are also expected to grow. In future, this may aggravate tensions over the division of water between the countries that share the Indus Basin.
Yaogeng Tan, Zengchuan Dong, Sandra M. Guzman, Xinkui Wang, and Wei Yan
Hydrol. Earth Syst. Sci., 25, 6495–6522, https://doi.org/10.5194/hess-25-6495-2021, https://doi.org/10.5194/hess-25-6495-2021, 2021
Short summary
Short summary
The rapid increase in economic development and urbanization is contributing to the imbalances and conflicts between water supply and demand and further deteriorates river ecological health, which intensifies their interactions and causes water unsustainability. This paper proposes a methodology for sustainable development of water resources, considering socioeconomic development, food safety, and ecological protection, and the dynamic interactions across those water users are further assessed.
Sara Modanesi, Christian Massari, Alexander Gruber, Hans Lievens, Angelica Tarpanelli, Renato Morbidelli, and Gabrielle J. M. De Lannoy
Hydrol. Earth Syst. Sci., 25, 6283–6307, https://doi.org/10.5194/hess-25-6283-2021, https://doi.org/10.5194/hess-25-6283-2021, 2021
Short summary
Short summary
Worldwide, the amount of water used for agricultural purposes is rising and the quantification of irrigation is becoming a crucial topic. Land surface models are not able to correctly simulate irrigation. Remote sensing observations offer an opportunity to fill this gap as they are directly affected by irrigation. We equipped a land surface model with an observation operator able to transform Sentinel-1 backscatter observations into realistic vegetation and soil states via data assimilation.
Alexis Jeantet, Hocine Henine, Cédric Chaumont, Lila Collet, Guillaume Thirel, and Julien Tournebize
Hydrol. Earth Syst. Sci., 25, 5447–5471, https://doi.org/10.5194/hess-25-5447-2021, https://doi.org/10.5194/hess-25-5447-2021, 2021
Short summary
Short summary
The hydrological subsurface drainage model SIDRA-RU is assessed at the French national scale, using a unique database representing the large majority of the French drained areas. The model is evaluated following its capacity to simulate the drainage discharge variability and the annual drained water balance. Eventually, the temporal robustness of SIDRA-RU is assessed to demonstrate the utility of this model as a long-term management tool.
Nariman Mahmoodi, Jens Kiesel, Paul D. Wagner, and Nicola Fohrer
Hydrol. Earth Syst. Sci., 25, 5065–5081, https://doi.org/10.5194/hess-25-5065-2021, https://doi.org/10.5194/hess-25-5065-2021, 2021
Short summary
Short summary
In this study, we assessed the sustainability of water resources in a wadi region with the help of a hydrologic model. Our assessment showed that the increases in groundwater demand and consumption exacerbate the negative impact of climate change on groundwater sustainability and hydrologic regime alteration. These alterations have severe consequences for a downstream wetland and its ecosystem. The approach may be applicable in other wadi regions with different climate and water use systems.
Cited articles
Almasri, M. N. and Kaluarachchi, J. J.: Multi-criteria decision analysis for the optimal management of nitrate contamination of aquifers, J. Environ. Manage., 74, 365–381, 2005.
Anderson, R. M. and Clemens, R.: Toward an improved methodology to construct and reconcile decision analytic preference judgments, Decis. Anal., 10, 121–134, 2013.
Armitage, D., Plummer, R., Fikret, B., Arthur, R. I., Charles, A. T., Davidson-Hunt, I. J., Diduck, A. P., Doubleday, N. C., Johnson, D. S., Marschke, M., McConney, P., Pinkerton, E. W., and Wollenberg, E. K.: Adaptive co-management for social-ecological complexity, Front. Ecol. Environ., 7, 95–102, 2009.
Belton, V. and Stewart, T. J.: Multiple Criteria Decision analysis – An Integrated approach, Kluwer Academic publisher, Norwell, Massachusetts, USA, 2002.
Booth, A. and Halseth, G.: Why the public thinks natural resources public participation processes fail: A case study of British Columbia communities, Land Use Policy, 28, 898–906, 2011.
