Articles | Volume 28, issue 18
https://doi.org/10.5194/hess-28-4361-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-28-4361-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Spatiotemporal responses of runoff to climate change in the southern Tibetan Plateau
State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
Tandong Yao
State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100101, China
Fengge Su
CORRESPONDING AUTHOR
State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100101, China
Wei Yang
State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100101, China
Deliang Chen
Regional Climate Group, Department of Earth Sciences, University of Gothenburg, Gothenburg 405 30, Sweden
Related authors
He Sun, Tandong Yao, Fengge Su, Wei Yang, Guifeng Huang, and Deliang Chen
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-16, https://doi.org/10.5194/hess-2023-16, 2023
Manuscript not accepted for further review
Short summary
Short summary
Based on field research campaigns since 2017 in the Yarlung Zangbo (YZ) river basin and a well-validated model, our results reveal that large regional differences in runoff regimes and changes exist in the basin. Annual runoff shows decreasing trend in the downstream sub-basin but increasing trends in the upper and middle sub-basins, due to opposing precipitation changes. Glacier runoff plays more important role in annual total runoff in downstream basin.
Zihao Li, Qiuyu Wang, Huan Xu, Wei Yang, and Wenke Sun
EGUsphere, https://doi.org/10.5194/egusphere-2025-1772, https://doi.org/10.5194/egusphere-2025-1772, 2025
Short summary
Short summary
Our results show a steady retreat of glaciers in southeastern Tibet from 2000 to 2022, with an average annual loss of 85.03 ± 7.60 km². The retreat rate accelerated after 2010, increasing from 57.72 ± 16.81 km² to 97.72 ± 17.67 km² per year. The annual mass loss was calculated at 6.20 ± 0.22 gigatons. These findings underline the urgent need for continued monitoring of glacier dynamics due to climate change.
Cheng Shen, Hui-Shuang Yuan, Zhi-Bo Li, Jinling Piao, Youli Chang, and Deliang Chen
EGUsphere, https://doi.org/10.5194/egusphere-2025-1156, https://doi.org/10.5194/egusphere-2025-1156, 2025
Short summary
Short summary
Near-surface wind speed affects air quality, water cycles, and wind energy, but its future changes in South Asia remain uncertain. This study explores how internal climate variability, particularly the Interdecadal Pacific Oscillation, affects wind speed trends in the region. Using advanced climate simulations, we show that accounting for this variability reduces uncertainty in future projections. Our findings can improve climate adaptation strategies and wind energy planning.
Tong Zhang, Wei Yang, Yuzhe Wang, Chuanxi Zhao, Qingyun Long, and Cunde Xiao
EGUsphere, https://doi.org/10.5194/egusphere-2025-659, https://doi.org/10.5194/egusphere-2025-659, 2025
Short summary
Short summary
This study investigates the 2018 Sedongpu glacier detachment in Southeastern Tibet using a two-dimensional ice flow model that includes an ice stiffness and basal slip positive feedback mechanism. The model simulates rapid transitions in glacier flow, triggering detachment when ice stress exceeds yield strength. The results, including ice speed and duration, align with observations, demonstrating the potential for early warning of similar hazards in the region.
Zhi-Bo Li, Chao Liu, Cesar Azorin-Molina, Soon-Il An, Yang Zhao, Yang Xu, Jongsoo Shin, Deliang Chen, and Cheng Shen
EGUsphere, https://doi.org/10.5194/egusphere-2025-1377, https://doi.org/10.5194/egusphere-2025-1377, 2025
Short summary
Short summary
Our research explores how European wind speeds respond to the removal of carbon dioxide from the atmosphere, focusing on their importance for wind energy. Using advanced climate models, we discovered that wind speeds react differently during periods of increased and decreased carbon dioxide levels. This study not only advances our understanding of climate dynamics but also aids in optimizing strategies for wind energy, crucial for future planning and policy-making in response to climate change.
Titouan Biget, Fanny Brun, Walter Immerzeel, Leo Martin, Hamish Pritchard, Emily Colier, Yanbin Lei, and Tandong Yao
EGUsphere, https://doi.org/10.5194/egusphere-2025-863, https://doi.org/10.5194/egusphere-2025-863, 2025
Short summary
Short summary
This study explore the precipitation in the southern Tibetan plateau using the water pressure of an high altitude lake and meteorological models and shows that snowfall could be much stronger on the Plateau than what is predicted by the models.
Zengyun Hu, Xi Chen, Deliang Chen, Zhuo Zhang, Qiming Zhou, and Qingxiang Li
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-82, https://doi.org/10.5194/gmd-2024-82, 2024
Preprint withdrawn
Short summary
Short summary
ERC firstly unified the evaluating, ranking, and clustering by a simple mathematic equation based on Euclidean Distance. It provides new system to solve the evaluating, ranking, and clustering tasks in SDGs. In fact, ERC system can be applied in any scientific domain.
Qian Lin, Jie Chen, and Deliang Chen
EGUsphere, https://doi.org/10.5194/egusphere-2024-826, https://doi.org/10.5194/egusphere-2024-826, 2024
Preprint archived
Short summary
Short summary
Glaciers of the Tibetan Plateau (TP) have experienced widespread retreat in recent decades, but impacts of glacier changes that have occurred on regional climate, including precipitation, is still unknown. Thus, this study addressed this knowledge gap, and found that glacier changes exert a more pronounced impact on summer extreme precipitation events than mean precipitation over the TP. This provides a certain theoretical reference for the further improvement of long-term glacier projection.
