Articles | Volume 29, issue 13
https://doi.org/10.5194/hess-29-2863-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-29-2863-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Technical note: A new laboratory approach to extract soil water for stable isotope analysis from large soil samples
Institute of Hydrodynamics of the Czech Academy of Sciences, Prague, 160 00, Czech Republic
Department of Physical Geography and Geoecology, Faculty of Science, Charles University, Prague, 128 00, Czech Republic
Jan Haidl
Institute of Hydrodynamics of the Czech Academy of Sciences, Prague, 160 00, Czech Republic
Ondrej Gebousky
Institute of Hydrodynamics of the Czech Academy of Sciences, Prague, 160 00, Czech Republic
Kristyna Falatkova
Institute of Hydrodynamics of the Czech Academy of Sciences, Prague, 160 00, Czech Republic
Vaclav Sipek
Institute of Hydrodynamics of the Czech Academy of Sciences, Prague, 160 00, Czech Republic
Martin Sanda
Department of Landscape Water Conservation, Faculty of Civil Engineering, Czech Technical University, Prague, 166 29, Czech Republic
Natalie Orlowski
Chair of Forest Sites and Hydrology, Institute of Soil Science and Site Ecology, Technical University Dresden, 01737 Tharandt, Germany
Lukas Vlcek
Institute of Hydrodynamics of the Czech Academy of Sciences, Prague, 160 00, Czech Republic
Related authors
Marco M. Lehmann, Josie Geris, Ilja van Meerveld, Daniele Penna, Youri Rothfuss, Matteo Verdone, Pertti Ala-Aho, Matyas Arvai, Alise Babre, Philippe Balandier, Fabian Bernhard, Lukrecija Butorac, Simon Damien Carrière, Natalie C. Ceperley, Zuosinan Chen, Alicia Correa, Haoyu Diao, David Dubbert, Maren Dubbert, Fabio Ercoli, Marius G. Floriancic, Teresa E. Gimeno, Damien Gounelle, Frank Hagedorn, Christophe Hissler, Frédéric Huneau, Alberto Iraheta, Tamara Jakovljević, Nerantzis Kazakis, Zoltan Kern, Karl Knaebel, Johannes Kobler, Jiří Kocum, Charlotte Koeber, Gerbrand Koren, Angelika Kübert, Dawid Kupka, Samuel Le Gall, Aleksi Lehtonen, Thomas Leydier, Philippe Malagoli, Francesca Sofia Manca di Villahermosa, Chiara Marchina, Núria Martínez-Carreras, Nicolas Martin-StPaul, Hannu Marttila, Aline Meyer Oliveira, Gaël Monvoisin, Natalie Orlowski, Kadi Palmik-Das, Aurel Persoiu, Andrei Popa, Egor Prikaziuk, Cécile Quantin, Katja T. Rinne-Garmston, Clara Rohde, Martin Sanda, Matthias Saurer, Daniel Schulz, Michael Paul Stockinger, Christine Stumpp, Jean-Stéphane Venisse, Lukas Vlcek, Stylianos Voudouris, Björn Weeser, Mark E. Wilkinson, Giulia Zuecco, and Katrin Meusburger
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-409, https://doi.org/10.5194/essd-2024-409, 2024
Revised manuscript under review for ESSD
Short summary
Short summary
This study describes a unique large-scale isotope dataset to study water dynamics in European forests. Researchers collected data from 40 beech and spruce forest sites in spring and summer 2023, using a standardized method to ensure consistency. The results show that water sources for trees change between seasons and vary by tree species. This large dataset offers valuable information for understanding plant water use, improving ecohydrological models, and mapping water cycles across Europe.
Nikol Zelíková, Jitka Toušková, Jiří Kocum, Lukáš Vlček, Miroslav Tesař, Martin Bouda, and Václav Šípek
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-244, https://doi.org/10.5194/hess-2024-244, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
Climate change in Central Europe results in the gradual replacement of spruce trees with beech. To model its potential impact, we used 22-year data of soil moisture under both tree species. The drier the summer season, the greater the difference between the two: the main reason was the higher transpiration of beech canopy compared to spruce. We conclude that as a result, changes in the seasonal water availability can be expected.
