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Abstract. Distributed watershed models are now widely
used in practice to simulate runoff responses at high spa-
tial and temporal resolutions. Counter to this purpose, di-
agnostic analyses of distributed models currently aggregate
performance measures in space and/or time and are thus
disconnected from the models’ operational and scientific
goals. To address this disconnect, this study contributes a
novel approach for computing and visualizing time-varying
global sensitivity indices for spatially distributed model pa-
rameters. The high-resolution model diagnostics employ the
method of Morris to identify evolving patterns in dominant
model processes at sub-daily timescales over a six-month
period. The method is demonstrated on the United States
National Weather Service’s Hydrology Laboratory Research
Distributed Hydrologic Model (HL-RDHM) in the Blue
River watershed, Oklahoma, USA. Three hydrologic events
are selected from within the six-month period to investigate
the patterns in spatiotemporal sensitivities that emerge as a
function of forcing patterns as well as wet-to-dry transitions.
Events with similar magnitudes and durations exhibit signif-
icantly different performance controls in space and time, in-
dicating that the diagnostic inferences drawn from represen-
tative events will be heavily biased by the a priori selection
of those events. By contrast, this study demonstrates high-
resolution time-varying sensitivity analysis, requiring no as-
sumptions regarding representative events and allowing mod-
elers to identify transitions between sets of dominant param-
eters or processes a posteriori. The proposed approach de-
tails the dynamics of parameter sensitivity in nearly contin-
uous time, providing critical diagnostic insights into the un-
derlying model processes driving predictions. Furthermore,

the approach offers the potential to identify transition points
between dominant parameters and processes in the absence
of observations, such as under nonstationarity.

1 Introduction

Distributed rainfall–runoff models allow model parameters
and forcing data to vary on a spatial grid, aiming to better
represent the spatial variability of watershed processes at the
cost of increasing model complexity. This added complexity
poses several key challenges, most notably: (1) the difficulty
of identifying appropriate parameter sets in a highly inter-
active, nonlinear, multimodal objective space (Gupta et al.,
1998; Carpenter et al., 2001), and (2) the related difficulty
of tracing the causes of desirable or undesirable model per-
formance (i.e., diagnosing model behavior) (van Griensven
et al., 2006; Gupta et al., 2008; Reusser et al., 2009). Consid-
ering the widespread operational use of distributed watershed
models, there remains a need for diagnostic methods capa-
ble of studying such models at their full spatial and temporal
complexity by avoiding aggregation in either dimension to
the extent permitted by computational constraints.

Sensitivity analysis is a foundational diagnostic approach
in the hydrologic modeling literature, (e.g.,Hornberger and
Spear, 1981; Franchini et al., 1996; Freer et al., 1996; Wa-
gener et al., 2001; Muleta and Nicklow, 2005; Sieber and Uh-
lenbrook, 2005; Bastidas et al., 2006; Demaria et al., 2007;
Cloke et al., 2008; Van Werkhoven et al., 2008a, 2009; Wa-
gener et al., 2009a; Reusser et al., 2011; Reusser and Zehe,
2011; Herman et al., 2013a, b). However, very few studies
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have performed global sensitivity analysis for spatially dis-
tributed watershed models due to the computational demands
posed by the high dimension of their parameter spaces. Sen-
sitivity analyses of distributed hydrologic and land surface
models have frequently addressed this problem by aggregat-
ing parameter values across the model grid or subgrids (e.g.,
Carpenter et al., 2001; Hall et al., 2005; Sieber and Uhlen-
brook, 2005; Zaehle et al., 2005; Alton et al., 2006; Cuo
et al., 2011; Guse et al., 2013). Few studies have performed
global sensitivity analysis on a full set of spatially distributed
parameters. The studies that do exist have been limited to
event-scale analyses, which reported highly complex spatial
sensitivities arising from the interplay between forcing het-
erogeneity, proximity to observations, and the timescale of
model performance metrics explored (e.g.,Muleta and Nick-
low, 2005; van Griensven et al., 2006; Tang et al., 2007;
Van Werkhoven et al., 2008b; Yatheendradas et al., 2008).
Although these studies suggest the potential for time-varying
spatial-sensitivity analyses, computational demands limited
their exploration of this issue.

More recent studies have explored time-varying sensitivi-
ties at predefined intervals throughout the model simulation,
revealing the dynamics of model controls under changing
conditions (e.g.,Wagener et al., 2003; Van Werkhoven et al.,
2008a; Reusser and Zehe, 2011; Reusser et al., 2011; Her-
man et al., 2013b). This approach has largely been limited to
lumped models, with the exception ofReusser et al.(2011)
which analyzed a spatially explicit model. The studies that
have focused on event-scale spatial sensitivities (Tang et al.,
2007; Van Werkhoven et al., 2008b; Wagener et al., 2009b;
Herman et al., 2013a) have proposed using observations to
identify representative events for a watershed, a valid con-
cept as long as such representative events exist. However, if
the dynamics of a watershed cannot be accurately restricted
to one of several event classifications, the a priori selection
of representative events introduces diagnostic biases that fail
to account for the full range of process variability. In this
work, we aim to extend the event-scale approach to explore
the dynamic controls of a distributed watershed model at a
finely resolved sub-daily time step, as well as to advance
methods capable of computing and visualizing the results of
this analysis.

This study proposes high-resolution time-varying sensitiv-
ity analysis for a spatially distributed rainfall–runoff model,
avoiding the biases introduced by representative event selec-
tion by identifying key transitions between dominant param-
eters and processes a posteriori. These parameters dominate
the performance of the model at a particular time, distinct
from the true dominant watershed processes independent of
our modeling efforts. Our high-resolution global sensitivity
analysis employs the method ofMorris (1991), which has re-
cently been shown to attain accurate spatially distributed sen-
sitivities at substantially lower computational expense than
Sobol′ variance decomposition over a temporally aggregated
six-month time period (Herman et al., 2013a). The high-

resolution sensitivity analysis is applied to the Hydrology
Laboratory Research Distributed Hydrologic Model (HL-
RDHM) (Koren et al., 2004; Reed et al., 2004; Smith et al.,
2004; Moreda et al., 2006), developed by the United States
National Weather Service (NWS). The model test case fo-
cuses on the Blue River basin, Oklahoma, USA, over a six-
month period using hourly time steps and spatially gridded
forcing data. The sensitivity of model performance metrics
is computed for the full period, the event scale, and a high-
resolution moving window with a 3 h time step to demon-
strate the benefit of investigating the full dynamics of spa-
tially distributed model controls. This approach represents a
novel, computationally efficient contribution to identify the
dynamics of dominant model drivers under changing hydro-
logic conditions for highly parameterized distributed water-
shed models.

2 Methods

2.1 HL-RDHM model

The HL-RDHM is a distributed rainfall–runoff model with
surface-connected grid cells (Koren et al., 2004; Reed et al.,
2004; Smith et al., 2004; Moreda et al., 2006). The model is
structured using a 4 km× 4 km grid resolution derived from
the Hydrologic Rainfall Analysis Project (HRAP), corre-
sponding to the NEXRAD precipitation products developed
by the US NWS. The water balance in each grid cell is mod-
eled with the Sacramento soil-moisture accounting (SAC-
SMA) model (Burnash and Singh, 1995), which is widely
used in practice by the NWS river forecast centers (Smith
et al., 2004; Reed et al., 2004; Moreda et al., 2006). Fig-
ure 1c shows the water balance components of the SAC-
SMA model in each grid cell, including impervious area pa-
rameters (PCTIM and ADIMP), the upper and lower storage
zones (UZ– and LZ–), and the percolation functions connect-
ing the upper and lower zones (ZPerc, RExp, andPFree). Rout-
ing between grid cells is modeled with a kinematic wave ap-
proximation to the St. Venant equations. This study performs
sensitivity analysis on the 14 parameters defined in Table1
for the SAC-SMA model. These 14 parameters are allowed to
vary independently within each of the 78 cells of the HRAP
grid shown in Fig.1c, yielding 1092 parameters in total for
the diagnostic analysis.

Herman et al.(2013b) showed that time-varying parame-
ter sensitivity can be linked to the underlying mechanisms
of a model. Here, studying the formulation of the SAC-SMA
model allows the development of hypotheses regarding the
expected parameter sensitivities, and how these might change
in space and time. At each time step, evaporation first oc-
curs from the additional impervious stores, both upper zone
stores, and the lower zone tension store. In all cases, evapo-
ration is proportional to the saturation level of the storage el-
ement. Next, direct runoff occurs from the impervious area,
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Fig. 1. (A) Location of the Blue River Basin in southern Oklahoma, USA. (B) The 78 HRAP grid cells of the Blue River Basin (shaded).
(C) The Sacramento Soil Moisture Accounting (SAC-SMA) model, which simulates the water balance in each grid cell.

are exceeded (LZTWM, LZFSM, and LZFPM), but otherwise
excess from any of the lower zones will spill into another.

