Articles | Volume 28, issue 16
https://doi.org/10.5194/hess-28-3931-2024
https://doi.org/10.5194/hess-28-3931-2024
Research article
 | 
28 Aug 2024
Research article |  | 28 Aug 2024

Thermal regime of High Arctic tundra ponds, Nanuit Itillinga (Polar Bear Pass), Nunavut, Canada

Kathy L. Young and Laura C. Brown

Related authors

Recent changes in pan-Arctic sea ice, lake ice, and snow-on/off timing
Alicia A. Dauginis and Laura C. Brown
The Cryosphere, 15, 4781–4805, https://doi.org/10.5194/tc-15-4781-2021,https://doi.org/10.5194/tc-15-4781-2021, 2021
Short summary
The influence of albedo parameterization for improved lake ice simulation
Alexis L. Robinson, Sarah S. Ariano, and Laura C. Brown
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-156,https://doi.org/10.5194/hess-2020-156, 2020
Manuscript not accepted for further review
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Instruments and observation techniques
Impacts of hydrofacies geometry designed from seismic refraction tomography on estimated hydrogeophysical variables
Nolwenn Lesparre, Sylvain Pasquet, and Philippe Ackerer
Hydrol. Earth Syst. Sci., 28, 873–897, https://doi.org/10.5194/hess-28-873-2024,https://doi.org/10.5194/hess-28-873-2024, 2024
Short summary
Seasonal dynamics and spatial patterns of soil moisture in a loess catchment
Shaozhen Liu, Ilja van Meerveld, Yali Zhao, Yunqiang Wang, and James W. Kirchner
Hydrol. Earth Syst. Sci., 28, 205–216, https://doi.org/10.5194/hess-28-205-2024,https://doi.org/10.5194/hess-28-205-2024, 2024
Short summary
Effects of urbanization on the water cycle in the Shiyang River basin: based on a stable isotope method
Rui Li, Guofeng Zhu, Siyu Lu, Liyuan Sang, Gaojia Meng, Longhu Chen, Yinying Jiao, and Qinqin Wang
Hydrol. Earth Syst. Sci., 27, 4437–4452, https://doi.org/10.5194/hess-27-4437-2023,https://doi.org/10.5194/hess-27-4437-2023, 2023
Short summary
Using high-frequency solute synchronies to determine simple two-end-member mixing in catchments during storm events
Nicolai Brekenfeld, Solenn Cotel, Mikaël Faucheux, Paul Floury, Colin Fourtet, Jérôme Gaillardet, Sophie Guillon, Yannick Hamon, Hocine Henine, Patrice Petitjean, Anne-Catherine Pierson-Wickmann, Marie-Claire Pierret, and Ophélie Fovet
EGUsphere, https://doi.org/10.5194/egusphere-2023-2214,https://doi.org/10.5194/egusphere-2023-2214, 2023
Short summary
Isotopic variations in surface waters and groundwaters of an extremely arid basin and their responses to climate change
Yu Zhang, Hongbing Tan, Peixin Cong, Dongping Shi, Wenbo Rao, and Xiying Zhang
Hydrol. Earth Syst. Sci., 27, 4019–4038, https://doi.org/10.5194/hess-27-4019-2023,https://doi.org/10.5194/hess-27-4019-2023, 2023
Short summary

Cited articles

Abnizova, A.: Hydrology, Carbon Dynamics and Hydrochemical Properties of Ponds in an Extensive Low Gradient High Arctic Wetland, Polar Bear Pass, Bathurst Island, Nunvut, Canada, PhD thesis, Department of Geography, York University, Toronto, Ontario, Canada, OCLC Number: 1032921554, 256 pp., 2013. 
Abnizova, A., Young, K. L., and Lafrenière, M.: Pond hydrology and dissolved carbon dynamics at Polar Bear Pass wetland, Bathurst Island, Nunvaut, Ecohydrology, 7, 73–90, 2014. 
Andresen, C. G. and Lougheed, V. L.: Disappearing Arctic tundra ponds: Fine-scale analysis of surface hydrology in drained thaw lake basins over a 65 year period (1948–2013), J. Geophys. Res.-Biogeo., 120, 466–479, 2015. 
Baker, J., Dupont, D., and Vasseur, L.: Exploring Canadian Ramsar sites ecosystem governance and sustainability, Wetlands, 41, 6, https://doi.org/10.1007/s13157-021-01417-6, 2021. 
Benyahya, L., Caissie, D., St-Hilaire, A., Ouarda, T. B. M. J., and Bobée, B.: A review of statistical water temperature models, Can. Water Resour. J., 32, 179–192, 2007. 
Download
Short summary
This work details the temperature and related variables of several High Arctic ponds in the Nanuit Itillinga (Polar Bear Pass) National Wildlife Area through nine seasons. The ponds show much variability in their temperature patterns over time and space. Ponds normally reached 10–15 °C for parts of the summer except in 2013, a cold summer season in which pond temperatures never exceeded 5 °C. This study contributes to the ongoing discussion of climate warming and its impact on Arctic landscapes.