Articles | Volume 28, issue 14
https://doi.org/10.5194/hess-28-3305-2024
https://doi.org/10.5194/hess-28-3305-2024
Research article
 | 
25 Jul 2024
Research article |  | 25 Jul 2024

Machine-learning-constrained projection of bivariate hydrological drought magnitudes and socioeconomic risks over China

Rutong Liu, Jiabo Yin, Louise Slater, Shengyu Kang, Yuanhang Yang, Pan Liu, Jiali Guo, Xihui Gu, Xiang Zhang, and Aliaksandr Volchak

Related authors

Impacts of Inter-basin Water Diversion Projects on the Feedback Loops of Water Supply-Hydropower Generation-Environment Conservation Nexus
Jiaoyang Wang, Dedi Liu, Shenglian Guo, Lihua Xiong, Pan Liu, Hua Chen, Jie Chen, Jiabo Yin, and Yuling Zhang
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-399,https://doi.org/10.5194/hess-2024-399, 2025
Preprint under review for HESS
Short summary
Determining the threshold of issuing flash flood warnings based on people's response process simulation
Ruikang Zhang, Dedi Liu, Lihua Xiong, Jie Chen, Hua Chen, and Jiabo Yin
Hydrol. Earth Syst. Sci., 28, 5229–5247, https://doi.org/10.5194/hess-28-5229-2024,https://doi.org/10.5194/hess-28-5229-2024, 2024
Short summary
A Practice of City-scale 3D Geographic Entity Representation and Application in China: The Smart Chongqing City Centre
Yuqi He, Jiahui Sheng, Xiang Li, Guang Chen, Xiang Zhang, and Yiqun Chen
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., X-4-2024, 155–161, https://doi.org/10.5194/isprs-annals-X-4-2024-155-2024,https://doi.org/10.5194/isprs-annals-X-4-2024-155-2024, 2024
Exploring Urban Vitality Characteristics and Interactive Mechanisms at the Community Scale through the Lens of Human Behaviour: A Case Study of Chongqing, China
Jiahui Sheng, Yuqi He, Tao Lu, Fang Wang, Yunjing Huang, Bingrong Leng, Xiang Zhang, and Yiqun Chen
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., X-4-2024, 303–310, https://doi.org/10.5194/isprs-annals-X-4-2024-303-2024,https://doi.org/10.5194/isprs-annals-X-4-2024-303-2024, 2024
Skilful probabilistic predictions of UK floods months ahead using machine learning models trained on multimodel ensemble climate forecasts
Simon Moulds, Louise Slater, Louise Arnal, and Andrew Wood
EGUsphere, https://doi.org/10.31223/X5X405,https://doi.org/10.31223/X5X405, 2024
Short summary

Related subject area

Subject: Hydrometeorology | Techniques and Approaches: Modelling approaches
Observation-driven model for calculating water-harvesting potential from advective fog in (semi-)arid coastal regions
Felipe Lobos-Roco, Jordi Vilà-Guerau de Arellano, and Camilo del Río
Hydrol. Earth Syst. Sci., 29, 109–125, https://doi.org/10.5194/hess-29-109-2025,https://doi.org/10.5194/hess-29-109-2025, 2025
Short summary
Review of gridded climate products and their use in hydrological analyses reveals overlaps, gaps, and the need for a more objective approach to selecting model forcing datasets
Kyle R. Mankin, Sushant Mehan, Timothy R. Green, and David M. Barnard
Hydrol. Earth Syst. Sci., 29, 85–108, https://doi.org/10.5194/hess-29-85-2025,https://doi.org/10.5194/hess-29-85-2025, 2025
Short summary
Downscaling the probability of heavy rainfall over the Nordic countries
Rasmus E. Benestad, Kajsa M. Parding, and Andreas Dobler
Hydrol. Earth Syst. Sci., 29, 45–65, https://doi.org/10.5194/hess-29-45-2025,https://doi.org/10.5194/hess-29-45-2025, 2025
Short summary
Modelling convective cell life cycles with a copula-based approach
Chien-Yu Tseng, Li-Pen Wang, and Christian Onof
Hydrol. Earth Syst. Sci., 29, 1–25, https://doi.org/10.5194/hess-29-1-2025,https://doi.org/10.5194/hess-29-1-2025, 2025
Short summary
Downscaling precipitation over High-mountain Asia using multi-fidelity Gaussian processes: improved estimates from ERA5
Kenza Tazi, Andrew Orr, Javier Hernandez-González, Scott Hosking, and Richard E. Turner
Hydrol. Earth Syst. Sci., 28, 4903–4925, https://doi.org/10.5194/hess-28-4903-2024,https://doi.org/10.5194/hess-28-4903-2024, 2024
Short summary

Cited articles

Allan, R. P., Barlow, M., Byrne, M. P., Cherchi, A., Douville, H., Fowler, H. J., Gan, T. Y., Pendergrass, A. G., Rosenfeld, D., Swann, A. L. S., Wilcox, L. J., and Zolina, O.: Advances in understanding large-scale responses of the water cycle to climate change, Ann. NY Acad. Sci., 1472, 49–75, https://doi.org/10.1111/nyas.14337, 2020. 
Antoniadis, A., Lambert-Lacroix, S., and Poggi, J.-M.: Random forests for global sensitivity analysis: A selective review, Reliab. Eng. Syst. Safe., 206, 107312, https://doi.org/10.1016/j.ress.2020.107312, 2021. 
Arsenault, R., Essou, G. R., and Brissette, F. P.: Improving hydrological model simulations with combined multi-input and multimodel averaging frameworks, J. Hydrol. Eng., 22, 04016066, https://doi.org/10.1061/(ASCE)HE.1943-5584.0001489, 2017. 
Ashrafi, S. M., Gholami, H., and Najafi, M. R.: Uncertainties in runoff projection and hydrological drought assessment over Gharesu basin under CMIP5 RCP scenarios, J. Water Clim. Change, 11, 145–163, 2020. 
Ayantobo, O. O., Li, Y., Song, S., and Yao, N.: Spatial comparability of drought characteristics and related return periods in mainland China over 1961–2013, J. Hydrol., 550, 549–567, 2017. 
Download
Short summary
Climate change accelerates the water cycle and alters the spatiotemporal distribution of hydrological variables, thus complicating the projection of future streamflow and hydrological droughts. We develop a cascade modeling chain to project future bivariate hydrological drought characteristics over China, using five bias-corrected global climate model outputs under three shared socioeconomic pathways, five hydrological models, and a deep-learning model.