Articles | Volume 28, issue 14
https://doi.org/10.5194/hess-28-3305-2024
https://doi.org/10.5194/hess-28-3305-2024
Research article
 | 
25 Jul 2024
Research article |  | 25 Jul 2024

Machine-learning-constrained projection of bivariate hydrological drought magnitudes and socioeconomic risks over China

Rutong Liu, Jiabo Yin, Louise Slater, Shengyu Kang, Yuanhang Yang, Pan Liu, Jiali Guo, Xihui Gu, Xiang Zhang, and Aliaksandr Volchak

Related authors

A Practice of City-scale 3D Geographic Entity Representation and Application in China: The Smart Chongqing City Centre
Yuqi He, Jiahui Sheng, Xiang Li, Guang Chen, Xiang Zhang, and Yiqun Chen
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., X-4-2024, 155–161, https://doi.org/10.5194/isprs-annals-X-4-2024-155-2024,https://doi.org/10.5194/isprs-annals-X-4-2024-155-2024, 2024
Exploring Urban Vitality Characteristics and Interactive Mechanisms at the Community Scale through the Lens of Human Behaviour: A Case Study of Chongqing, China
Jiahui Sheng, Yuqi He, Tao Lu, Fang Wang, Yunjing Huang, Bingrong Leng, Xiang Zhang, and Yiqun Chen
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., X-4-2024, 303–310, https://doi.org/10.5194/isprs-annals-X-4-2024-303-2024,https://doi.org/10.5194/isprs-annals-X-4-2024-303-2024, 2024
Skilful probabilistic predictions of UK floods months ahead using machine learning models trained on multimodel ensemble climate forecasts
Simon Moulds, Louise Slater, Louise Arnal, and Andrew Wood
EGUsphere, https://doi.org/10.31223/X5X405,https://doi.org/10.31223/X5X405, 2024
Short summary
Global-scale evaluation of precipitation datasets for hydrological modelling
Solomon H. Gebrechorkos, Julian Leyland, Simon J. Dadson, Sagy Cohen, Louise Slater, Michel Wortmann, Philip J. Ashworth, Georgina L. Bennett, Richard Boothroyd, Hannah Cloke, Pauline Delorme, Helen Griffith, Richard Hardy, Laurence Hawker, Stuart McLelland, Jeffrey Neal, Andrew Nicholas, Andrew J. Tatem, Ellie Vahidi, Yinxue Liu, Justin Sheffield, Daniel R. Parsons, and Stephen E. Darby
Hydrol. Earth Syst. Sci., 28, 3099–3118, https://doi.org/10.5194/hess-28-3099-2024,https://doi.org/10.5194/hess-28-3099-2024, 2024
Short summary
Broadleaf afforestation impacts on terrestrial hydrology insignificant compared to climate change in Great Britain
Marcus Buechel, Louise Slater, and Simon Dadson
Hydrol. Earth Syst. Sci., 28, 2081–2105, https://doi.org/10.5194/hess-28-2081-2024,https://doi.org/10.5194/hess-28-2081-2024, 2024
Short summary

Related subject area

Subject: Hydrometeorology | Techniques and Approaches: Modelling approaches
Assessing rainfall radar errors with an inverse stochastic modelling framework
Amy C. Green, Chris Kilsby, and András Bárdossy
Hydrol. Earth Syst. Sci., 28, 4539–4558, https://doi.org/10.5194/hess-28-4539-2024,https://doi.org/10.5194/hess-28-4539-2024, 2024
Short summary
Multi-objective calibration and evaluation of the ORCHIDEE land surface model over France at high resolution
Peng Huang, Agnès Ducharne, Lucia Rinchiuso, Jan Polcher, Laure Baratgin, Vladislav Bastrikov, and Eric Sauquet
Hydrol. Earth Syst. Sci., 28, 4455–4476, https://doi.org/10.5194/hess-28-4455-2024,https://doi.org/10.5194/hess-28-4455-2024, 2024
Short summary
Spatiotemporal responses of runoff to climate change in the southern Tibetan Plateau
He Sun, Tandong Yao, Fengge Su, Wei Yang, and Deliang Chen
Hydrol. Earth Syst. Sci., 28, 4361–4381, https://doi.org/10.5194/hess-28-4361-2024,https://doi.org/10.5194/hess-28-4361-2024, 2024
Short summary
FROSTBYTE: a reproducible data-driven workflow for probabilistic seasonal streamflow forecasting in snow-fed river basins across North America
Louise Arnal, Martyn P. Clark, Alain Pietroniro, Vincent Vionnet, David R. Casson, Paul H. Whitfield, Vincent Fortin, Andrew W. Wood, Wouter J. M. Knoben, Brandi W. Newton, and Colleen Walford
Hydrol. Earth Syst. Sci., 28, 4127–4155, https://doi.org/10.5194/hess-28-4127-2024,https://doi.org/10.5194/hess-28-4127-2024, 2024
Short summary
On the combined use of rain gauges and GPM IMERG satellite rainfall products for hydrological modelling: impact assessment of the cellular-automata-based methodology in the Tanaro River basin in Italy
Annalina Lombardi, Barbara Tomassetti, Valentina Colaiuda, Ludovico Di Antonio, Paolo Tuccella, Mario Montopoli, Giovanni Ravazzani, Frank Silvio Marzano, Raffaele Lidori, and Giulia Panegrossi
Hydrol. Earth Syst. Sci., 28, 3777–3797, https://doi.org/10.5194/hess-28-3777-2024,https://doi.org/10.5194/hess-28-3777-2024, 2024
Short summary

Cited articles

Allan, R. P., Barlow, M., Byrne, M. P., Cherchi, A., Douville, H., Fowler, H. J., Gan, T. Y., Pendergrass, A. G., Rosenfeld, D., Swann, A. L. S., Wilcox, L. J., and Zolina, O.: Advances in understanding large-scale responses of the water cycle to climate change, Ann. NY Acad. Sci., 1472, 49–75, https://doi.org/10.1111/nyas.14337, 2020. 
Antoniadis, A., Lambert-Lacroix, S., and Poggi, J.-M.: Random forests for global sensitivity analysis: A selective review, Reliab. Eng. Syst. Safe., 206, 107312, https://doi.org/10.1016/j.ress.2020.107312, 2021. 
Arsenault, R., Essou, G. R., and Brissette, F. P.: Improving hydrological model simulations with combined multi-input and multimodel averaging frameworks, J. Hydrol. Eng., 22, 04016066, https://doi.org/10.1061/(ASCE)HE.1943-5584.0001489, 2017. 
Ashrafi, S. M., Gholami, H., and Najafi, M. R.: Uncertainties in runoff projection and hydrological drought assessment over Gharesu basin under CMIP5 RCP scenarios, J. Water Clim. Change, 11, 145–163, 2020. 
Ayantobo, O. O., Li, Y., Song, S., and Yao, N.: Spatial comparability of drought characteristics and related return periods in mainland China over 1961–2013, J. Hydrol., 550, 549–567, 2017. 
Download
Short summary
Climate change accelerates the water cycle and alters the spatiotemporal distribution of hydrological variables, thus complicating the projection of future streamflow and hydrological droughts. We develop a cascade modeling chain to project future bivariate hydrological drought characteristics over China, using five bias-corrected global climate model outputs under three shared socioeconomic pathways, five hydrological models, and a deep-learning model.