Marco M. Lehmann, Josie Geris, Ilja van Meerveld, Daniele Penna, Youri Rothfuss, Matteo Verdone, Pertti Ala-Aho, Matyas Arvai, Alise Babre, Philippe Balandier, Fabian Bernhard, Lukrecija Butorac, Simon Damien Carrière, Natalie C. Ceperley, Zuosinan Chen, Alicia Correa, Haoyu Diao, David Dubbert, Maren Dubbert, Fabio Ercoli, Marius G. Floriancic, Teresa E. Gimeno, Damien Gounelle, Frank Hagedorn, Christophe Hissler, Frédéric Huneau, Alberto Iraheta, Tamara Jakovljević, Nerantzis Kazakis, Zoltan Kern, Karl Knaebel, Johannes Kobler, Jiří Kocum, Charlotte Koeber, Gerbrand Koren, Angelika Kübert, Dawid Kupka, Samuel Le Gall, Aleksi Lehtonen, Thomas Leydier, Philippe Malagoli, Francesca Sofia Manca di Villahermosa, Chiara Marchina, Núria Martínez-Carreras, Nicolas Martin-StPaul, Hannu Marttila, Aline Meyer Oliveira, Gaël Monvoisin, Natalie Orlowski, Kadi Palmik-Das, Aurel Persoiu, Andrei Popa, Egor Prikaziuk, Cécile Quantin, Katja T. Rinne-Garmston, Clara Rohde, Martin Sanda, Matthias Saurer, Daniel Schulz, Michael Paul Stockinger, Christine Stumpp, Jean-Stéphane Venisse, Lukas Vlcek, Stylianos Voudouris, Björn Weeser, Mark E. Wilkinson, Giulia Zuecco, and Katrin Meusburger
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-409, https://doi.org/10.5194/essd-2024-409, 2024
Revised manuscript under review for ESSD
Short summary
Short summary
This study describes a unique large-scale isotope dataset to study water dynamics in European forests. Researchers collected data from 40 beech and spruce forest sites in spring and summer 2023, using a standardized method to ensure consistency. The results show that water sources for trees change between seasons and vary by tree species. This large dataset offers valuable information for understanding plant water use, improving ecohydrological models, and mapping water cycles across Europe.
Nikol Zelíková, Jitka Toušková, Jiří Kocum, Lukáš Vlček, Miroslav Tesař, Martin Bouda, and Václav Šípek
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-244, https://doi.org/10.5194/hess-2024-244, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
Climate change in Central Europe results in the gradual replacement of spruce trees with beech. To model its potential impact, we used 22-year data of soil moisture under both tree species. The drier the summer season, the greater the difference between the two: the main reason was the higher transpiration of beech canopy compared to spruce. We conclude that as a result, changes in the seasonal water availability can be expected.
David Mennekes, Michael Rinderer, Stefan Seeger, and Natalie Orlowski
Hydrol. Earth Syst. Sci., 25, 4513–4530, https://doi.org/10.5194/hess-25-4513-2021, https://doi.org/10.5194/hess-25-4513-2021, 2021
Short summary
Short summary
In situ stable water isotope measurements are a recently developed method to measure water movement from the soil through the plant to the atmosphere in high resolution and precision. Here, we present important advantages of the new method in comparison to commonly used measurement methods in an experimental setup. Overall, this method can help to answer research questions such as plant responses to climate change with potentially shifting water availability or temperatures.
Cited articles
Araguás-Araguás, L., Rozanski, K., Gonfiantini, R., and Louvat, D.: Isotope effects accompanying vacuum extraction of soil water for stable isotope analyses, J. Hydrol., 168, 159–171, https://doi.org/10.1016/0022-1694(94)02636-P, 1995.
Barrow, N. J. and Whelan, B. R.: A study of a method for displacing soil solution by centrifuging with an immiscible liquid, J. Environ. Qual., 9, 315–319, https://doi.org/10.2134/jeq1980.00472425000900020031x, 1980.
Batley, G. and Giles, M.: Solvent displacement of sediment interstitial waters before trace metal analysis, Water Res., 13, 879–886, https://doi.org/10.1016/0043-1354(79)90223-9, 1979.
Barrie, J. A. and Machin. D.: The sorption and diffusion of water in silicone rubbers: Part I. Unfilled rubbers, J. Macromol. Sci. B, 3, 645–672, https://doi.org/10.1080/00222346908217112, 1969.
Böttcher, G., Brumsack, H.-J., Heinrichs, H., and Pohlmann, M.: A new high-pressure squeezing technique for pore fluid extraction from terrestrial soils, Water Air Soil Pollut., 94, 289–296, https://doi.org/10.1007/BF02406064, 1997.