Brown, B., Neil-Adger, W., Tompkins, E., Bacon, P., Shim, D., and Young, K.: Trade-off analysis for marine protected area management, Ecol. Econ., 37, 417–434, 2001.
Burgess, J., Stirling, A., Clark, J., Davies, G., Eames, M., Staley, K., and Williamson, S.: Deliberative mapping: a novel analytic-deliberative methodology to support contested science-policy decisions, Publ. Understand. Sci., 16, 299–322, 2007.
Calizaya, A., Meixner, O., Bengtsson, L., and Berndtsson, R.: Multi-criteria Decision Analysis (MCDA) for Integrated Water Resources Management (IWRM) in the Lake Poopo Basin, Bolivia, Water Resour. Manage., 24, 2267–2289, 2010.
Coelho, A. N., Labadie, J. W., and Fontane, D. L. G.: Multicriteria Decision Support System for Regionalization of Integrated Water Resources Management, Water Resour. Manage., 26, 1325–1346, 2012.
Duckstein, L., Treichel, W., and Magnouni, S.: Ranking Ground-water Management Alternatives by Multicriterion Analysis, J. Water Resour. Pl. Manage., 120, 546–565, 1994.
Eskelinen, R.: Development and utilization of GIS based groundwater discharge prediction method, master's thesis, University of Oulu, Finland, 78 pp., 2011.
Gregory, R., Failing, L., Harstone, M., Long, G., McDaniels, T., and Ohlson, D.: Structured Decision Making: A Practical Guide to Environmental Management Choices, John Wiley & Sons Ltd, Chichester, 2012.
Hajkowicz, S. and Collins, K.: A Review of multiple criteria analysis for water resource planning and management, Water Resour. Manage., 21, 1553–1566, 2007.
Hämäläinen, R. P.: Reversing the perspective on the applications of decision analysis, Decis. Anal., 1, 26–31, 2004.
Hostmann, M., Borsuk, M., Reichert, P., and Truffer, B.: Stakeholder values in decision support for river rehabilitation, Arch. Hydrobiol. Suppl., 155, 491–505, 2005a.
Hostmann, M., Bernauer, T., Mosler, H., Reichert, P., and Truffer, B.: Multi-attribute value theory as a framework for conflict resolution in river rehabilitation, J. Multi-Crit. Decis. Anal., 13, 91–102, 2005b.
Huang, I. B., Keisler, J., and Linkov, I.: Multi-criteria decision analysis in environmental sciences: Ten years of applications and trends, Sci. Total Environ., 409, 3578–3594, 2011.
Jurvakainen, A.: Developing tourism from a sustainable developement viewpoint: Regional environmental management system of Rokua, licentiate thesis, University of Oulu, Finland, 2007.
Kain, J.-H. and Söderberg, H.: Management of complex knowledge in planning for sustainable development: The use of multi-criteria decision aids, Environ. Impact Assess. Rev., 28, 7–21, 2008.
Kangas, J., Kangas, A., Leskinen, P., and Pykäläinen, J.: MCDM methods in strategic planning of forestry on state-owned lands in Finland: applications and experiences, J. Multi-Crit. Decis. Anal., 10, 257–271, 2001.
Kangas, A., Kangas, J., and Kurttila, M.: Decision support for forest management, Managing Forest Ecosystems, Vol. 16, Springer, 2008.
Karjalainen, T. P., Marttunen, M., Sarkki, S., and Rytkönen, A.-M.: Integrating ecosystem services into environmental impact assessment: an analytic-deliberative approach, Environ. Impact Assess., 40, 54–64, 2013.
Keefer, D. L., Kirkwood, C. W., and Corner, J. L.: Perspective on decision analysis applications, 1990–2001 (and comments by Cantor, S. B. and Hamalainen, R. P.), Decis. Anal., 1, 4–34, 2004.
Keeney, R. L. and Raiffa, H.: Decisions with multiple objectives: Preferences and value tradeoffs, John Wiley & Sons, New York, 1976.
Kiker, G. A., Bridges, T. S., Varghese, A., Seager, T. P., and Linkov, I.: Application of multicriteria decision analysis in environmental decision making, Integr. Environ. Assess. Manage., 1, 95–108, 2005.