After the runoff generation mechanisms have occurred,
each timestep of the model concludes with a redistribution
of water between stores according to their saturation levels.
First, any deficiencies in the upper and lower tension stores
are filled by the free water in their respective zones. Next,
percolation occurs from the upper zone free water store to
the lower zone based on the saturation level of the lower
zone. It is important to note that the lower zone controls per-
colation in the SAC-SMA model, unlike many other water
balance models where percolation is equivalent to spillover
from the upper zone. The amount of percolation varies with
the parameters ZPerc, the maximum percolation rate under
dry conditions, and RExp, the unitless exponent of the per-
colation equation (Koren et al., 2004). Finally, the parameter
PFree determines the fraction of percolation that enters the
primary and secondary free water stores in the lower zone.

From this description of model mechanisms, we can hy-
pothesize which parameters might be most sensitive in space
and time. During and immediately after precipitation events,
the parameters associated with quick responses should be
most sensitive. This includes the impervious area parame-
ters and the upper and lower zone storage maxima, which
can cause direct runoff via overflow. We might expect these

sensitive parameters to be spatially concentrated near the out-
let of the watershed, since only this area will have sufficient
time to contribute to streamflow while the event is occurring.
Between precipitation events, the primary streamflow gen-
eration mechanism will be drainage from the storage zones,
controlled by the rate constants UZK, LZPK, and LZSK; we
would expect these to be most sensitive in the time follow-
ing an event, and with a broader spatial distribution to re-
flect their slower response. As found in prior work (Her-
man et al., 2013b), the percolation parameters are unlikely
to be highly sensitive at any time, for two reasons. First,
the amount of percolation is controlled by the moisture defi-
ciency in the lower zone, so the parameter LZTWM (for ex-
ample) has more influence on the magnitude of percolation
than do the percolation parameters themselves. Second, the
percolation parameters do not contribute directly to stream-
flow, so their signature may be obscured by intermediate pro-
cesses. In general, we expect the lower zone parameters to
exhibit higher sensitivity over the course of the simulation
than upper zone parameters, because the lower zone defi-
ciencies are filled first during the redistribution routine. It
is important to note that the spatiotemporal parameter sensi-
tivities will depend on the metric chosen. For example, the
sensitivity of the root mean squared error metric on a short
timescale will emphasize transitions between quick-response

Fig. 1. (A) Location of the Blue River basin in southern Oklahoma, USA.(B) The 78 HRAP grid cells of the Blue River basin (shaded).(C)
The Sacramento soil-moisture accounting (SAC-SMA) model, which simulates the water balance in each grid cell.

specified by PCTIM, and the additional impervious area due
to saturation, specified by ADIMP. Precipitation not assigned
to direct runoff enters the upper zone free water store. Grav-
ity drainage occurs from the upper and lower zones according
to the rate constants UZK, LZPK, and LZSK, and is linearly
proportional to the amount of water in each respective store.
Finally, runoff is also generated when the storage capacity
of the upper zone (UZFWM) is exceeded. The same process
occurs when all of the lower zone storage capacities are ex-
ceeded (LZTWM, LZFSM, and LZFPM), but otherwise ex-
cess from any of the lower zones will spill into another.

After the runoff generation mechanisms have occurred,
each time step of the model concludes with a redistribution
of water between stores according to their saturation levels.
First, any deficiencies in the upper and lower tension stores
are filled by the free water in their respective zones. Next,
percolation occurs from the upper zone free water store to
the lower zone based on the saturation level of the lower
zone. It is important to note that the lower zone controls per-
colation in the SAC-SMA model, unlike many other water
balance models where percolation is equivalent to spillover
from the upper zone. The amount of percolation varies with
the parametersZPerc, the maximum percolation rate under
dry conditions, andRExp, the unitless exponent of the per-
colation equation (Koren et al., 2004). Finally, the parameter

PFree determines the fraction of percolation that enters the
primary and secondary free water stores in the lower zone.

From this description of model mechanisms, we can hy-
pothesize which parameters might be most sensitive in space
and time. During and immediately after precipitation events,
the parameters associated with quick responses should be
most sensitive. This includes the impervious area parame-
ters and the upper and lower zone storage maxima, which
can cause direct runoff via overflow. We might expect these
sensitive parameters to be spatially concentrated near the out-
let of the watershed, since only this area will have sufficient
time to contribute to streamflow while the event is occurring.
Between precipitation events, the primary streamflow gen-
eration mechanism will be drainage from the storage zones,
controlled by the rate constants UZK, LZPK, and LZSK; we
would expect these to be most sensitive in the time follow-
ing an event, and with a broader spatial distribution to reflect
their slower response. As found in prior work (Herman et al.,
2013b), the percolation parameters are unlikely to be highly
sensitive at any time, for two reasons. First, the amount of
percolation is controlled by the moisture deficiency in the
lower zone, so the parameter LZTWM (for example) has
more influence on the magnitude of percolation than do
the percolation parameters themselves. Second, the percola-
tion parameters do not contribute directly to streamflow, so
their signature may be obscured by intermediate processes.

www.hydrol-earth-syst-sci.net/17/5109/2013/ Hydrol. Earth Syst. Sci., 17, 5109–5125, 2013



5112 J. D. Herman et al.: High-resolution spatiotemporal diagnostics

In general, we expect the lower zone parameters to exhibit
higher sensitivity over the course of the simulation than up-
per zone parameters, because the lower zone deficiencies are
filled first during the redistribution routine. It is important to
note that the spatiotemporal parameter sensitivities will de-
pend on the metric chosen. For example, the sensitivity of the
root mean squared error metric on a short timescale will em-
phasize transitions between quick-response processes, while
a water balance error metric on a longer timescale will cap-
ture the integrated effects of interacting states and fluxes.

2.2 Study area: Blue River, Oklahoma

This study focuses on the Blue River basin in southern Ok-
lahoma, USA, building on its inclusion in the Distributed
Model Inter-comparison Project Phase 2 (DMIP2) (Smith
et al., 2012). Figure1a shows the location of the Blue River
in Oklahoma. The watershed is represented by 78 HRAP grid
cells, as shown in Fig.1b, resulting in a total basin area of
1248 km2. The model was forced using hourly NEXRAD
precipitation data over the six-month period from 16 Novem-
ber 2000 to 15 May 2001, preceded by a 3 week warmup
period. Figure2 shows the hourly precipitation and stream-
flow data for the Blue River during the selected simulation
period. The selected period reflects a significant wet-to-dry
transition during the six-month period, increasing the effi-
cacy of the model warmup. The time period selection was
also influenced by the availability of hourly NEXRAD data.
The vertical axis of Fig.2 contains the 78 HRAP grid cells of
the watershed, arranged according to distance from the out-
let cell. As Fig.2 indicates, the Blue River basin experiences
a series of large rainfall events early in the period before en-
tering a long dry period in the late spring.

We begin by computing parameter sensitivity over the full
simulation period. Then, in order to explore the potential
consequences of event-scale diagnostics, we select a priori
three sub-periods to represent watershed dynamics. These are
highlighted in Fig.2 for further analysis (1) a large rainfall
event with the highest intensity precipitation focused in the
headwaters; (2) a large rainfall event with similar cumulative
precipitation but uniform intensity throughout the basin, and
(3) a prolonged dry period with low flow. Figure3 shows the
spatial distribution of forcing for each of the three selected
sub-periods. We utilize these three sub-periods to explore the
relationship between parameter sensitivities over the full pe-
riod and those derived for shorter events. We then advance
this comparison by computing spatially distributed parame-
ter sensitivities at a high-resolution moving window with a
3 h time step. In summary, the experiment consists of sen-
sitivity analysis at three temporal resolutions: the full six-
month period, three representative sub-periods, and the high-
resolution moving window. We seek to understand the simi-
larities and differences in dominant model behavior at each
of these temporal resolutions. In the absence of process-level
watershed data, our diagnostic analysis focuses on the transi-

tions between dominant modeled processes under changing
hydrologic conditions.

2.3 Method of Morris

The method ofMorris (1991) provides measures of global
sensitivity from a set of local derivatives, or elementary ef-
fects, sampled on a grid defined to cover the parameter space.
It is based on one-at-a-time (OAT) methods, which perturb
each parameterxi along a grid of size1i to create a trajectory
through the parameter space. For a model withp parameters,
one trajectory will contain a sequence ofp perturbations.
Each ofN trajectories yields one estimate of the elemen-
tary effect for each parameter (i.e., the ratio of the change in
model output to the change in that parameter). Equation (1)
shows the calculation of a single elementary effect for theith
parameter.