Niranjan Adhikari, Jing Gao, Aibin Zhao, Tianli Xu, Manli Chen, Xiaowei Niu, and Tandong Yao
Atmos. Chem. Phys., 24, 3279–3296, https://doi.org/10.5194/acp-24-3279-2024, https://doi.org/10.5194/acp-24-3279-2024, 2024
Short summary
Short summary
Atmospheric water vapour isotopes at Kathmandu recorded significantly low δ18Ov and δDv values during cyclones Tauktae and Yaas in 2021, originating in the Arabian Sea and Bay of Bengal, respectively. Such depletion was associated with the intense moisture convergence and strong convection near the sampling site. The lower δ18Ov and higher d-excessv values during cyclone Yaas may be attributed to the occurrence of robust downdrafts during the rainfall.
Fangzhong Shi, Xiaoyan Li, Shaojie Zhao, Yujun Ma, Junqi Wei, Qiwen Liao, and Deliang Chen
Hydrol. Earth Syst. Sci., 28, 163–178, https://doi.org/10.5194/hess-28-163-2024, https://doi.org/10.5194/hess-28-163-2024, 2024
Short summary
Short summary
(1) Evaporation under ice-free and sublimation under ice-covered conditions and its influencing factors were first quantified based on 6 years of eddy covariance observations. (2) Night evaporation of Qinghai Lake accounts for more than 40 % of the daily evaporation. (3) Lake ice sublimation reaches 175.22 ± 45.98 mm, accounting for 23 % of the annual evaporation. (4) Wind speed weakening may have resulted in a 7.56 % decrease in lake evaporation during the ice-covered period from 2003 to 2017.
Daniel Falaschi, Atanu Bhattacharya, Gregoire Guillet, Lei Huang, Owen King, Kriti Mukherjee, Philipp Rastner, Tandong Yao, and Tobias Bolch
The Cryosphere, 17, 5435–5458, https://doi.org/10.5194/tc-17-5435-2023, https://doi.org/10.5194/tc-17-5435-2023, 2023
Short summary
Short summary
Because glaciers are crucial freshwater sources in the lowlands surrounding High Mountain Asia, constraining short-term glacier mass changes is essential. We investigate the potential of state-of-the-art satellite elevation data to measure glacier mass changes in two selected regions. The results demonstrate the ability of our dataset to characterize glacier changes of different magnitudes, allowing for an increase in the number of inaccessible glaciers that can be readily monitored.
Chuanxi Zhao, Wei Yang, Evan Miles, Matthew Westoby, Marin Kneib, Yongjie Wang, Zhen He, and Francesca Pellicciotti
The Cryosphere, 17, 3895–3913, https://doi.org/10.5194/tc-17-3895-2023, https://doi.org/10.5194/tc-17-3895-2023, 2023
Short summary
Short summary
This paper quantifies the thinning and surface mass balance of two neighbouring debris-covered glaciers in the southeastern Tibetan Plateau during different seasons, based on high spatio-temporal resolution UAV-derived (unpiloted aerial
vehicle) data and in situ observations. Through a comparison approach and high-precision results, we identify that the glacier dynamic and debris thickness are strongly related to the future fate of the debris-covered glaciers in this region.
Wei Yang, Zhongyan Wang, Baosheng An, Yingying Chen, Chuanxi Zhao, Chenhui Li, Yongjie Wang, Weicai Wang, Jiule Li, Guangjian Wu, Lin Bai, Fan Zhang, and Tandong Yao
Nat. Hazards Earth Syst. Sci., 23, 3015–3029, https://doi.org/10.5194/nhess-23-3015-2023, https://doi.org/10.5194/nhess-23-3015-2023, 2023
Short summary
Short summary
We present the structure and performance of the early warning system (EWS) for glacier collapse and river blockages in the southeastern Tibetan Plateau. The EWS warned of three collapse–river blockage chain events and seven small-scale events. The volume and location of the collapses and the percentage of ice content influenced the velocities of debris flows. Such a study is helpful for understanding the mechanism of glacier hazards and for establishing similar EWSs in other high-risk regions.
Wei Yang, Huabiao Zhao, Baiqing Xu, Jiule Li, Weicai Wang, Guangjian Wu, Zhongyan Wang, and Tandong Yao
The Cryosphere, 17, 2625–2628, https://doi.org/10.5194/tc-17-2625-2023, https://doi.org/10.5194/tc-17-2625-2023, 2023
Short summary
Short summary
There is very strong scientific and public interest regarding the snow thickness on Mountain Everest. Previously reported snow depths derived by different methods and instruments ranged from 0.92 to 3.5 m. Our measurements in 2022 provide the first clear radar image of the snowpack at the top of Mount Everest. The snow thickness at Earth's summit was averaged to be 9.5 ± 1.2 m. This updated snow thickness is considerably deeper than values reported during the past 5 decades.