Kløve, B., Ala-aho, P., Bertrand, G., Boukalova, Z., Ertürk, A., Goldscheider, N., Ilmonen, J., Karakaya, N., Kupfersberger, H., Kvœrner, J., Lundberg, A., Mileusnić, M., Moszczynska, A., Muotka, T., Preda, E., Rossi, P., Siergieiev, D., Šimek, J., Wachniew, P., Angheluta, V., and Widerlund, A.: Groundwater dependent ecosystems, Part I: Hydroecological status and trends, Environ. Sci. Policy, 14, 770–781, 2011a.
Kløve, B., Allan, A., Bertrand, G., Druzynska, E., Ertürk, A., Goldscheider, N., Henry, S., Karakaya, N., Karjalainen, T. P., Koundouri, P., Kupfersberger, H., Kvœrner, J., Lundberg, A., Muotka, T., Preda, E., Pulido-Velazquez, M. and Schipper, P.: Groundwater dependent ecosystems, Part II: Ecosystem services and management in Europe under risk of climate change and land use intensification, Environ. Sci. Policy, 14, 782–793, 2011b.
Marttunen, M.: Interactive Multi-Criteria Decision Analysis in the Collaborative Management of Watercourses, Ph.D. thesis, Aalto University, Helsinki, Finland, 160 pp., 2011.
Marttunen, M. and Hämäläinen, R.: The Decision Analysis Interview Approach in the Collaborative Management of a Large Regulated Water Course, Environ. Manage., 42, 1026–1042, 2008.
Marttunen, M. and Suomalainen, M.: Participatory and multiobjective development of watercourse regulation – creation of regulation alternatives from stakeholders' preferences, J. Multi-Crit. Decis. Anal., 13, 29–49, 2005.
Marttunen, M., Mustajoki, J., Dufva, M., and Karjalainen, T. P.: How to design and realize participation of stakeholders in MCDA processes? A framework for selecting an appropriate approach, EURO J. Decis. Process., 1–28, 2013.
McPhee, J. and Yeh, W.: Multiobjective Optimization for Sustainable Groundwater Management in Semiarid Regions, J. Water Resour. Pl. Manage., 130, 490–497, 2004.
Messner, F., Zwirner, O., and Karkuschke, M.: Participation in multi-criteria decision support for the resolution of a water allocation problem in the Spree River basin, Land Use Policy, 23, 63–75, 2006.
Munda, G.: Social Multi-Criteria Evaluation for a Sustainable Economy, Springer-Verlag, Berlin, 2008.
Mustajoki, J. and Hämäläinen, R. P.: Web-HIPRE: Global decision support by value tree and AHP analysis, INFOR, 38, 208–220, 2000.
Mustajoki, J., Saarikoski, H., Marttunen, M., Ahtikoski, A., Hallikainen, V., Helle, T., Hyppönen, M., Jokinen, M., Naskali, A., Tuulentie, S., Varmola, M., Vatanen, E., and Ylisirniö, A.: Use of decision analysis interviews to support the sustainable use of the forests in Finnish Upper Lapland, J. Environ. Manage., 92, 1550–1563, 2011.
Pahl-Wostl, C., Holtz, G., Kastens, B., and Knieper, C.: Analyzing complex water governance regimes: the Management and Transition Framework, Environ. Sci. Policy, 13, 571–581, 2010.
Phillips, L.-D. and Phillips, M. C.: Faciliated Work Groups: Theory and Practice, J. Operat. Res. Soc., 44, 533–549, 1993.
Pykäläinen, J., Kangas, J., and Loikkanen, T.: Interactive decision analysis in participatory strategic forest planning: Experiences from state owned boreal, J. Forest Econom., 5, 341–364, 1999.
Qureshi, M. E. and Harrison, S. R.: A decision support process to compare Riparian revegetation options in Scheu Creek catchment in North Queensland, J. Environ. Manage., 62, 101–112, 2001.
Rauschmayer, F. and Wittmer, H.: Evaluation deliberative and analytical methods for the resolution of environmental conflicts, Land Use Policy, 23, 108–122, 2006.