EEi =
f (x1, . . . ,xi + 1i, . . . ,xp) − f (x)

1i

, (1)

wheref (x) represents the function evaluation at the prior
point in the trajectory. In alternative formulations, the ele-
mentary effect is normalized by multiplying by a factor of
xi/f (x) (van Griensven et al., 2006). Using the single trajec-
tory shown in Eq. (1), one can calculate a single elementary
effect for each parameter using onlyp+1 model evaluations.
However, by employing only a single trajectory, this OAT
method depends strongly on the location of the initial pointx
in the parameter space and does not account for interactions
between parameters. For this reason, the method ofMorris
(1991) performs the OAT method over a set ofN trajecto-
ries through the parameter space. This study uses the original
factorial sampling approach proposed byMorris (1991), in
which trajectories are generated by perturbing one factor at a
time. Alternative sampling methods proposed by byCampo-
longo et al.(2007, 2011) andRuano et al.(2012) aim to max-
imize coverage of the parameter space and thus the accuracy
of global sensitivity estimates. The factorial sampling ap-
proach ofMorris (1991) has been successfully benchmarked
against a total-order Sobol′ variance decomposition (Herman
et al., 2013a) and is thus suitable for this application. Once
trajectories are sampled, the resulting set of elementary ef-
fects is averaged to giveµ, an estimate of the global effect of
each parameter. This study uses the improvement ofCampo-
longo et al.(2007) in which an estimate of total-order sensi-
tivity of the ith parameter,µ∗

i , is computed from the mean of
the absolute values of the elementary effects over the set of
N trajectories as shown in Eq. (2).

µ∗

i =
1

N

N∑
j=1

∣∣∣EEj
i

∣∣∣ (2)
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Fig. 2. Hourly streamflow and precipitation values during the 6 month simulation period for the Blue River Basin. The y-axis on the left
side of each plot represents abstracted spatial information, where the 78 grid cells of the basin model are sorted from the outlet cell (1) to
the cell furthest from the outlet (78). The y-axis on the right side of each plot shows the magnitude of streamflow. The color corresponds
to the amount of precipitation at each hourly timestep. Time periods (1), (2), and (3) are highlighted for further analysis, with (1) and (2)
representing large events with different spatial distributions of precipitation, and (3) representing a low-flow period. Note that hours with
high precipitation are more visible in time periods (1)-(3) than in the 6 month simulation period due to the reduced width of hourly intervals
when plotting over the full period.

Table 1. HL-RDHM parameters and their uniform sampling ranges for sensitivity analysis.

Parameter Description Units Lower Bound Upper Bound

LZFPM Lower zone primary maximum storage mm 8.8 58.8
LZFSM Lower zone supplemental maximum storage mm 19.2 193.2
LZPK Lower zone primary withdrawal rate day−1 0.0408 0.264
LZSK Lower zone supplemental withdrawal rate day−1 0.00168 0.0175
LZTWM Lower zone tension water maximum storage mm 61.6 249.6
PCTIM Permanent impervious area % 0.0 5.0
PFREE Percolation to lower zone % 16.0 55.0
REXP Percolation equation exponent – 1.69 3.47
UZFWM Upper zone free water maximum storage mm 8.8 64.8
UZK Upper zone free water withdrawal rate day−1 0.19 0.76
UZTWM Upper zone tension water maximum storage mm 19.2 78
ZPERC Maximum percolation rate under dry conditions mm/day 27.2 140.4
ADIMP Saturated impervious area % 0.0 20.0
RIVA Riparian vegetation area % 0.0 20.0

performed by Van Werkhoven et al. (2008b). Parameter val-
ues for each grid cell were sampled separately, resulting in
a total of 78×14 = 1092 total sampled parameters. Rather
than measure the sensitivity of the output streamflow directly,
we measure the sensitivity of model performance metrics,
calculated using the known hourly streamflow values over

the 6-month simluation period. This ensures that our sen-
sitivity indices properly incorporate measures of model ac-
curacy, an approach strongly supported by recent literature
(e.g., van Griensven et al., 2006; Demaria et al., 2007; Cloke
et al., 2008; Pappenberger et al., 2008; Van Werkhoven et al.,
2008a; Reusser et al., 2011; Rosolem et al., 2012). We com-

Fig. 2. Hourly streamflow and precipitation values during the six-month simulation period for the Blue River basin. They axis on the left
side of each plot represents abstracted spatial information, where the 78 grid cells of the basin model are sorted from the outlet cell (1) to
the cell furthest from the outlet (78). They axis on the right side of each plot shows the magnitude of streamflow. The color corresponds
to the amount of precipitation at each hourly time step. Time periods(1), (2), and(3) are highlighted for further analysis, with(1) and(2)
representing large events with different spatial distributions of precipitation, and(3) representing a low-flow period. Note that hours with high
precipitation are more visible in time periods(1)–(3) than in the six-month simulation period due to the reduced width of hourly intervals
when plotting over the full period.

Table 1.HL-RDHM parameters and their uniform sampling ranges for sensitivity analysis.

Parameter Description Units Lower bound Upper bound

LZFPM Lower zone primary maximum storage mm 8.8 58.8
LZFSM Lower zone supplemental maximum storage mm 19.2 193.2
LZPK Lower zone primary withdrawal rate day−1 0.0408 0.264
LZSK Lower zone supplemental withdrawal rate day−1 0.00168 0.0175
LZTWM Lower zone tension water maximum storage mm 61.6 249.6
PCTIM Permanent impervious area % 0.0 5.0
PFREE Percolation to lower zone % 16.0 55.0
REXP Percolation equation exponent – 1.69 3.47
UZFWM Upper zone free water maximum storage mm 8.8 64.8
UZK Upper zone free water withdrawal rate day−1 0.19 0.76
UZTWM Upper zone tension water maximum storage mm 19.2 78
ZPERC Maximum percolation rate under dry conditions mm day−1 27.2 140.4
ADIMP Saturated impervious area % 0.0 20.0
RIVA Riparian vegetation area % 0.0 20.0

3 Computational experiment

The method of Morris was performed on the 14 SAC-SMA
model parameters in each grid cell of the HL-RDHM model
as indicated in Fig.1. The uniform sampling bounds for each
parameter given in Table1 are based on the a priori grid-
ded parameter values derived by the NWS (Koren et al.,

2004) and extended for the event-scale sensitivity analysis
performed byVan Werkhoven et al.(2008b). Parameter val-
ues for each grid cell were sampled separately, resulting in
a total of 78× 14 = 1092 total sampled parameters. Rather
than measure the sensitivity of the output streamflow directly,
we measure the sensitivity of model performance metrics,
calculated using the known hourly streamflow values over
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Fig. 3. Maps of precipitation in the Blue River Basin over the full
six-month simulation period and the three sub-periods defined in
Figure 2. Over the full period, precipitation is roughly even across
the watershed. The event during Period 1 is focused in the headwa-
ters, while the event during Period 2 is more evenly spread. Finally,
Period 3 represents a dry period with little streamflow.

pute sensitivity indices at the event scale using the root mean
squared error (RMSE) and runoff coefficient error (ROCE)
metrics. The RMSE metric represents the sum of squared
residuals over a particular time window:

RMSE =

√√√√ 1

n

n∑
i=1

(Qs,i−Qo,i)2 (3)

where Qs and Qo are the simulated and observed flows, re-
spectively. The ROCE metric represents the error in the water
balance, calculated as a percentage bias:

ROCE =

∣∣∣∣ n∑
i=1

Qs,i−
n∑

i=1

Qo,i

∣∣∣∣
n∑

i=1

Qo,i

(4)

The RMSE metric focuses on quick responses, while the
ROCE metric highlights the long-term bias of the water bal-
ance calculated by the model (Van Werkhoven et al., 2008a).
These two metrics combine to provide a comprehensive un-
derstanding of model response at the event scale. The high-
resolution sensitivity analysis is performed using a 24-hour
moving window with a 3-hour timestep; only the sensitivity
of the RMSE metric is computed here, since a water balance
metric would be inappropriate for such a short timescale.
With this high-resolution moving window, the sensitivity in-
dices of all 1092 parameters are calculated at a total of 1457
intervals over the course of the 6-month simulation period.

We calculate sensitivity indices using a sample size of
N = 20, corresponding to 21,860 model evaluations. This
represents a significant computational savings compared to
a typical global sensitivity analysis method. Herman et al.
(2013a) showed that the method of Morris using N = 20 for
the full simulation period of this study was capable of provid-
ing sensitivity results comparable to the Sobol′ method using
N = 6,000, which required over 6.5 million model evalua-
tions. The high-resolution sensitivity analysis investigated
here is only computationally tractable due to the demon-
strated efficiency of the method of Morris (Herman et al.,
2013a).