John Erik Engström, Lennart Wern, Sverker Hellström, Erik Kjellström, Chunlüe Zhou, Deliang Chen, and Cesar Azorin-Molina
Earth Syst. Sci. Data, 15, 2259–2277, https://doi.org/10.5194/essd-15-2259-2023, https://doi.org/10.5194/essd-15-2259-2023, 2023
Short summary
Short summary
Newly digitized wind speed observations provide data from the time period from around 1920 to the present, enveloping one full century of wind measurements. The results of this work enable the investigation of the historical variability and trends in surface wind speed in Sweden for
the last century.
He Sun, Tandong Yao, Fengge Su, Wei Yang, Guifeng Huang, and Deliang Chen
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-16, https://doi.org/10.5194/hess-2023-16, 2023
Manuscript not accepted for further review
Short summary
Short summary
Based on field research campaigns since 2017 in the Yarlung Zangbo (YZ) river basin and a well-validated model, our results reveal that large regional differences in runoff regimes and changes exist in the basin. Annual runoff shows decreasing trend in the downstream sub-basin but increasing trends in the upper and middle sub-basins, due to opposing precipitation changes. Glacier runoff plays more important role in annual total runoff in downstream basin.
Simon K. Allen, Ashim Sattar, Owen King, Guoqing Zhang, Atanu Bhattacharya, Tandong Yao, and Tobias Bolch
Nat. Hazards Earth Syst. Sci., 22, 3765–3785, https://doi.org/10.5194/nhess-22-3765-2022, https://doi.org/10.5194/nhess-22-3765-2022, 2022
Short summary
Short summary
This study demonstrates how the threat of a very large outburst from a future lake can be feasibly assessed alongside that from current lakes to inform disaster risk management within a transboundary basin between Tibet and Nepal. Results show that engineering measures and early warning systems would need to be coupled with effective land use zoning and programmes to strengthen local response capacities in order to effectively reduce the risk associated with current and future outburst events.
Marin Kneib, Evan S. Miles, Pascal Buri, Stefan Fugger, Michael McCarthy, Thomas E. Shaw, Zhao Chuanxi, Martin Truffer, Matthew J. Westoby, Wei Yang, and Francesca Pellicciotti
The Cryosphere, 16, 4701–4725, https://doi.org/10.5194/tc-16-4701-2022, https://doi.org/10.5194/tc-16-4701-2022, 2022
Short summary
Short summary
Ice cliffs are believed to be important contributors to the melt of debris-covered glaciers, but this has rarely been quantified as the cliffs can disappear or rapidly expand within a few weeks. We used photogrammetry techniques to quantify the weekly evolution and melt of four cliffs. We found that their behaviour and melt during the monsoon is strongly controlled by supraglacial debris, streams and ponds, thus providing valuable insights on the melt and evolution of debris-covered glaciers.
Chenhao Chai, Lei Wang, Deliang Chen, Jing Zhou, Hu Liu, Jingtian Zhang, Yuanwei Wang, Tao Chen, and Ruishun Liu
Hydrol. Earth Syst. Sci., 26, 4657–4683, https://doi.org/10.5194/hess-26-4657-2022, https://doi.org/10.5194/hess-26-4657-2022, 2022
Short summary
Short summary
This work quantifies future snow changes and their impacts on hydrology in the upper Salween River (USR) under SSP126 and SSP585 using a cryosphere–hydrology model. Future warm–wet climate is not conducive to the development of snow. The rain–snow-dominated pattern of runoff will shift to a rain-dominated pattern after the 2040s under SSP585 but is unchanged under SSP126. The findings improve our understanding of cryosphere–hydrology processes and can assist water resource management in the USR.
Changgui Lin, Erik Kjellström, Renate Anna Irma Wilcke, and Deliang Chen
Earth Syst. Dynam., 13, 1197–1214, https://doi.org/10.5194/esd-13-1197-2022, https://doi.org/10.5194/esd-13-1197-2022, 2022
Short summary
Short summary
This study endorses RCMs' added value on the driving GCMs in representing observed heat wave magnitudes. The future increase of heat wave magnitudes projected by GCMs is attenuated when downscaled by RCMs. Within the downscaling, uncertainties can be attributed almost equally to choice of RCMs and to the driving data associated with different GCMs. Uncertainties of GCMs in simulating heat wave magnitudes are transformed by RCMs in a complex manner rather than simply inherited.
Chunlüe Zhou, Cesar Azorin-Molina, Erik Engström, Lorenzo Minola, Lennart Wern, Sverker Hellström, Jessika Lönn, and Deliang Chen
Earth Syst. Sci. Data, 14, 2167–2177, https://doi.org/10.5194/essd-14-2167-2022, https://doi.org/10.5194/essd-14-2167-2022, 2022
Short summary
Short summary
To fill the key gap of short availability and inhomogeneity of wind speed (WS) in Sweden, we rescued the early paper records of WS since 1925 and built the first 10-member centennial homogenized WS dataset (HomogWS-se) for community use. An initial WS stilling and recovery before the 1990s was observed, and a strong link with North Atlantic Oscillation was found. HomogWS-se improves our knowledge of uncertainty and causes of historical WS changes.