Reed, M. S., Evely, A. C., Cundill, G., Fazey, I., Glass, J. H., Laing, A., Newig, J., Parrish, B., Prell, C., Raymond, C., and Stringer, L. C.: What is social learning?, Ecol. Soc., 15, http://www.ecologyandsociety.org/vol15/iss4/resp1/ (last access: December 2013), 2010.
Regan, H., Davis, F., Andelman, S., Widyanata, A., and Freese, M.: Comprehensive criteria for biodiversity evaluation in conservation planning, Biodivers. Conserv., 16, 2715–2728, 2007.
Reichert, P., Schuwirth, N., and Langhans, S.: Constructing, evaluating and visualizing value and utility functions for decision support, Environ. Model. Softw., 46, 283–291, 2013.
Renn, O.: The Challenge of Integrating Deliberation and Expertise: Participation and Discourse in Risk Management, in: Risk Analysis and Society, An Interdisciplinary Characterization of the Field, edited by: McDaniels, T. and Small, M. J., Cambridge, Mass., 289–366, 2004.
Renn, O.: Participatory processes for designing environmental policies, Land Use Policy, 23, 34–43, 2006.
Rodela, R., Cundill, G., and Wals, A. E. J.: An analysis of the methodological underpinnings of social learning research in natural resource management, Ecol. Econ., 77, 16–26, 2012.
Rossi, P. M., Ala-aho, P., Ronkanen, A., and Kløve, B.: Groundwater–surface water interaction between an esker aquifer and a drained fen, J. Hydrol., 432–433, 52–60, 2012.
Salgado, P., Quintana, C. S., Pereira, A. G., del Moral Ituarte, L., and Mateos, B. P.: Participative multi-criteria analysis for the evaluation of water governance alternatives: A case in the Costa del Sol (Malaga), Ecol. Econ., 68, 990–1005, 2009.
Silva, V. S., Morais, D., and Almeida, A.: A Multicriteria Group Decision Model to Support Watershed Committees in Brazil, Water Resour. Manage., 24, 4075–4091, 2010.
Sparrevik, M., Barton, D. N., Oen, A. M., Sehkar, N. U., and Linkov, I.: Use of multicriteria involvement processes to enhance transparency and stakeholder participation at Bergen Harbor, Norway, Integr. Environ. Assess. Manage., 7, 414–425, 2011.
Straton, A., Jackson, S., Marinoni, O., Proctor, W., and Woodward, E.: Exploring and Evaluating Scenarios for a River Catchment in Northern Australia Using Scenario Development, Multi-criteria Analysis and a Deliberative Process as a Tool for Water Planning, Water Resour. Manage., 25, 141–164, 2011.
Turnhout, E., Hisschemöller, M., and Eijsackers, H.: Science in Wadden Sea policy: from accommodation to advocacy, Environ. Sci. Policy, 11, 227–239, 2008.
von Winterfeldt, D. and Edwards, W.: Decision Analysis and Behavioral Research, Cambridge University Press, Cambridge, 1986.
Wada, Y., van Beek, L. P. H., van Kempen, C. M., Reckman, J. W. T. M., Vasak, S., and Bierkens, M. F. P.: Global depletion of groundwater resources, Geophys. Res. Lett., 37, L20402, https://doi.org/10.1029/2010GL044571, 2010.
Weng, S. Q., Huang, G. H., and Li, Y. P.: An integrated scenario-based multi-criteria decision support system for water resources management and planning – A case study in the Haihe River Basin, Expert Syst. Appl., 37, 8242–8254, 2010.
Willis, R. and Liu, P.: Optimization Model for Ground-Water Planning, J. Water Resour. Pl. Manage., 110, 333–347, 1984.
Yang, Y. S., Kalin, R. M., Zhang, Y., Lin, X., and Zou, L.: Multi-objective optimization for sustainable groundwater resource management in a semiarid catchment, Hydrolog. Sci. J., 46, 55–72, 2001.
Yazicigil, H.: Optimal Planning and Operation of Multiaquifer System, J. Water Resour. Pl. Manage., 116, 435–454, 1990.