The sensitivity analyses were performed using the NSF
CyberSTAR high-performance cluster at Penn State Uni-
versity, which contains a combination of quad-core AMD
Shanghai processors (2.7 Ghz) and Intel Nehalem processors
(2.66 Ghz). An open-source implementation of the method
of Morris was used from the R Sensitivity Package (Pujol
et al., 2013), which includes the methodological improve-
ment of Campolongo et al. (2007). Approximately 100 com-
puting hours were required for the model evaluations at the
N = 20 sample size, with an additional 100 hours needed to
compute the sensitivity indices for each of the nearly 1500
sub-intervals.

4 Results and Discussion

Sensitivity results are presented in order of increasing tem-
poral resolution. We begin with the full period and event
scale sensitivity indices (Figs. 4-5) before proceeding to the
high-resolution results (Figs. 6-8). These results can be in-
terpreted in the context of the precipitation patterns shown in
Figs. 2-3. This sequence of results is designed to explore the
potential shortcomings of the aggregated approaches along
with the additional insights provided by the high-resolution
approach.

4.1 Full Period and Event-Scale Sensitivity Analysis

The sensitivity indices for the root mean squared error
(RMSE) metric are shown in Figure 4 for the full simula-
tion period and the three selected events. The µ∗ values from
the method of Morris are normalized to the range [0,1] to fa-
cilitate comparison across experiments, from an initial range
of [0,0.08]. For the full six-month period, the spatial distri-
bution of parameter sensitivity appears bimodal: a concen-
trated high-sensitivity area occurs in the headwaters, particu-
larly for the lower zone storage maxima LZFPM and LZFSM,
and a second concentration occurs near the outlet of the wa-
tershed, particularly for the upper zone parameters UZFWM
and UZK. Considering the forcing patterns shown in Fig. 3,
the RMSE for the full period is likely dominated by several
large events, some of which are concentrated in the headwa-
ters of the basin such as the event during Period 1. This ex-

Fig. 3. Maps of precipitation in the Blue River basin over the full
six-month simulation period and the three sub-periods defined in
Fig. 2. Over the full period, precipitation is roughly even across the
watershed. The event during period 1 is focused in the headwaters,
while the event during period 2 is more evenly spread. Finally, pe-
riod 3 represents a dry period with little streamflow.

the six-month simulation period. This ensures that our sen-
sitivity indices properly incorporate measures of model ac-
curacy, an approach strongly supported by recent literature
(e.g.,van Griensven et al., 2006; Demaria et al., 2007; Cloke
et al., 2008; Pappenberger et al., 2008; Van Werkhoven et al.,
2008a; Reusser et al., 2011; Rosolem et al., 2012). We com-
pute sensitivity indices at the event scale using the root mean
squared error (RMSE) and runoff coefficient error (ROCE)
metrics. The RMSE metric represents the sum of squared
residuals over a particular time window:

RMSE=

√√√√1

n

n∑
i=1

(Qs,i − Qo,i)2, (3)

whereQs andQo are the simulated and observed flows, re-
spectively. The ROCE metric represents the error in the water
balance, calculated as a percentage bias:

ROCE=

∣∣∣∣ n∑
i=1

Qs,i −

n∑
i=1

Qo,i

∣∣∣∣
n∑

i=1
Qo,i

. (4)

The RMSE metric focuses on quick responses, while the
ROCE metric highlights the long-term bias of the water bal-
ance calculated by the model (Van Werkhoven et al., 2008a).

These two metrics combine to provide a comprehensive un-
derstanding of model response at the event scale. The high-
resolution sensitivity analysis is performed using a 24 h mov-
ing window with a 3 h time step; only the sensitivity of the
RMSE metric is computed here, since a water balance metric
would be inappropriate for such a short timescale. With this
high-resolution moving window, the sensitivity indices of all
1092 parameters are calculated at a total of 1457 intervals
over the course of the six-month simulation period.

We calculate sensitivity indices using a sample size of
N = 20, corresponding to 21 860 model evaluations. This
represents a significant computational savings compared to
a typical global sensitivity analysis method.Herman et al.
(2013a) showed that the method of Morris usingN = 20 for
the full simulation period of this study was capable of pro-
viding sensitivity results comparable to the Sobol′ method
usingN = 6000, which required over 6.5 million model eval-
uations. The high-resolution sensitivity analysis investigated
here is only computationally tractable due to the demon-
strated efficiency of the method of Morris (Herman et al.,
2013a).

The sensitivity analyses were performed using the NSF
CyberSTAR high-performance cluster at Penn State Uni-
versity, which contains a combination of quad-core AMD
Shanghai processors (2.7 Ghz) and Intel Nehalem processors
(2.66 Ghz). An open-source implementation of the method of
Morris was used from the R Sensitivity Package (Pujol et al.,
2013), which includes the methodological improvement of
Campolongo et al.(2007). Approximately 100 computing
hours were required for the model evaluations at theN = 20
sample size, with an additional 100 h needed to compute the
sensitivity indices for each of the nearly 1500 sub-intervals.

4 Results and discussion

Sensitivity results are presented in order of increasing tem-
poral resolution. We begin with the full period and event-
scale sensitivity indices (Figs.4–5) before proceeding to the
high-resolution results (Figs.6–8). These results can be in-
terpreted in the context of the precipitation patterns shown in
Figs.2–3. This sequence of results is designed to explore the
potential shortcomings of the aggregated approaches along
with the additional insights provided by the high-resolution
approach.

4.1 Full period and event-scale sensitivity analysis

The sensitivity indices for the root mean squared error
(RMSE) metric are shown in Fig.4 for the full simulation
period and the three selected events. Theµ∗ values from the
method of Morris are normalized to the range[0,1] to facili-
tate comparison across experiments, from an initial range of
[0,0.08]. For the full six-month period, the spatial distribu-
tion of parameter sensitivity appears bimodal: a concentrated
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Fig. 4. Full period and event-scale sensitivities of the root mean squared error (RMSE) metric over the full six-month simulation and three
selected sub-periods. The µ∗ values from the method of Morris are scaled to the range [0,1] from an initial range of [0,0.08]. The RMSE
metric focuses on the model’s ability to reproduce observed streamflow peaks. The event-scale sensitivity indices differ significantly from
those in the aggregated full period depending on the magnitude of the event and the spatial distribution of precipitation.
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Fig. 5. Full period and event-scale sensitivities of the runoff coefficient error (ROCE) metric over the full six-month simulation and three
selected sub-periods. The µ∗ values from the method of Morris are scaled to the range [0,1] from an initial range of [0,0.08]. The ROCE
metric focuses on the model’s ability to reproduce the observed long-term water balance. The spatial controls on the water balance are more
evenly spread across the watershed compared to the RMSE metric in Figure 4.
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metric focuses on the model’s ability to reproduce observed streamflow peaks. The event-scale sensitivity indices differ significantly from
those in the aggregated full period depending on the magnitude of the event and the spatial distribution of precipitation.
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Fig. 5. Full period and event-scale sensitivities of the runoff coefficient error (ROCE) metric over the full six-month simulation and three
selected sub-periods. The µ∗ values from the method of Morris are scaled to the range [0,1] from an initial range of [0,0.08]. The ROCE
metric focuses on the model’s ability to reproduce the observed long-term water balance. The spatial controls on the water balance are more
evenly spread across the watershed compared to the RMSE metric in Figure 4.

Fig. 5. Full period and event-scale sensitivities of the runoff coefficient error (ROCE) metric over the full six-month simulation and three
selected sub-periods. Theµ∗ values from the method of Morris are scaled to the range[0,1] from an initial range of[0,0.08]. The ROCE
metric focuses on the model’s ability to reproduce the observed long-term water balance. The spatial controls on the water balance are more
evenly spread across the watershed compared to the RMSE metric in Fig.4.
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high-sensitivity area occurs in the headwaters, particularly
for the lower zone storage maxima LZFPM and LZFSM,
and a second concentration occurs near the outlet of the wa-
tershed, particularly for the upper zone parameters UZFWM
and UZK. Considering the forcing patterns shown in Fig.3,
the RMSE for the full period is likely dominated by several
large events, some of which are concentrated in the headwa-
ters of the basin such as the event during period 1. This ex-
plains the bimodal division of RMSE sensitivity between the
headwaters (due to concentrated forcing during large events)
and the outlet cells (due to gauge proximity). Note that both
the upper zone storage maximum, UZFWM, and its associ-
ated drainage coefficient, UZK, are sensitive during this pe-
riod, whereas only the storage maxima in the lower zone are
sensitive. This difference indicates that flow from the upper
zone is generated from a combination of storage overflow
and gravity drainage, while flow from the lower zone is pri-
marily generated by storage overflow alone. This result high-
lights the importance of understanding which flow genera-
tion mechanisms dominate model performance during peak
events over the course of the simulation.