Stefan Fugger, Catriona L. Fyffe, Simone Fatichi, Evan Miles, Michael McCarthy, Thomas E. Shaw, Baohong Ding, Wei Yang, Patrick Wagnon, Walter Immerzeel, Qiao Liu, and Francesca Pellicciotti
The Cryosphere, 16, 1631–1652, https://doi.org/10.5194/tc-16-1631-2022, https://doi.org/10.5194/tc-16-1631-2022, 2022
Short summary
Short summary
The monsoon is important for the shrinking and growing of glaciers in the Himalaya during summer. We calculate the melt of seven glaciers in the region using a complex glacier melt model and weather data. We find that monsoonal weather affects glaciers that are covered with a layer of rocky debris and glaciers without such a layer in different ways. It is important to take so-called turbulent fluxes into account. This knowledge is vital for predicting the future of the Himalayan glaciers.
Chuanxi Zhao, Wei Yang, Matthew Westoby, Baosheng An, Guangjian Wu, Weicai Wang, Zhongyan Wang, Yongjie Wang, and Stuart Dunning
The Cryosphere, 16, 1333–1340, https://doi.org/10.5194/tc-16-1333-2022, https://doi.org/10.5194/tc-16-1333-2022, 2022
Short summary
Short summary
On 22 March 2021, a ~ 50 Mm 3 ice-rock avalanche occurred from 6500 m a.s.l. in the Sedongpu basin, southeastern Tibet. It caused temporary blockage of the Yarlung Tsangpo river, a major tributary of the Brahmaputra. We utilize field investigations, high-resolution satellite imagery, seismic records, and meteorological data to analyse the evolution of the 2021 event and its impact, discuss potential drivers, and briefly reflect on implications for the sustainable development of the region.
Xiangde Xu, Chan Sun, Deliang Chen, Tianliang Zhao, Jianjun Xu, Shengjun Zhang, Juan Li, Bin Chen, Yang Zhao, Hongxiong Xu, Lili Dong, Xiaoyun Sun, and Yan Zhu
Atmos. Chem. Phys., 22, 1149–1157, https://doi.org/10.5194/acp-22-1149-2022, https://doi.org/10.5194/acp-22-1149-2022, 2022
Short summary
Short summary
A vertical transport window of tropospheric vapor exists on the Tibetan Plateau (TP). The TP's thermal forcing drives the vertical transport
windowof vapor in the troposphere. The effects of the TP's vertical transport window of vapor are of importance in global climate change.
Wenfeng Chen, Tandong Yao, Guoqing Zhang, Fei Li, Guoxiong Zheng, Yushan Zhou, and Fenglin Xu
The Cryosphere, 16, 197–218, https://doi.org/10.5194/tc-16-197-2022, https://doi.org/10.5194/tc-16-197-2022, 2022
Short summary
Short summary
A digital elevation model (DEM) is a prerequisite for estimating regional glacier thickness. Our study first compared six widely used global DEMs over the glacierized Tibetan Plateau by using ICESat-2 (Ice, Cloud and land Elevation Satellite) laser altimetry data. Our results show that NASADEM had the best accuracy. We conclude that NASADEM would be the best choice for ice-thickness estimation over the Tibetan Plateau through an intercomparison of four ice-thickness inversion models.
Yongkang Xue, Tandong Yao, Aaron A. Boone, Ismaila Diallo, Ye Liu, Xubin Zeng, William K. M. Lau, Shiori Sugimoto, Qi Tang, Xiaoduo Pan, Peter J. van Oevelen, Daniel Klocke, Myung-Seo Koo, Tomonori Sato, Zhaohui Lin, Yuhei Takaya, Constantin Ardilouze, Stefano Materia, Subodh K. Saha, Retish Senan, Tetsu Nakamura, Hailan Wang, Jing Yang, Hongliang Zhang, Mei Zhao, Xin-Zhong Liang, J. David Neelin, Frederic Vitart, Xin Li, Ping Zhao, Chunxiang Shi, Weidong Guo, Jianping Tang, Miao Yu, Yun Qian, Samuel S. P. Shen, Yang Zhang, Kun Yang, Ruby Leung, Yuan Qiu, Daniele Peano, Xin Qi, Yanling Zhan, Michael A. Brunke, Sin Chan Chou, Michael Ek, Tianyi Fan, Hong Guan, Hai Lin, Shunlin Liang, Helin Wei, Shaocheng Xie, Haoran Xu, Weiping Li, Xueli Shi, Paulo Nobre, Yan Pan, Yi Qin, Jeff Dozier, Craig R. Ferguson, Gianpaolo Balsamo, Qing Bao, Jinming Feng, Jinkyu Hong, Songyou Hong, Huilin Huang, Duoying Ji, Zhenming Ji, Shichang Kang, Yanluan Lin, Weiguang Liu, Ryan Muncaster, Patricia de Rosnay, Hiroshi G. Takahashi, Guiling Wang, Shuyu Wang, Weicai Wang, Xu Zhou, and Yuejian Zhu
Geosci. Model Dev., 14, 4465–4494, https://doi.org/10.5194/gmd-14-4465-2021, https://doi.org/10.5194/gmd-14-4465-2021, 2021
Short summary
Short summary
The subseasonal prediction of extreme hydroclimate events such as droughts/floods has remained stubbornly low for years. This paper presents a new international initiative which, for the first time, introduces spring land surface temperature anomalies over high mountains to improve precipitation prediction through remote effects of land–atmosphere interactions. More than 40 institutions worldwide are participating in this effort. The experimental protocol and preliminary results are presented.