Brumsack, H., Zuleger, E., Gohn, E., and Murray, R.: Stable and radiogenic isotopes in pore waters from leg 127, Japan Sea, in: Proceedings of the Ocean Drilling Program, edite by: Pisciotto, K., Ingle, J., von Breymann, M., and Barron, J., Sci. Res., 127/128, 635–650, https://doi.org/10.2973/odp.proc.sr.127128-1.165.1992, 1992.
Ceperley, N., Gimeno, T. E., Jacobs, S. R., Beyer, M., Dubbert, M., Fischer, B., Geris, J., Holko, L., Kübert, A., Le Gall, S., Lehmann, M. M., Llorens, P., Millar, C., Penna, D., Prieto, I., Radolinski, J., Scandellari, F., Stockinger, M., Stumpp, C., Tetzlaff, D., van Meerveld, I., Werner, C., Yildiz, O., Zuecco, G., Barbeta, A., Orlowski, N., and Rothfuss, Y.: Toward a common methodological framework for the sampling, extraction, and isotopic analysis of water in the Critical Zone to study vegetation water use, WIREs Water, 11, e1727, https://doi.org/10.1002/wat2.1727, 2024.
Craig, H.: Standard for reporting concentrations of deuterium and oxygen-18 in natural waters, Science, 133, 1833–1834, https://doi.org/10.1126/science.133.3467.1833, 1961.
Dansgaard, W.: Stable isotopes in precipitation, Tellus, 16, 436–468, https://doi.org/10.1111/j.2153-3490.1964.tb00181.x, 1964.
Dalton, F. N.: Plant root water extraction studies using stable isotopes, Plant Soil, 111, 217–221, https://doi.org/10.1007/BF02139942, 1988.
Gaj, M. and McDonell, J. J.: Possible soil tension controls on the isotopic equilibrium fractionation factor for evaporation from soil, Hydrol. Process., 33, 1629–1634, https://doi.org/10.1002/hyp.13418, 2019.
Gaj, M., Beyer, M., Koeniger, P., Wanke, H., Hamutoko, J., and Himmelsbach, T.: In situ unsaturated zone water stable isotope (2H and 18O) measurements in semi-arid environments: a soil water balance, Hydrol. Earth Syst. Sci., 20, 715–731, https://doi.org/10.5194/hess-20-715-2016, 2016.
Gaj, M., Kaufhold, S., and McDonnell, J. J.: Potential limitation of cryogenic vacuum extractions and spiked experiments, Rapid Commun. Mass Sp., 31, 821–823, https://doi.org/10.1002/rcm.7850, 2017.
Garvelmann, J., Külls, C., and Weiler, M.: A porewater-based stable isotope approach for the investigation of subsurface hydrological processes, Hydrol. Earth Syst. Sci., 16, 631–640, https://doi.org/10.5194/hess-16-631-2012, 2012.
Goebel, T. S. and Lascano, R. J.: System for high throughput water extraction from soil material for stable isotope analysis of water, Journal of Analytical Sciences, Method. Instrum., 2, 203–207, https://doi.org/10.4236/jasmi.2012.24031, 2012.
Gralher, B., Herbstritt, B., Weiler, M., Wassenaar, L. I., and Stumpp, C.: Correcting Laser-Based Stable Isotope Reading Biased by Carrier Gas Changes, Environ. Sci. Technol., 50, 7047–7081, https://doi.org/10.1021/acs.est.6b01124, 2016.
Hendry, M. J., Schmeling, E., Wassenaar, L. I., Barbour, S. L., and Pratt, D.: Determining the stable isotope composition of pore water from saturated and unsaturated zone core: improvements to the direct vapour equilibration laser spectrometry method, Hydrol. Earth Syst. Sci., 19, 4427–4440, https://doi.org/10.5194/hess-19-4427-2015, 2015.
Hsieh, J. C. C., Savin, S. M., Kelly, E. F., and Chadwick, O. A.: Measurement of soil-water δ18O values by direct equilibration with CO2, Geoderma, 82, 255–268, https://doi.org/10.1016/S0016-7061(97)00104-3, 1998.
Ignatev, A., Velivetckaia, T., Sugimoto, A., and Ueta, A.: A soil water distillation technique using He-purging for stable isotope analysis, J. Hydrol., 498, 265–273, https://doi.org/10.1016/j.jhydrol.2013.06.032, 2013.