Period 1 exhibits a strong concentration of parameter sen-
sitivity in the headwater cells of the basin. As illustrated in
Fig. 3, the large precipitation event during this period oc-
curs primarily in the headwaters, so this result is expected.
Even the upper zone parameters are most sensitive in the
headwaters during period 1 (with the exception of UZFWM),
despite the typical dependence of upper zone sensitivity on
gauge proximity. This result contrasts with period 2, which
exhibits very little sensitivity in the headwaters. In period 2,
the majority of high-sensitivity cells appear near the water-
shed outlet, even for the lower zone parameters. The contrast
between periods 1 and 2 reveals the effect of the spatial dis-
tribution of forcing on parameter sensitivity. The headwater
cells of the model are only activated when precipitation is
concentrated in this region, and flow is generated by exceed-
ing storage maxima in both the upper and lower zones. Con-
versely, when precipitation is distributed across the basin,
model performance is dominated only by the cells near the
outlet gauge where flow is generated in the upper zone by
a combination of storage exceedance and gravity drainage.
These differences in the responses of periods 1 and 2 are po-
tentially complicated by internal model states, such as an-
tecedent moisture conditions, which could alter the response
signatures. However, as shown in the Supplemental, zooming
in to the time-varying sensitivity of periods 1 and 2 clearly
reveals the differences in the spatial distribution of precipi-
tation between the two events. The sensitivity responses to
each event begin almost immediately following the precip-
itation, and thus their differences may be traced primarily
to the precipitation distribution over the watershed. With no
information regarding the “true” watershed processes, it is
worth noting that a significant portion of the model remains
insensitive during both large events. The differences between
sensitivity patterns in periods 1 and 2 would be very difficult

to predict in advance, and thus underscore the need for diag-
nostic methods that do not depend on spatial aggregation.

Finally, the dry period 3 exhibits very different sensitiv-
ity patterns from any of the other periods. Here, sensitivity
is effectively concentrated in the lower zone secondary stor-
age element, with maximum LZFSM and drainage coeffi-
cient LZSK. The lower zone secondary storage is very likely
to be the last element containing water during dry periods,
as it has the slowest drainage constant as shown in Table1.
Therefore, this element controls model performance after the
other storage zones have drained or evaporated. The sensitiv-
ities of parameters LZFSM and LZSK are distributed across
the entire watershed, unlike during periods 1 and 2 where the
most sensitive parameters only occur in concentrated areas.
This suggests that dry periods may provide valuable identi-
fiability information for cells which are otherwise inactive,
particularly for these slow-draining storage elements in the
lower zone of the model.

At the event scale, it is valuable to assess the sensitivity
of multiple diagnostic measures to obtain a more thorough
understanding of controls on model performance. In general,
model error can be decomposed into correlation, bias, and
variability (Gupta et al., 2009). The RMSE metric, with its
dependence on quick runoff response, is most closely related
to correlation and variability; we also investigate the runoff
coefficient error (ROCE), a water balance metric related to
model bias (Van Werkhoven et al., 2008a). The event-scale
sensitivity indices for the ROCE metric are shown in Fig.5.
Compared to the RMSE metric shown in Fig.4, the sensitiv-
ity of ROCE is spread across a larger number of parameters,
and more evenly distributed across the spatial extent of the
watershed. Whereas RMSE is controlled by a few cells de-
pending on their proximity to precipitation and/or the outlet
gauge, the water balance error depends on the soil-moisture
calculations in all cells. In general, many of the same lower
and upper zone parameters dominate the ROCE and RMSE
performance metrics: the storage maxima LZFPM, LZFSM,
and UZFWM, and the drainage constants LZPK and UZK.
Similar to RMSE, the ROCE metric depends on flow gen-
eration via storage exceedance as well as gravity drainage
processes in the model. Compared to Fig.4, the differences
between periods 1 and 2 are far less pronounced in Fig.5, in-
dicating that the spatial distribution of precipitation does not
affect the water balance error as much as it does peak flows.
Period 3 shows the most similarity to the corresponding
RMSE result, as its ROCE metric is still controlled primarily
by the secondary storage parameters LZFSM and LZSK. The
apparent independence of the ROCE metric to forcing and
gauging locations suggests that this measure of performance
succeeds in extracting information from a larger spatial area
of the model, potentially providing benefits for identifiabil-
ity. However, the ROCE metric alone will not account for the
timing of flow peaks, and is therefore best applied in con-
junction with a timing-based metric such as RMSE.
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The event-scale sensitivity results shown in Figs.4 and5
provide useful diagnostic insight for the full simulation pe-
riod and selected sub-periods. These findings align with pre-
vious work: spatially concentrated precipitation will cause
parameter sensitivity to appear in a similar pattern as the pre-
cipitation, whereas uniformly distributed precipitation will
cause sensitivity in cells near the outlet (Tang et al., 2007;
Van Werkhoven et al., 2008b). However, the event-scale anal-
ysis also contains several weaknesses. First, the results are
highly dependent on the choice of events to study, as illus-
trated by the differences in controls across the selected pe-
riods. It would be prohibitively difficult to design or select
representative events which fully capture the range of model
responses. Instead, it is beneficial to analyze the emergent
model responses in nearly continuous time, and select sub-
periods of interest a posteriori. Second, the event-scale re-
sults do not indicate when these parameters become sensitive
relative to changing hydrologic conditions. Consequently,
the sensitivity indices shown in Figs.4 and5 for the full sim-
ulation period are strongly influenced by only a few large
events, with their dynamics obscured by aggregation. It has
been noted in previous work that the value of streamflow ob-
servations for identifying distributed model parameters may
be limited by the location and intensity of forcing, partic-
ularly if the period of analysis is defined to include only a
single rainfall event. (Van Werkhoven et al., 2008b). We hy-
pothesize that allowing distributed parameter sensitivity to
vary in nearly continuous time will extract more value from
streamflow observations by highlighting parameter activation
across a much broader range of hydrologic conditions.

4.2 High-resolution distributed sensitivity

This study aims to elucidate the time-varying nature of these
distributed parameter sensitivities by performing global sen-
sitivity analysis using a high-resolution moving window with
a sub-daily time step. Parameter sensitivity is calculated on a
24 h moving window with a 3 h time step, resulting in 1457
intervals over the six-month simulation period.

The choice of window size contains two competing con-
siderations: it must be large enough to smooth out any noise
in the performance metric calculations, yet also small enough
to capture dominant model processes that occur on fast
timescales. The moving window size and time step used in
this study reflect a balance between these two issues. Since
the model runs on an hourly time step, a 24 h window size
(with significant overlap due to the 3 h time step) will smooth
noise in the calculation of the RMSE metric. Additionally,
since most large events during the simulation period are ap-
proximately 48–72 h in length, the 24 h window is also suf-
ficiently small to capture quick responses, which is critical
from a flood forecasting standpoint.

Thus, each parameter has a time series of sensitivity in-
dices for each grid cell (i.e., the results summarize time-
evolving sensitivity maps across all spatial grid cells in the

model). These sensitivity indices are shown in Figs.6, 7, and
8, corresponding to the lower zone parameters, upper zone
parameters, and remaining parameters, respectively. Each of
the three plots contains the same hourly precipitation data in
the top panel, as well as the same hourly hydrograph data
superimposed on each subplot. The sensitivity indices are
aligned at the center of each moving window interval. The
µ∗ values from the method of Morris are normalized to the
range[0,1] to facilitate comparison across experiments, from
an initial range of[0,0.2]. While these figures are designed
for journal format, animations of time-varying sensitivity in-
dices are available as a multimedia supplement.

In Figs.6, 7, and8, the two spatial dimensions of the wa-
tershed are compressed into they axis, where the 78 grid
cells are arranged according to their distance from the water-
shed outlet. The bottom of each subplot (y = 1) represents
the outlet cell, while the top of each subplot (y = 78) repre-
sents the headwater cell furthest from the outlet. This con-
figuration allows us to visualize both space and time on the
same axes without drawing a large number of maps of the
watershed. This plotting approach is particularly effective for
the Blue River basin, which has a long, narrow shape.