Yanbin Lei, Tandong Yao, Kun Yang, Lazhu, Yaoming Ma, and Broxton W. Bird
Hydrol. Earth Syst. Sci., 25, 3163–3177, https://doi.org/10.5194/hess-25-3163-2021, https://doi.org/10.5194/hess-25-3163-2021, 2021
Short summary
Short summary
Lake evaporation from Paiku Co on the TP is low in spring and summer and high in autumn and early winter. There is a ~ 5-month lag between net radiation and evaporation due to large lake heat storage. High evaporation and low inflow cause significant lake-level decrease in autumn and early winter, while low evaporation and high inflow cause considerable lake-level increase in summer. This study implies that evaporation can affect the different amplitudes of lake-level variations on the TP.
Thomas E. Shaw, Wei Yang, Álvaro Ayala, Claudio Bravo, Chuanxi Zhao, and Francesca Pellicciotti
The Cryosphere, 15, 595–614, https://doi.org/10.5194/tc-15-595-2021, https://doi.org/10.5194/tc-15-595-2021, 2021
Short summary
Short summary
Near surface air temperature (Ta) is important for simulating the melting of glaciers, though its variability in space and time on mountain glaciers is still poorly understood. We combine new Ta observations on glacier in Tibet with several glacier datasets around the world to explore the applicability of an existing method to estimate glacier Ta based upon glacier flow distance. We make a first step at generalising a method and highlight the remaining unknowns for this field of research.
Yanbin Lei, Tandong Yao, Lide Tian, Yongwei Sheng, Lazhu, Jingjuan Liao, Huabiao Zhao, Wei Yang, Kun Yang, Etienne Berthier, Fanny Brun, Yang Gao, Meilin Zhu, and Guangjian Wu
The Cryosphere, 15, 199–214, https://doi.org/10.5194/tc-15-199-2021, https://doi.org/10.5194/tc-15-199-2021, 2021
Short summary
Short summary
Two glaciers in the Aru range, western Tibetan Plateau (TP), collapsed suddenly on 17 July and 21 September 2016, respectively, causing fatal damage to local people and their livestock. The impact of the glacier collapses on the two downstream lakes (i.e., Aru Co and Memar Co) is investigated in terms of lake morphology, water level and water temperature. Our results provide a baseline in understanding the future lake response to glacier melting on the TP under a warming climate.
Cited articles
An, B., Wang, W., Yang, W., Wu, G., Guo, Y., Zhu, H., Gao, Y., Bai, L., Zhang, F., Zeng, C., Wang, L., Zhou, J., Li, X., Li, J., Zhao, Z., Chen, Y., Liu, J., Li, J., Wang, Z., Chen, W., and Yao, T.: Process, mechanisms, and early warning of glacier collapse-induced river blocking disasters in the Yarlung Tsangpo Grand Canyon, southeastern Tibetan Plateau, Sci. Total Environ., 816, 151652, https://doi.org/10.1016/j.scitotenv.2021.151652, 2021.
Andreadis, K., Storck, P., and Lettenmaier D. P.: Modeling snow accumulation and ablation processes in forested environments, Water Resour. Res., 45, W05429, https://doi.org/10.1029/2008WR007042, 2009.
Armstrong, R. L., Rittger, K., Brodzik, M. J., Racoviteanu, A., Barrett, A. P., Khalsa, S. J. S., Raup B., Hill, A. F., Khan, A. L., Wilson, A. M., Kayastha, R., Fetterer, F., and Armstrong, B.: Runoff from glacier ice and seasonal snow in High Asia: separating melt water sources in river flow, Reg. Environ. Change., 19, 1249-1261, https://doi.org/10.1007/s10113-018-1429-0, 2019.
Bahr, D. B., Meier, M. F., and Peckham, S. D.: The physical basis of glacier volume-area scaling, J. Geophys. Res.-Sol. Ea., 102, 20355–20362, https://doi.org/10.1029/97jb01696, 1997.
Barnett, T. P., Adam, J. C., and Lettenmaier, D. P.: Potential impacts of a warming climate on water availability in snow-dominated regions, Nature, 438, 303–309, https://doi.org/10.1038/nature04141, 2005.
Chen, X., Long, D., Hong, Y., Zeng, C., and Yan, D.: Improved modeling of snow and glacier melting by a progressive two-stage calibration strategy with GRACE and multisource data: How snow and glacier meltwater contributes to the runoff of the Upper Brahmaputra River basin?, Water Resour. Res., 53, 2431–2466, https://doi.org/10.1002/2016WR019656, 2017.
Cherkauer, K. A. and Lettenmaier D. P.: Hydrologic effects of frozen soils in the upper Mississippi River basin, J. Geophys. Res., 104, 19599–19610, https://doi.org/10.1029/1999JD900337, 1999.
Cui, T., Li, Y., Yang, L., Nan, Y., Li, K., Tudaji, M., Hu, H., Long, D., Shahid, M., Mubeen, A., He, Z., Yong, B., Lu, H., Li, C., Ni, G., Hu, C., and Tian, F.: Non-monotonic changes in Asian Water Towers' streamflow at increasing warming levels, Nat. Commun., 14, 1176, https://doi.org/10.1038/s41467-023-36804-6, 2023.