Ishimaru, H., Itoh, K., Ishigaki, T., and Furutate, M.: Fast pump-down aluminum ultrahigh vacuum system, J. Vacuum Sci. Technol., 10, 547–552, https://doi.org/10.1116/1.578186, 1992.
Jusserand, C.: Pore water extraction from sediment and soil: Oxygen-18 abundances comparisons between different techniques. First results, Catena, 7, 87–96, https://doi.org/10.1016/S0341-8162(80)80006-3, 1980.
Kelln, C. J., Wassenaar, L. I., and Hendry, M. J.: Stable Isotopes (δ18O, δ2H) of Pore Waters in Clay-Rich Aquitards: A Comparison and Evaluation of Measurement Techniques, Ground Water Monit. R., 21, 108–116, https://doi.org/10.1111/j.1745-6592.2001.tb00306.x, 2001.
Kendall, C. and Coplen, T. B.: Multi-sample conversion of water to hydrogen by zinc for stable isotope determination, Anal. Chem., 57, 1437–1440, https://doi.org/10.1021/ac00284a058, 1985.
Koehler, G., Wassenaar, L. I., and Hendry, M. J.: An Automated Technique for Measuring δD and δ18O Values of Porewater by Direct CO2 and H2 Equilibration, Anal. Chem., 72, 5659–5664, https://doi.org/10.1021/ac000498n, 2000.
Koeniger, P., Marshall, J. D., Link, T., and Mulch, A.: An inexpensive, fast, and reliable method for vacuum extraction of soil and plant water for stable isotope analyses by mass spectrometry, Rapid Commun. Mass Sp., 25, 3041–3048, https://doi.org/10.1002/rcm.5198, 2011.
Kübert, A., Paulus, S., Dahlmann, A., Werner, C., Rothfuss, Y., Orlowski, N., and Dubbert, M.: Water stable isotopes in ecohydrological field research: comparison between in situ and destructive monitoring methods to determine soil water isotopic signatures, Plant Sci., 11, 387, https://doi.org/10.3389/fpls.2020.00387, 2020.
Leaney, F. W., Smettem, K. R. J., and Chittleborough, D. J.: Estimating the contribution of preferential flow to subsurface runoff from a hillslope using deuterium and chloride, J. Hydrol., 147, 83–103, https://doi.org/10.1016/0022-1694(93)90076-L, 1993.
McConville, C., Kalin, R. M., and Flood, D.: Direct equilibration of soil water for δ18O analysis and its application to tracer studies, Rapid Commun. Mass Sp., 13, 1339–1345, https://doi.org/10.1002/(SICI)1097-0231(19990715)13:13<1339::AID-RCM559>3.0.CO;2-N, 1999.
Meißner, M., Köhler, M., Schwendenmann, L., Hölscher, D., and Dyckmans, J.: Soil water uptake by trees using water stable isotopes (δ2H and δ18O) – a method test regarding soil moisture, texture and carbonate, Plant Soil, 376, 327–335, https://doi.org/10.1007/s11104-013-1970-z, 2014.
Mora, G. and Jahren, A. H.: Isotopic evidence for the role of plant development on transpiration in deciduous forests of southern United States, Global Biogeochem. Cy., 17, 13-1–13-7, https://doi.org/10.1029/2002GB001981, 2003.
Mubarak, A. and Olsen, R.: Immiscible displacement of soil solution by centrifugation, Soil Sci. Soc. Am. J., 40, 329–331, 1976.
Munksgaard, N. C., Cheesman, A. W., Wurster, C. M., Cernusak, L. A., and Bird, M. I.: Microwave extraction–isotope ratio infrared spectroscopy (ME-IRIS): a novel technique for rapid extraction and in-line analysis of δ18O and δ2H values of water in plants, soils and insects, Rapid Commun. Mass Sp., 28, 2151–2161, https://doi.org/10.1002/rcm.7005, 2014.
Newberry, S. L., Prechsl, U. E., Pace, M., and Kahmen, A.: Tightly bound soil water introduces isotopic memory effects on mobile and extractable soil water pools, Isot. Environ. Healt. S., 52, 368–381, https://doi.org/10.1080/10256016.2017.1302446, 2017.
O'Kelly, B. C.: Accurate Determination of Moisture Content of Organic Soils Using the Oven Drying Method, Dry. Technol., 22, 1767–1776, https://doi.org/10.1081/DRT-200025642, 2004.
O'Kelly, B. C.: Oven-Drying Characteristics of Soil of Different Origins, Dry. Technol., 23, 1141–1149, https://doi.org/10.1081/DRT-200059149, 2005.