Figure6 shows that the lower zone parameters maintain a
moderate level of sensitivity throughout the simulation. The
influence of all lower zone parameters clearly recedes during
large events, except for the parameters LZFPM and LZFSM
in the cells nearest to the watershed outlet. This indicates
that the only contribution to large streamflow events from
the lower zone occurs due to exceeding the storage maxima,
not due to gravity drainage. The drainage processes occur
on slower timescales and would not contribute significantly
to peak flows. The effect of slow drainage processes is clear
from the high sensitivity of the secondary storage parame-
ters, LZFSM and LZSK during low-flow periods, after other
storage elements have been emptied. These insights largely
align with those found at the event scale in Figs.4 and 5.
However, when comparing sensitivity indices across tempo-
ral resolutions, it is important to note that parameter sensi-
tivity is measured relative to other parameters. Thus, a larger
time window may cause some parameters to appear insensi-
tive at certain locations due to the dominance of others. This
phenomenon is visible, for example, for the LZSK parameter
near the outlet of the watershed, where it is sensitive in Fig.6
but not in Fig.4. Compared to the event-scale analysis, the
high temporal resolution in Fig.6 has the advantage of clari-
fying the timing of parameter activation. For example, it has
been noted in prior studies that the lower zone parameters
frequently control the performance of the SAC-SMA model
(Van Werkhoven et al., 2008a; Herman et al., 2013b), from
which it might be concluded that the lower zone contributes
significantly to flow peaks. However, Fig.6 indicates that the
lower zone contributes to performance primarily during non-
peak periods, which, when aggregated, may yield higher lev-
els of sensitivity depending on the period studied.
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Fig. 6. Time-varying sensitivity of the RMSE metric for the five lower zone parameters of the HL-RDHM model. The indices are calculated
for a 24-hour moving window with a 3-hour timestep. The y-axis arranges the 78 grid cells based on their distance from the watershed outlet,
from the outlet (y=1) to the furthest headwater cell (y= 78). The µ∗ values from the method of Morris are scaled to the range [0,1] from an
initial range of [0,0.2]. The lower zone parameters maintain a consistent, moderate level of sensitivity throughout the simulation. Exceptions
occur during large events, when the lower zone parameters are mostly insensitive. The secondary storage parameters, LZFSM and LZSK, are
particularly sensitive during low-flow periods.

moving toward the headwaters during the falling limb. As
expected, there is a lag between the time at which the event
begins and the time at which the headwater cells begin to
affect the model performance due to routing. Similarly, the
timing of activation for the outlet cells depends on the event;
compare the parameters UZFWM and UZK during Period
1, where the outlet cells are activated midway through the
event, to Period 2, where UZK is activated immediately dur-
ing the rising limb of the hydrograph. The lag in parameter
sensitivity during Period 1 is likely due to the headwater–
focused precipitation event, while in Period 2 the precipita-
tion occurs closer to the outlet. Interestingly, Figure 7 shows
that the additional impervious area parameter, ADIMP, is

only sensitive for cells near the outlet during events, but this
signal does not propagate to the headwaters. The impervi-
ous area only affects model performance in cells close to the
outlet, since these directly control the quick response dur-
ing the rising limb of each event. As Figure 7 indicates, the
upper zone parameters typically do not control model per-
formance during low-flow periods and small events. There
are two interesting exceptions to this, however. First, the
drainage rate UZK remains sensitive for several hours af-
ter each event as the upper zone drains its storage. That is,
gravity drainage from the upper zone typically occurs slowly
enough such that it continues to release water well into the
low-flow periods. Second, the parameters UZTWM (upper

Fig. 6.Time-varying sensitivity of the RMSE metric for the five lower zone parameters of the HL-RDHM model. The indices are calculated
for a 24 h moving window with a 3 h time step. They axis arranges the 78 grid cells based on their distance from the watershed outlet, from
the outlet (y = 1) to the furthest headwater cell (y = 78). Theµ∗ values from the method of Morris are scaled to the range[0,1] from an
initial range of[0,0.2]. The lower zone parameters maintain a consistent, moderate level of sensitivity throughout the simulation. Exceptions
occur during large events, when the lower zone parameters are mostly insensitive. The secondary storage parameters, LZFSM and LZSK,
are particularly sensitive during low-flow periods.

By contrast, the upper zone parameters are clearly acti-
vated during and after streamflow events, as shown in Fig.7.
In particular, the upper zone free water parameters (UZFWM
and drainage coefficient UZK) become dominant during
large events. The propagation of sensitivity upward through
the watershed is clear for these parameters, starting at the
outlet cells during the rising limb of each event and moving
toward the headwaters during the falling limb. As expected,
there is a lag between the time at which the event begins
and the time at which the headwater cells begin to affect the
model performance due to routing. Similarly, the timing of
activation for the outlet cells depends on the event; compare
the parameters UZFWM and UZK during period 1, where
the outlet cells are activated midway through the event, to

period 2, where UZK is activated immediately during the ris-
ing limb of the hydrograph. The lag in parameter sensitivity
during period 1 is likely due to the headwater-focused pre-
cipitation event, while in period 2 the precipitation occurs
closer to the outlet. Interestingly, Fig.7 shows that the addi-
tional impervious area parameter, ADIMP, is only sensitive
for cells near the outlet during events, but this signal does
not propagate to the headwaters. The impervious area only
affects model performance in cells close to the outlet, since
these directly control the quick response during the rising
limb of each event. As Fig.7 indicates, the upper zone pa-
rameters typically do not control model performance during
low-flow periods and small events. However, there are two
interesting exceptions to this. First, the drainage rate UZK
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Fig. 7. Time-varying sensitivity of the RMSE metric for the five upper zone parameters of the HL-RDHM model. The indices are calculated
for a 24-hour moving window with a 3-hour timestep. The y-axis arranges the 78 grid cells based on their distance from the watershed outlet,
from the outlet (y= 1) to the furthest headwater cell (y= 78). The µ∗ values from the method of Morris are scaled to the range [0,1] from
an initial range of [0,0.2]. The parameters controlling the upper zone free water element, UZFWM and UZK, are highly sensitive during
large events. The high sensitivity of these parameters typically begins near the watershed outlet during the rising limb of the hydrograph, and
transitions toward the headwater cells during the falling limb.

zone tension storage) and PCTIM (percent impervious area)
are most sensitive following rainfall events which do not lead
to large streamflow events. In other words, these parame-
ters are most important when model performance requires
the absence of a response. If impervious area is too high
(causing high direct runoff), or tension storage capacity too
low (causing runoff via overflow), the model may overesti-
mate streamflow and create significant errors in the RMSE
metric. This phenomenon is not visible for the events ana-
lyzed in Figure 4 because it would be difficult to predict at
the time of a priori event selection. When a large stream-
flow response is required, the parameters UZFWM and UZK
dominate instead, as these become the primary mechanism
by which large events are generated. An additional differ-

ence between Figures 4 and 7 is that, while the UZK param-
eter is sensitive throughout the watershed at the event scale
(e.g., during Period 1), it only appears sensitive near the out-
let at the high-resolution timescale. This could be due to
the dominance of other parameters in the upper region of the
watershed at the high-resolution timescale, or simply a dif-
ference in the sensitivity of the upper zone drainage response
at different timescales. Finally, the UZFWM parameter dur-
ing Period 2 is only sensitive near the watershed outlet when
considered at the event scale, but the high-resolution results
in Figure 7 show that the sensitivity of UZFWM propagates
to the headwaters during the falling limb of the event. Since
the RMSE metric focuses on peak flows, the falling limb does
not play a significant role in the calculation of aggregated

Fig. 7.Time-varying sensitivity of the RMSE metric for the five upper zone parameters of the HL-RDHM model. The indices are calculated
for a 24 h moving window with a 3 h time step. They axis arranges the 78 grid cells based on their distance from the watershed outlet, from
the outlet (y = 1) to the furthest headwater cell (y = 78). Theµ∗ values from the method of Morris are scaled to the range[0,1] from an
initial range of[0,0.2]. The parameters controlling the upper zone free water element, UZFWM and UZK, are highly sensitive during large
events. The high sensitivity of these parameters typically begins near the watershed outlet during the rising limb of the hydrograph, and
transitions toward the headwater cells during the falling limb.

remains sensitive for several hours after each event as the up-
per zone drains its storage, that is, gravity drainage from the
upper zone typically occurs slowly enough such that it con-
tinues to release water well into the low-flow periods. Sec-
ond, the parameters UZTWM (upper zone tension storage)
and PCTIM (percent impervious area) are most sensitive fol-
lowing rainfall events which do not lead to large streamflow
events. In other words, these parameters are most important
when model performance requires the absence of a response.
If impervious area is too high (causing high direct runoff),
or tension storage capacity too low (causing runoff via over-
flow), the model may overestimate streamflow and create sig-
nificant errors in the RMSE metric. This phenomenon is not
visible for the events analyzed in Fig.4 because it would

be difficult to predict at the time of a priori event selection.
When a large streamflow response is required, the parameters
UZFWM and UZK dominate instead, as these become the
primary mechanism by which large events are generated. An
additional difference between Figs.4 and7 is that, while the
UZK parameter is sensitive throughout the watershed at the
event scale (e.g., during period 1), it only appears sensitive
near the outlet at the high-resolution timescale. This could be
due to the dominance of other parameters in the upper region
of the watershed at the high-resolution timescale, or simply
a difference in the sensitivity of the upper zone drainage re-
sponse at different timescales. Finally, the UZFWM parame-
ter during period 2 is only sensitive near the watershed outlet
when considered at the event scale, but the high-resolution
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Fig. 8. Time-varying sensitivity of the RMSE metric for the four remaining parameters of the HL-RDHM model. The indices are calculated
for a 24-hour moving window with a 3-hour timestep. The y-axis arranges the 78 grid cells based on their distance from the watershed outlet,
from the outlet (y= 1) to the furthest headwater cell (y= 78). The µ∗ values from the method of Morris are scaled to the range [0,1] from
an initial range of [0,0.2]. These parameters influence model performance significantly less than the lower zone parameters (Figure 6) or the
upper zone parameters (Figure 7), and never appear highly sensitive during the course of the simulation.

sensitivity for each period, even though these are clearly vis-
ible at the high-resolution timescale.