Cuo, L., Li, N., Liu, Z., Ding, J., Liang, L., Zhang, Y., and Gong, T.: Warming and human activities induced changes in the Yarlung Tsangpo basin of the Tibetan plateau and their influences on streamflow, J. Hydrol. Reg. Stud., 25, 100625, https://doi.org/10.1016/j.ejrh.2019.100625, 2019.
Dahri, Z. H., Ludwig, F., Moors, E., Ahmad, S., Ahmad, B., Shoaib, M., Irfan, A., Muhammad, S. I., Muhammad, S. P., Abdul, G. M., Muhammad, M. A., and Pavel, K.: Spatio-temporal evaluation of gridded precipitation products for the high altitude Indus basin, Int. J. Climatol., 41, 4283–4306, https://doi.org/10.1002/joc.7073, 2021.
Duethmann, D., Peters, J., Blume, T., Vorogushyn, S., and Güntner, A.: The value of satellite-derived snow cover images for calibrating a hydrological model in snow-dominated catchments in Central Asia, Water Resour. Res., 50, 2002–2021, https://doi.org/10.1002/2013WR014382, 2014.
Gu, H., Xu, Y. P., Liu, L., Xie, J., Wang, L., Pan, S., and Guo, Y.: Seasonal catchment memory of high mountain rivers in the Tibetan Plateau, Nat. Commun., 14, 3173, https://doi.org/10.1038/s41467-023-38966-9, 2023.
Hall, D. K. and Riggs, G. A.: MODIS/Terra Snow Cover 8-Day L3 Global 0.05Deg CMG, Version 61. Boulder, Colorado USA, NASA National Snow and Ice Data Center Distributed Active Archive Center [data set], https://doi.org/10.5067/MODIS/MOD10C2.061, 2021.
Hock, R.: Temperature index melt modelling in mountain areas, J. Hydrol., 282, 104–115, https://doi.org/10.1016/s0022-1694(03)00257-9, 2003.
Ji, G., Yue, S., Zhang, J., Huang, J., Guo, Y., and Chen, W.: Assessing the impact of vegetation variation, climate and human factors on the streamflow variation of Yarlung Zangbo river with the corrected Budyko equation, Forests, 14, 1312, https://doi.org/10.3390/f14071312, 2023.
Jost, G., Moore, R. D., Menounos, B., and Wheate, R.: Quantifying the contribution of glacier runoff to streamflow in the upper Columbia River Basin, Canada, Hydrol. Earth Syst. Sci., 16, 849–860, https://doi.org/10.5194/hess-16-849-2012, 2012.
Kan, B., Su, F., Xu, B., Xie, Y., Li, J., and Zhang, H.: Generation of High Mountain Precipitation and Temperature Data for a Quantitative Assessment of Flow Regime in the Upper Yarkant Basin in the Karakoram, J. Geophys. Res.-Atmos., 123, 8462–8486, https://doi.org/10.1029/2017jd028055, 2018.
Khanal, S., Lutz, A. F., Kraaijenbrink, P. D., van den Hurk, B., Yao, T., and Immerzeel, W. W.: Variable 21st-century climate change response for rivers in High Mountain Asia at seasonal to decadal time scales, Water Resour. Res., 57, e2020WR029266, https://doi.org/10.1029/2020WR029266, 2021.
Li, C., Su, F., Yang, D., Tong, K., Meng, F., and Kan, B.: Spatiotemporal variation of snow cover over the Tibetan Plateau based on MODIS snow product, 2001–2014, Int. J. Climatol., 38, 708–728, https://doi.org/10.1002/joc.5204, 2018.
Liang, X., Lettenmaie, D. P., Wood, E. F., and Burges, S. J.: A simple hydrologically based model of land-surface water and energy fluxes, J. Geophys. Res.-Atmos., 99, 14415–14428, https://doi.org/10.1029/94jd00483, 1994.
Liang, X., Lettenmaier, D. P., and Wood, E. F.: One-dimensional statistical dynamic representation of subgrid spatial variability of precipitation in the two-layer variable infiltration capacity model, J. Geophys. Res.-Atmos., 101, 21403–21422, https://doi.org/10.1029/96jd01448, 1996.
Liu, L., Gu, H., Xie, J., and Xu, Y.: How well do the ERA-Interim, ERA-5, GLDAS-2.1 and NCEP-R2 reanalysis datasets represent daily air temperature over the Tibetan Plateau?, Int. J. Climatol., 41, 1484–1505, https://doi.org/10.1002/joc.6867, 2020.
Liu, S., Sun, W., Shen, Y., and Li, G.: Glacier changes since the Little Ice Age maximum in the western Qilian Shan, northwest China, and consequences of glacier runoff for water supply, J. Glaciol., 49, 117–124, https://doi.org/10.3189/172756503781830926, 2003.
Liu, X., Lu, H., Yang, K., Xu, Z., and Wang, J.: Responses of runoff processes to vegetation dynamics during 1981–2010 in the Yarlung Zangbo River basin, J. Hydrol. Reg. Stud., 50, 101553, https://doi.org/10.1016/j.ejrh.2021.100845, 2023.