Orlowski, N. and Breuer, L.: Sampling soil water along pF curve for δ2H and δ18O analysis, Hydrol. Process., 34, 4959–4972, https://doi.org/10.1002/hyp.13916, 2020.
Orlowski, N., Frede, H.-G., Brüggemann, N., and Breuer, L.: Validation and application of a cryogenic vacuum extraction system for soil and plant water extraction for isotope analysis, J. Sensors Sensor Syst., 2, 179–193, https://doi.org/10.5194/jsss-2-179-2013, 2013.
Orlowski, N., Breuer, L., and McDonell, J. J.: Critical issues with cryogenic extraction of soil water for stable isotope analysis, Ecohydrology, 9, 3–10, https://doi.org/10.1002/eco.1722, 2016a.
Orlowski, N., Pratt, D. L., and McDonell, J. J.: Intercomparison of soil pore water extraction methods for stable isotope analysis, Hydrol. Process., 30, 3433–3449, https://doi.org/10.1002/hyp.10870, 2016b.
Orlowski, N., Breuer, L., Angeli, N., Boeckx, P., Brumbt, C., Cook, C. S., Dubbert, M., Dyckmans, J., Gallagher, B., Gralher, B., Herbstritt, B., Hervé-Fernández, P., Hissler, C., Koeniger, P., Legout, A., Macdonald, C. J., Oyarzún, C., Redelstein, R., Seidler, C., Siegwolf, R., Stumpp, C., Thomsen, S., Weiler, M., Werner, C., and McDonnell, J. J.: Inter-laboratory comparison of cryogenic water extraction systems for stable isotope analysis of soil water, Hydrol. Earth Syst. Sci., 22, 3619–3637, https://doi.org/10.5194/hess-22-3619-2018, 2018.
Orlowski, N., Pratt, D. L., and McDonnell, J. J.: Intercomparison of soil pore water extraction methods for stable isotope analysis and interpretation of hillslope runoff sources, Hydrol. Process., 33, 2939–2954, https://doi.org/10.1002/hyp.13539, 2019.
Penna, D., Stenni, B., Šanda, M., Wrede, S., Bogaard, T. A., Gobbi, A., Borga, M., Fischer, B. M. C., Bonazza, M., and Chárová, Z.: On the reproducibility and repeatability of laser absorption spectroscopy measurements for δ2H and δ18O isotopic analysis, Hydrol. Earth Syst. Sci., 14, 1551–1566, https://doi.org/10.5194/hess-14-1551-2010, 2010.
Penna, D., Stenni, B., Šanda, M., Wrede, S., Bogaard, T. A., Michelini, M., Fischer, B. M. C., Gobbi, A., Mantese, N., Zuecco, G., Borga, M., Bonazza, M., Sobotková, M., Čejková, B., and Wassenaar, L. I.: Technical Note: Evaluation of between-sample memory effects in the analysis of δ2H and δ18O of water samples measured by laser spectroscopes, Hydrol. Earth Syst. Sci., 16, 3925–3933, https://doi.org/10.5194/hess-16-3925-2012, 2012.
Peters, L. I. and Yakir, D.: A direct and rapid leaf water extraction method for isotopic analysis, Rapid Commun. Mass Sp., 22(18), 2929–2936, https://doi.org/10.1002/rcm.3692, 2008.
Revesz, K. and Woods, P. H.: A method to extract soil water for stable isotope analysis, J. Hydrol., 115, 397–406, https://doi.org/10.1016/0022-1694(90)90217-L, 1990.
Rothfuss, Y., Vereecken, H., and Brüggemann, N.: Monitoring water stable isotopic composition in soils using gas-permeable tubing and infrared laser absorption spectroscopy, Water Resour. Res., 49, 1–9, https://doi.org/10.1002/wrcr.20311, 2013.
Rothfuss, Y., Merz, S., Vanderborght, J., Hermes, N., Weuthen, A., Pohlmeier, A., Vereecken, H., and Brüggemann, N.: Long-term and high-frequency non-destructive monitoring of water stable isotope profiles in an evaporating soil column, Hydrol. Earth Syst. Sci., 19, 4067–4080, https://doi.org/10.5194/hess-19-4067-2015, 2015.
Scrimgeour, C. M.: Measurement of plant and soil water isotope composition by direct equilibration methods, J. Hydrol., 172, 261–274, https://doi.org/10.1016/0022-1694(95)02716-3, 1995.
