Articles | Volume 17, issue 12
Hydrol. Earth Syst. Sci., 17, 5109–5125, 2013
https://doi.org/10.5194/hess-17-5109-2013
Hydrol. Earth Syst. Sci., 17, 5109–5125, 2013
https://doi.org/10.5194/hess-17-5109-2013
Research article
17 Dec 2013
Research article | 17 Dec 2013

From maps to movies: high-resolution time-varying sensitivity analysis for spatially distributed watershed models

J. D. Herman et al.

Related authors

Governing change: a dynamical systems approach to understanding the stability of environmental governance
Nusrat Molla, John DeIonno, Thilo Gross, and Jonathan Herman
Earth Syst. Dynam., 13, 1677–1688, https://doi.org/10.5194/esd-13-1677-2022,https://doi.org/10.5194/esd-13-1677-2022, 2022
Short summary
Coupled effects of observation and parameter uncertainty on urban groundwater infrastructure decisions
Marina R. L. Mautner, Laura Foglia, and Jonathan D. Herman
Hydrol. Earth Syst. Sci., 26, 1319–1340, https://doi.org/10.5194/hess-26-1319-2022,https://doi.org/10.5194/hess-26-1319-2022, 2022
Short summary
Spatially distributed sensitivity of simulated global groundwater heads and flows to hydraulic conductivity, groundwater recharge, and surface water body parameterization
Robert Reinecke, Laura Foglia, Steffen Mehl, Jonathan D. Herman, Alexander Wachholz, Tim Trautmann, and Petra Döll
Hydrol. Earth Syst. Sci., 23, 4561–4582, https://doi.org/10.5194/hess-23-4561-2019,https://doi.org/10.5194/hess-23-4561-2019, 2019
Short summary
Flood and drought hydrologic monitoring: the role of model parameter uncertainty
N. W. Chaney, J. D. Herman, P. M. Reed, and E. F. Wood
Hydrol. Earth Syst. Sci., 19, 3239–3251, https://doi.org/10.5194/hess-19-3239-2015,https://doi.org/10.5194/hess-19-3239-2015, 2015
Short summary
Technical Note: Method of Morris effectively reduces the computational demands of global sensitivity analysis for distributed watershed models
J. D. Herman, J. B. Kollat, P. M. Reed, and T. Wagener
Hydrol. Earth Syst. Sci., 17, 2893–2903, https://doi.org/10.5194/hess-17-2893-2013,https://doi.org/10.5194/hess-17-2893-2013, 2013

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Uncertainty analysis
Use of expert elicitation to assign weights to climate and hydrological models in climate impact studies
Eva Sebok, Hans Jørgen Henriksen, Ernesto Pastén-Zapata, Peter Berg, Guillaume Thirel, Anthony Lemoine, Andrea Lira-Loarca, Christiana Photiadou, Rafael Pimentel, Paul Royer-Gaspard, Erik Kjellström, Jens Hesselbjerg Christensen, Jean Philippe Vidal, Philippe Lucas-Picher, Markus G. Donat, Giovanni Besio, María José Polo, Simon Stisen, Yvan Caballero, Ilias G. Pechlivanidis, Lars Troldborg, and Jens Christian Refsgaard
Hydrol. Earth Syst. Sci., 26, 5605–5625, https://doi.org/10.5194/hess-26-5605-2022,https://doi.org/10.5194/hess-26-5605-2022, 2022
Short summary
Pitfalls and a feasible solution for using KGE as an informal likelihood function in MCMC methods: DREAM(ZS) as an example
Yan Liu, Jaime Fernández-Ortega, Matías Mudarra, and Andreas Hartmann
Hydrol. Earth Syst. Sci., 26, 5341–5355, https://doi.org/10.5194/hess-26-5341-2022,https://doi.org/10.5194/hess-26-5341-2022, 2022
Short summary
Benchmarking global hydrological and land surface models against GRACE in a medium-sized tropical basin
Silvana Bolaños Chavarría, Micha Werner, Juan Fernando Salazar, and Teresita Betancur Vargas
Hydrol. Earth Syst. Sci., 26, 4323–4344, https://doi.org/10.5194/hess-26-4323-2022,https://doi.org/10.5194/hess-26-4323-2022, 2022
Short summary
Guidance on evaluating parametric model uncertainty at decision-relevant scales
Jared D. Smith, Laurence Lin, Julianne D. Quinn, and Lawrence E. Band
Hydrol. Earth Syst. Sci., 26, 2519–2539, https://doi.org/10.5194/hess-26-2519-2022,https://doi.org/10.5194/hess-26-2519-2022, 2022
Short summary
Quantifying input uncertainty in the calibration of water quality models: reordering errors via the secant method
Xia Wu, Lucy Marshall, and Ashish Sharma
Hydrol. Earth Syst. Sci., 26, 1203–1221, https://doi.org/10.5194/hess-26-1203-2022,https://doi.org/10.5194/hess-26-1203-2022, 2022
Short summary

Cited articles

Alton, P., Mercado, L., and North, P.: A sensitivity analysis of the land-surface scheme JULES conducted for three forest biomes: Biophysical parameters, model processes, and meteorological driving data, Global Biogeochem. Cy., 20, GB1008, https://doi.org/10.1029/2005GB002653, 2006.
Bastidas, L., Hogue, T., Sorooshian, S., Gupta, H., and Shuttleworth, W.: Parameter sensitivity analysis for different complexity land surface models using multicriteria methods, J. Geophys. Res., 111, 20101, https://doi.org/10.1029/2005JD006377, 2006.
Burnash, R. and Singh, V.: The NWS River Forecast System–Catchment Modeling, in: Computer Models of Watershed Hydrology, 311–366, Water Resour. Publ., Littleton, Colorado, 1995.
Campolongo, F., Cariboni, J., and Saltelli, A.: An effective screening design for sensitivity analysis of large models, Environ. Modell. Softw., 22, 1509–1518, 2007.
Campolongo, F., Saltelli, A., and Cariboni, J.: From screening to quantitative sensitivity analysis, A unified approach, Computer Phys. Commun., 182, 978–988, 2011.
Download