Lutz, A. F., Immerzeel, W. W., Shrestha, A. B., and Bierkens, M. F. P.: Consistent increase in High Asia's runoff due to increasing glacier melt and precipitation, Nat. Clim. Change., 4, 587–592, https://doi.org/10.1038/nclimate2237, 2014.
Lutz, A. F., Immerzeel, W. W., Kraaijenbrink, P. D., Shrestha, A. B., and Bierkens, M. F.: Climate Change Impacts on the Upper Indus Hydrology: Sources, Shifts and Extremes, PLoS One, 11, e0165630, https://doi.org/10.1371/journal.pone.0165630, 2016.
Meng, F. C., Su, F. G., Li, Y., and Tong, K.: Changes in Terrestrial Water Storage During 2003–2014 and Possible Causes in Tibetan Plateau, J. Geophys. Res.-Atmos., 124, 2909–2931, https://doi.org/10.1029/2018jd029552, 2019.
Meng, F., Su, F., Sun, H., Huang, J., and Li, C.: Divergent runoff regime revealed by hydrological simulations with corrected precipitation in the upper Indus, J. Hydrol., 626, 130315, https://doi.org/10.1016/j.jhydrol.2023.130315, 2023.
Nan, Y., Tian, L., He, Z., Tian, F., and Shao, L.: The value of water isotope data on improving process understanding in a glacierized catchment on the Tibetan Plateau, Hydrol. Earth Syst. Sci., 25, 3653–3673, https://doi.org/10.5194/hess-25-3653-2021, 2021.
Qi, W., Liu, J., and Chen, D.: Evaluations and Improvements of GLDAS2.0 and GLDAS2.1 Forcing Data's Applicability for Basin Scale Hydrological Simulations in the Tibetan Plateau, J. Geophys. Res.-Atmos., 123, 13128–113148, https://doi.org/10.1029/2018JD029116, 2018.
Radić, V. and Hock, R.: Regional and global volumes of glaciers derived from statistical upscaling of glacier inventory data, J. Geophys. Res.-Earth, 115, F01010, https://doi.org/10.1029/2009JF001373, 2010.
RGI Consortium: Randolph Glacier Inventory – A Dataset of Global Glacier Outlines, Version 6, 2017, GLIMS [data set], https://www.glims.org/RGI/rgi60_dl.html, last access: 13 September 2024.
Shi, X., Wood, A. W., and Lettenmaier, D. P.: How Essential is Hydrologic Model Calibration to Seasonal Streamflow Forecasting?, J. Hydrometeorol., 9, 1350–1363, https://doi.org/10.1175/2008JHM1001.1, 2008.
Stigter, E. E., Litt, M., Steiner, J. F., Bonekamp, P. N. J., Shea, J. M., Bierkens, M. F. P., and Immerzeel, W. W.: The Importance of Snow Sublimation on a Himalayan Glacier, Front. Earth Sci., 6, 108, https://doi.org/10.3389/feart.2018.00108, 2018.
Su, F., Zhang, L., Ou, T., Chen, D., Yao, T., Tong, K., and Qi Y.: Hydrological response to future climate changes for the major upstream river basins in the Tibetan Plateau, Global Planet. Change, 136, 82–95, https://doi.org/10.1016/j.gloplacha.2015.10.012, 2016.
Sun, H.: Daily precipitation data with 10 km resolution in the upper Brahmaputra (Yarlung Zangbo River) Basin-V2 (1951–2020), National Tibetan Plateau/Third Pole Environment Data Center [data set], https://doi.org/10.11888/Atmos.tpdc.272885, 2022.
Sun, H. and Su, F.: Precipitation correction and reconstruction for streamflow simulation based on 262 rain gauges in the upper Brahmaputra of southern Tibetan Plateau, J. Hydrol., 590, 125484, https://doi.org/10.1016/j.jhydrol.2020.125484, 2020.
Sun, H., Su, F., He, Z., Ou, T., Chen, D., Li, Z., and Li, Y.: Hydrological evaluation of high-resolution precipitation estimates from the WRF model in the Third Pole river basins, J. Hydrometeorol., 22, 2055–2071, https://doi.org/10.1175/jhm-d-20-0272.1, 2021.
Sun, H., Yao, T., Su, F., He, Z., Tang, G., Li, N., Zheng, B., Huang, J., Meng, F., Ou, T., and Chen, D.: Corrected ERA5 precipitation by machine learning significantly improved flow simulations for the Third Pole basins, J. Hydrometeorol., 23, 1663–1679, https://doi.org/10.1175/JHM-D-22-0015.1, 2022.
Sun, H., Yao, T., Su, F., Ou, T., He, Z., Tang, G., and Chen, D.: Increased glacier melt enhances future extreme floods in the southern Tibetan Plateau, Adv. Clim. Change Res., 15, 431–441, https://doi.org/10.1016/j.accre.2024.01.003, 2024.
Tong, K., Su, F., Yang, D., Zhang, L., and Hao, Z.: Tibetan Plateau precipitation as depicted by gauge observations, reanalyses and satellite retrievals, Int. J. Climatol., 34, 265–285, https://doi.org/10.1002/joc.3682, 2014.