Sprenger, M., Herbstritt, B., and Weiler, M.: Established methods and new opportunities for pore water stable isotope analysis, Hydrol. Process., 29, 5174–5192, https://doi.org/10.1002/hyp.10643, 2015.
Stumpp, C., Brüggemann, N., and Wingate, L.: Stable Isotope Approaches in Vadose Zone Research, Vadose Zone J., 17, 1–7, https://doi.org/10.2136/vzj2018.05.0096, 2018.
Thorburn, P. J., Walker, G. R., and Brunel, J.-P.: Extraction of water from Eucalyptus trees for analysis of deuterium and oxygen-18: laboratory and field techniques, Plant Cell Environ., 16, 269–277, https://doi.org/10.1111/j.1365-3040.1993.tb00869.x, 1993.
Volkmann, T. H. M. and Weiler, M.: Continual in situ monitoring of pore water stable isotopes in the subsurface, Hydrol. Earth Syst. Sci., 18, 1819–1833, https://doi.org/10.5194/hess-18-1819-2014, 2014.
Walker, G. R., Woods, P. H., and Allison, G. B.: Interlaboratory comparison of methods to determine the stable isotope composition of soil water, Chem. Geol., 111, 297–306, https://doi.org/10.1016/0009-2541(94)90096-5, 1994.
Wassenaar, L. I., Hendry, M. J., Chostner, V. L., and Lis, G. P.: High Resolution Pore Water δ2H and δ18O Measurements by H2O(liquid)-H2O(vapor) Equilibration Laser Spectroscopy, Environ. Sci. Technol., 42, 9262–9267, https://doi.org/10.1021/es802065s, 2008.
Wassenaar, L. I., Ahmad, M., Aggarwal, P., van Duren, M., Pöltenstein, L., Araguas, L., and Kurttas, T.: Worldwide proficiency test for routine analysis of δ2H and δ18O in water by isotope-ratio mass spectrometry and laser absorption spectroscopy, Rapid Commun. Mass Sp., 26, 1641–1648, https://doi.org/10.1002/rcm.6270, 2012.
Wershaw, R. L., Friedman, I., Heller, S. J., and Frank, P. A.: Hydrogen isotopic fractionation of water passing through trees, in: Advances in Organic Geochemistry: Proceedings of the Third International Congress, edited by: Hobson, F. and Speers, M., Pergamon Press Ltd., Elsevier, New York, USA, 55–67, https://doi.org/10.1016/B978-0-08-012758-3.50007-4, 1966.
West, A. G., Patrickson, S. J., and Ehleringer, J. R.: Water extraction times for plant and soil materials used in stable isotope analysis, Rapid Commun. Mass Sp., 20, 1317–1321, https://doi.org/10.1002/rcm.2456, 2006.
White, J. W. C., Cook, E. R., Lawrence, J. R., and Wallace, S. B.: The ratios of sap in trees: Implications for water sources and tree ring ratios, Geochim. Cosmochim. Ac., 49, 237–246, https://doi.org/10.1016/0016-7037(85)90207-8, 1985.
Yang, B., Dossa, G. G. O., Hu, Y. H., Liu, L. L., Meng, X. J., Du, Y. Y., Li, J. Y., Zhu, X. A., Zhang, Y. J., Singh, A. K., Yuan, X., Wu, J. E., Zakari, S., Liu, W. J., and Song, L.: Uncorrected soil water isotopes through cryogenic vacuum distillation may lead to a false estimation on plant water source, Method. Ecol. Evol., 6, 1443–1456, https://doi.org/10.1111/2041-210X.14107, 2023.
Zhu, Q.-Z., Sun, Q., Su, Z.-G., Xie, M.-M., Song, J.-Y., Shan, Y.-B., Wang, N., and Chu, G.-Q.: A Soil Water Extraction Method with Accelerated Solvent Extraction Technique for Stable Isotope Analysis, Chinese J. Anal. Chem., 42, 1270–1275, https://doi.org/10.1016/S1872-2040(14)60766-0, 2014.
Short summary
We present a novel method for soil water extraction – circulating-air soil water extraction – together with a newly developed apparatus specifically designed for its purposes. The method has been tested across a range of soil types, demonstrating an accuracy level that matches or surpasses that of conventional extraction techniques. The apparatus is optimized for small-scale, high-precision studies in which an unambiguous determination of the water origin is required.
We present a novel method for soil water extraction – circulating-air soil water extraction –...