Finally, Figure 8 shows the time-varying sensitivity in-
dices for the four remaining parameters in the model. These
parameters rarely dominate the upper and lower zone param-
eters shown in Figures 6 and 7. The percolation parameters
ZPerc andRExp maintain a low, but non-zero, level of sensi-
tivity throughout the simulation, which decreases to zero dur-
ing streamflow peaks. The percolation parameter PFree fol-
lows a similar trend, but becomes inactive during the dry Pe-
riod 3. The riparian vegetation area, RIVA, is only activated
in the late spring season when evapotranspiration becomes
more pronounced, as expected. Comparing to the event scale
results in Figure 4, these parameters are generally much less
sensitive at the high-resolution timescale. For example, the
RExp parameter modifies the rate of percolation from the up-
per to lower zone but does not cause runoff directly, which
makes it less likely to influence model performance during

the 24-hour moving window than over the course of an ag-
gregated event. The parameters shown in Figure 8 play a
small role in model performance, as evidenced by their mod-
erate but non-zero sensitivities through time. However, the
sensitivities of the upper and lower zone parameters are typ-
ically much larger (see Figures 6 and 7) and thus these re-
maining parameters rarely control model performance. This
result suggests a potential identifiability problem for these
less-sensitive parameters, as they are rarely activated in any
of the model grid cells.

4.3 Discussion

The event-scale sensitivity maps shown in Figures 4 and 5
represent a traditional approach to diagnostic analysis of a
spatially distributed watershed model, on the relatively few
occasions that such analyses have been performed. The
event-scale approach shows the spatial distribution of sensi-
tivity for selected intervals, which may change dramatically

Fig. 8. Time-varying sensitivity of the RMSE metric for the four remaining parameters of the HL-RDHM model. The indices are calculated
for a 24 h moving window with a 3 h time step. They axis arranges the 78 grid cells based on their distance from the watershed outlet, from
the outlet (y = 1) to the furthest headwater cell (y = 78). Theµ∗ values from the method of Morris are scaled to the range[0,1] from an
initial range of[0,0.2]. These parameters influence model performance significantly less than the lower zone parameters (Fig.6) or the upper
zone parameters (Fig.7), and never appear highly sensitive during the course of the simulation.

results in Fig.7 show that the sensitivity of UZFWM propa-
gates to the headwaters during the falling limb of the event.
Since the RMSE metric focuses on peak flows, the falling
limb does not play a significant role in the calculation of ag-
gregated sensitivity for each period, even though these are
clearly visible at the high-resolution timescale.

Finally, Fig. 8 shows the time-varying sensitivity indices
for the four remaining parameters in the model. These pa-
rameters rarely dominate the upper and lower zone parame-
ters shown in Figs.6 and7. The percolation parametersZPerc
andRExp maintain a low, but non-zero, level of sensitivity
throughout the simulation, which decreases to zero during
streamflow peaks. The percolation parameterPFree follows a
similar trend, but becomes inactive during the dry period 3.
The riparian vegetation area, RIVA, is only activated in the
late spring season when evapotranspiration becomes more
pronounced, as expected. Comparing to the event-scale re-
sults in Fig.4, these parameters are generally much less sen-
sitive at the high-resolution timescale. For example, theRExp

parameter modifies the rate of percolation from the upper to
lower zone but does not cause runoff directly, which makes
it less likely to influence model performance during the 24 h
moving window than over the course of an aggregated event.
The parameters shown in Fig.8 play a small role in model
performance, as evidenced by their moderate but non-zero
sensitivities through time. However, the sensitivities of the
upper and lower zone parameters are typically much larger
(see Figs.6 and 7) and thus these remaining parameters
rarely control model performance. This result suggests a po-
tential identifiability problem for these less-sensitive param-
eters, as they are rarely activated in any of the model grid
cells.

4.3 Discussion

The event-scale sensitivity maps shown in Figs.4 and 5
represent a traditional approach to diagnostic analysis of
a spatially distributed watershed model, on the relatively
few occasions that such analyses have been performed. The
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Summary of Sensitivity Indices
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Fig. 9. Qualitative summary of sensitivity indices for the RMSE metric at increasing temporal resolutions, from the aggregated simulation
period (top), to the event scale (middle), and the high-resolution moving window (bottom). Each classification includes spatial maps showing
where upper zone and lower zone parameters are sensitive in the watershed, along with a model diagram highlighting the most sensitive
parameters during the defined periods. Results shown for the high-resolution sensitivity analysis are a qualitative summary of insights
gleaned from Figures 6–8 and thus do not reflect the dependence of time-varying sensitivity on the spatial distribution of precipitation.

from one event to another, as the results show for Periods
1, 2, and 3. The choice of representative events for a diag-
nostic analysis can therefore strongly bias the outcome, par-
ticularly considering the complex dependencies between pa-
rameter sensitivity, the spatial distribution of forcing of an
event, and the proximity of a given cell to the outlet gauge.
These results suggest the severe difficulty of selecting a pri-
ori a set of precipitation events which capture the full range
of potential model responses, the approach suggested in prior
studies (Tang et al., 2007; Van Werkhoven et al., 2008b). For
example, this difficulty is demonstrated by our inability to
foresee the phenomenon in which parameters UZTWM and
PCTIM are most sensitive when modeled responses require

attenuation to match observations. Furthermore, the tempo-
ral aggregation involved in the event-scale analysis obscures
the underlying dynamics of parameter sensitivity. When full
temporal resolution is allowed, parameter sensitivity indices
show clear patterns of activation before, during, and after
streamflow events, as shown in Figures 6, 7, and 8. The
high-resolution approach improves on the event-scale anal-
ysis by isolating the time and location at which individual
parameters and cells are activated, allowing a larger frac-
tion of the model to contribute to its performance measures
throughout the simulation and thus making better use of the
information content contained in streamflow observations.
Within each event, parameter sensitivity clearly represents

Fig. 9. Qualitative summary of sensitivity indices for the RMSE metric at increasing temporal resolutions, from the aggregated simulation
period (top), to the event scale (middle), and the high-resolution moving window (bottom). Each classification includes spatial maps showing
where upper zone and lower zone parameters are sensitive in the watershed, along with a model diagram highlighting the most sensitive
parameters during the defined periods. Results shown for the high-resolution sensitivity analysis are a qualitative summary of insights
gleaned from Figs.6–8 and thus do not reflect the dependence of time-varying sensitivity on the spatial distribution of precipitation.

event-scale approach shows the spatial distribution of sensi-
tivity for selected intervals, which may change dramatically
from one event to another, as the results show for periods
1, 2, and 3. The choice of representative events for a diag-
nostic analysis can therefore strongly bias the outcome, par-
ticularly considering the complex dependencies between pa-
rameter sensitivity, the spatial distribution of forcing of an
event, and the proximity of a given cell to the outlet gauge.
These results suggest the severe difficulty of selecting a priori
a set of precipitation events which capture the full range of
potential model responses, the approach suggested in prior
studies (Tang et al., 2007; Van Werkhoven et al., 2008b).
For example, this difficulty is demonstrated by our inability
to foresee the phenomenon in which parameters UZTWM

and PCTIM are most sensitive when modeled responses re-
quire attenuation to match observations. Furthermore, the
temporal aggregation involved in the event-scale analysis
obscures the underlying dynamics of parameter sensitivity.
When full temporal resolution is allowed, parameter sensi-
tivity indices show clear patterns of activation before, dur-
ing, and after streamflow events, as shown in Figs.6, 7, and
8. The high-resolution approach improves on the event-scale
analysis by isolating the time and location at which individ-
ual parameters and cells are activated, allowing a larger frac-
tion of the model to contribute to its performance measures
throughout the simulation and thus making better use of the
information content contained in streamflow observations.
Within each event, parameter sensitivity clearly represents a
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dynamic rather than static quantity, and should be analyzed
accordingly as computational costs permit.