Tong, K., Su, F., and Xu, B.: Quantifying the contribution of glacier meltwater in the expansion of the largest lake in Tibet, J. Geophys. Res.-Atmos., 121, 11158–11173, https://doi.org/10.1002/2016jd025424, 2016.
Wang, A. and Zeng, X.: Evaluation of multireanalysis products with in situ observations over the Tibetan Plateau, J. Geophys. Res.-Atmos., 117, D05102, https://doi.org/10.1029/2011jd016553, 2012.
Wang, L., Cuo, L., Luo, D., Su, F., Ye, Q., Yao, T., Zhou, J., Li, X., Li, N., Sun, H., Liu, L., Wang, Y., Zeng, T., Hu, Z., Liu, R., Chai, C., Wang, G., Zhong, X., Guo, X., Zhao, H., Zhao, H., and Yang, W.: Observing multi-sphere hydrological changes in the largest river basin of the Tibetan Plateau, B. Am. Meteorol. Soc., 103, E1595–E1620, https://doi.org/10.1175/BAMS-D-21-0217.1, 2022.
Wang, X., Luo, Y., Sun, L., and Shafeeque, M.: Different climate factors contributing for runoff increases in the high glacierized tributaries of Tarim River Basin, China, J. Hydrol. Reg. Stud., 36, 100845, https://doi.org/10.1016/j.ejrh.2021.100845, 2021.
Wang, Y., Wang, L., Zhou, J., Yao, T., Yang, W., Zhong, X., Liu, R., Hu, Z., Luo, L., Ye, Q., Chen, N., and Ding, H.: Vanishing glaciers at southeast Tibetan Plateau have not offset the declining runoff at Yarlung Zangbo, Geophys. Res. Lett., 48, e2021GL094651, https://doi.org/10.1029/2021gl094651, 2021.
Wood, A. W.: Long-range experimental hydrologic forecasting for the eastern United States, J. Geophys. Res.-Atmos., 107, ACL 6-1–ACL 6-15, https://doi.org/10.1029/2001JD000659, 2002.
Wood, A. W., Leung, L. R., Sridhar, V., and Lettenmaier, D. P.: Hydrologic Implications of Dynamical and Statistical Approaches to Downscaling Climate Model Outputs, Clim. Change, 62, 189–216, https://doi.org/10.1023/B:CLIM.0000013685.99609.9e, 2004.
Yang, W., Yao, T., Guo, X., Zhu, M., Li, S., and Kattel, D. B.: Mass balance of a maritime glacier on the southeast Tibetan Plateau and its climatic sensitivity, J. Geophys. Res.-Atmos., 118, 9579–9594, https://doi.org/10.1002/jgrd.50760, 2013.
Yang, Y., Gao, D., and Li, B.: Study on the moisture passage on the lower reaches of the Yarlung Zangbo river, Sci. China Ser. B, 32, 580–593, 1989 (in Chinese).
Yao, T., Thompson, L., Yang, W., Yu, W., Gao, Y., Guo, X., Yang, X., Duan, K., Zhao, H., Xu, B., Pu, J., Lu, A., Xiang, Y., Kattel, D. B., and Joswiak, D.: Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings, Nat. Clim. Change, 2, 663–667, https://doi.org/10.1038/nclimate1580, 2012.
Yao, T., Bolch, T., Chen, D., Gao, J., Immerzeel, W., Piao, S., Su, F., Thompson, L., Wada, Y., Wang, L., Wang, T., Wu, G., Xu, B., Yang, W., Zhang, G., and Zhao, P.: The imbalance of the Asian water tower, Nat. Rev. Earth Environ., 3, 618–632, https://doi.org/10.1038/s43017-022-00299-4, 2022.
Zhang, L., Su, F., Yang, D., Hao, Z., and Tong, K.: Discharge regime and simulation for the upstream of major rivers over Tibetan Plateau, J. Geophys. Res.-Atmos., 118, 8500–8518, https://doi.org/10.1002/jgrd.50665, 2013.
Zhao, Q., Ding, Y., Wang, J., Gao, H., Zhang, S., Zhao, C., Xu, J., Han, H., and Shangguan, D.: Projecting climate change impacts on hydrological processes on the Tibetan Plateau with model calibration against the Glacier Inventory Data and observed streamflow, J. Hydrol., 573, 60–81, https://doi.org/10.1016/j.jhydrol.2019.03.043, 2019.
Zhong, L., Ma, Y., Fu, Y., Pan, X., Hu, W., Su, Z., Salama, M. S., and Feng, L.: Assessment of soil water deficit for the middle reaches of Yarlung-Zangbo River from optical and passive microwave images, Remote Sens. Environ., 142, 1–8, https://doi.org/10.1016/j.rse.2013.11.008, 2014.
Short summary
Our findings show that runoff in the Yarlung Zangbo (YZ) basin is primarily driven by rainfall, with the largest glacier runoff contribution in the downstream sub-basin. Annual runoff increased in the upper stream but decreased downstream due to varying precipitation patterns. It is expected to rise throughout the 21st century, mainly driven by increased rainfall.
Our findings show that runoff in the Yarlung Zangbo (YZ) basin is primarily driven by rainfall,...