A qualitative summary of sensitivity indices at increas-
ing temporal resolution is shown in Fig.9. At the highest
resolution (i.e., the moving window), the spatiotemporal se-
quence of influential parameters in Fig.9 reflects the tran-
sitions between sets of dominant parameters and processes.
In general, the highlighted sensitive parameters and cells are
those with a scaled value ofµ∗ > 0.5. For the high-resolution
timescale, the four cases shown (rising limb, falling limb,
small response, and dry period) are intended to reflect gen-
eral insights from Figs.4–8. These cases do not necessarily
reflect all time steps in the simulation period, but rather the
most interesting classifications that were observed in the re-
sults. However, since the Blue River watershed is driven pri-
marily by infrequent large events without significant temper-
ature or elevation effects, it is possible to broadly separate
the hydrograph into these four classifications, as shown in
the Supplement.

As Fig.9 shows, the dominant controls for the full aggre-
gated period are a combination of lower zone parameters in
the headwaters of the basin, and upper zone parameters near
both the headwaters and outlet. The full period sensitivities
are clearly influenced by the wet periods at the event scale,
which exhibit the same responses, indicating that the aggre-
gate period is biased toward these large events (a result con-
sistent with the focus of the RMSE metric). By contrast, dry
periods at the event-scale exhibit very different sensitivity
patterns, centered around slow drainage from the lower zone
supplemental store. The summarized high-resolution sensi-
tivity results in the bottom row of Fig.9 provide a more
detailed understanding of model behavior than the full pe-
riod or the event scale. In general, the parameters that appear
most sensitive at the event scale are also the most active for
the high-resolution moving window. These primarily include
the upper zone parameters UZFWM and UZK and the lower
zone parameters LZFPM and LZPK. This finding aligns with
our initial hypotheses, since gravity drainage and overflow
from exceeding storage maxima represent two of the primary
runoff generation mechanisms in the model. The most sensi-
tive cells during the rising and falling limbs of large events
represent a decomposition of the event-scale sensitivity dur-
ing wet period, which may be particularly valuable depend-
ing on the part of the hydrograph being analyzed. As antici-
pated, the upper zone and impervious area parameters dom-
inate model performance during and immediately following
large events, since these create the quick response required to
reproduce observed streamflow. The high-resolution dry pe-
riod exhibits largely the same sensitivities as the event scale,
which would be expected considering the lack of dynamic
behavior during these dry periods. Finally, the small response
reflects the common scenario in which quick runoff must
be avoided to achieve good performance, a behavior which
remains invisible at the event scale unless a small response
event is explicitly chosen for analysis a priori.

The high-resolution results in the bottom panel of Fig.9
can also be interpreted to identify transitions between domi-
nant parameters and processes in the model. During the ris-
ing limb of streamflow events, the dominant processes in the
model are typically direct runoff from impervious area, and
overflow/drainage from the upper zone free water store. As
might be expected, these processes are most dominant near
the outlet of the watershed, reflecting the need for a quick re-
sponse to match the observed hydrograph. During the falling
limb, the model transitions to a dominant process comprising
slower drainage responses from the upper and lower zone.
These processes are dominant in the headwaters as well in
addition to the cells near the outlet, since the longer time lag
allows cells further from the outlet to contribute to stream-
flow. During small responses, the dominant process consists
of direct runoff from impervious area and overflow from up-
per zone tension water, both of which must be properly at-
tenuated to avoid overshooting the observed peak. Finally,
during dry periods, a dominant process consisting of slow
release from the lower zone often dominates model perfor-
mance. These types of insights regarding transitions between
modeled processes are not attainable from a priori selection
of events assumed to be broadly representative. The coarser
event-scale sensitivities are typically obscured, and are not
necessarily consistent even for seemingly similar events (as
highlighted in Figs.4 and5).

It should be emphasized that even though Fig.9 repre-
sents a qualitative aggregation of the high-resolution sensi-
tivity patterns, this aggregation is drawn a posteriori from
the full range of dynamic parameter activation characterized
using the three-hour moving window. The value of the high-
resolution approach, as shown in Figs.6–8, is its ability to
isolate parameter activation in space and time while avoid-
ing the potential biases introduced by a priori event selec-
tion and aggregation. The high-resolution analysis removes
these biases by reducing the size of the interval window such
that peak flows do not accumulate undue influence relative
to the rest of the examined interval. In the high-resolution re-
sults, the dynamic transitions between upper and lower zone
sensitivity become clear: the lower zone maintains a fairly
constant level of control over model performance through-
out the simulation, while the upper zone dominates during
large events. The upper zone storage elements are the first
to receive precipitation during large events and therefore ex-
ert the most control over the timing and magnitude of the
quick response. The lower zone elements release water more
slowly and are most responsible for model performance in
the absence of large events. In prior analysis of the SAC-
SMA model (a spatially lumped version of HL-RDHM), it
was found that the lower zone parameters almost exclusively
control the RMSE metric at the monthly timescale (Herman
et al., 2013b). By zooming in to a 3 h time step, the high-
resolution method identifies the importance of the upper zone
parameters for properly reproducing quick responses. This
approach is able to identify sensitive cells which were not
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visible at the event scale as well as the timing of their acti-
vation, making it a valuable addition to traditional diagnostic
approaches.

The high-resolution sensitivity approach presented here
requires several important considerations. First, as with any
sensitivity analysis, the results strongly depend on the choice
of performance metric. Figures4 and 5 show the substan-
tial differences in sensitivity indices that occur when chang-
ing from the RMSE metric to the ROCE metric. We focus
on the RMSE metric in this study because its emphasis on
large events is consistent with our goal of understanding
model behavior in the context of quick-response flood fore-
casting. Interestingly, as the window size of the analysis de-
creases, different performance metrics begin to behave simi-
larly (i.e., in the limit as window size approaches zero, most
metrics reduce to a percent error at a single point). This leads
to the second important consideration, the choice of win-
dow size. Modeled processes which dominate performance
at one timescale may be invisible at another, so it is crucial
to choose a window size commensurate with the purpose of
the analysis. Our moving window size of 24 h (with a 3 h
time step) reflects the need to capture dominant processes on
a fast timescale while also containing a sufficient number of
time steps to smooth out any noise in the performance metric.
Finally, the visualization approach presented in Figs.6–8 (in
which the spatial dimensions are compressed into a single
distance measure on they axis) is readily applicable to the
narrow Blue River watershed, but may be difficult to extend
to other watersheds. This is particularly true if significant
spatial heterogeneity exists in land cover or soil storage prop-
erties. In such instances, it may be preferable to represent the
y axis as, for example, the soil storage capacity of each grid
cell, or whichever characteristic is expected to govern grid
cell sensitivity. For this case study, the primary characteristic
of interest is simply the distance from the watershed outlet,
but this may not hold true for all applications.

This high-resolution approach is intended to complement,
rather than replace, the insights derived from an event-scale
analysis. In this case, neither the event-scale results nor the
high-resolution results could have been predicted from the
other. The event-scale analysis provides performance con-
trols for selected intervals of interest; the high-resolution
analysis contributes clear details of parameter dynamics
across the simulation period without focusing on any par-
ticular interval. The need for complementary approaches at
different temporal resolutions is further highlighted by the
fact that a given parameter may only be sensitive at a certain
timescale, considering these sensitivity measures describe
the effect of a parameter relative to the others, and these rel-
ative effects are extremely likely to change depending on the
scope of the analysis.

5 Conclusions

High-resolution sensitivity analysis explores the full spatial
and temporal variability of distributed watershed model con-
trols, highlighting the importance of avoiding confounding
aggregation to the extent permitted by computational con-
straints. The complexity of spatially distributed models typi-
cally causes a significant fraction of parameters to be inactive
at any particular time, a phenomenon clearly shown in the
event-scale results of this study. This sparsity of activation
can lead to needless complexity and inappropriate modifica-
tion of inactive parameters. However, it also presents a valu-
able opportunity to overcome the complexity of distributed
parameter identification by restricting search to only those
parameters which are active at a specific time and location.
It also suggests an opportunity to identify locations and tim-
ing for optimal data collection to improve the modeled rep-
resentation of hydrologic processes, particularly under non-
stationary conditions in which dominant watershed processes
fall outside observed ranges. For example, the results of this
study indicate that large streamflow events in the model are
controlled primarily by upper zone fluxes quite close to the
watershed outlet; collecting flux data in only this area during
a large event could provide justification to falsify the internal
processes of the model, and to improve them by calibrating
against the new observations. As demonstrated in this study,
spatial variability can easily be visualized as a time series and
provides valuable information for analyzing model behavior.
In light of these opportunities, it is imperative for diagnostic
analyses of distributed models to explore parameter activa-
tion at the spatial and temporal scales for which the model
was designed. This study represents a novel step in this di-
rection by visualizing spatially explicit, time-varying water-
shed model sensitivity. As computational power continues to
increase, such methods improve the potential for efficiently
isolating distributed model behaviors at high spatial and tem-
poral resolutions, an area which remains largely unexplored
relative to similar analyses of simpler lumped models.

Supplementary material related to this article is
available online athttp://www.hydrol-earth-syst-sci.net/
17/5109/2013/hess-17-5109-2013-supplement.zip.
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