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Abstract. Climate change influences the water cycle and al-
ters the spatiotemporal distribution of hydrological variables,
thus complicating the projection of future streamflow and hy-
drological droughts. Although machine learning is increas-
ingly employed for hydrological simulations, few studies
have used it to project hydrological droughts, not to mention
bivariate risks (referring to drought duration and severity) as
well as their socioeconomic effects under climate change. We
developed a cascade modeling chain to project future bivari-
ate hydrological drought characteristics in 179 catchments
over China, using five bias-corrected global climate model
(GCM) outputs under three shared socioeconomic pathways
(SSPs), five hydrological models, and a deep-learning model.
We quantified the contribution of various meteorological
variables to daily streamflow by using a random forest model,
and then we employed terrestrial water storage anomalies
and a standardized runoff index to evaluate recent changes in
hydrological drought. Subsequently, we constructed a bivari-
ate framework to jointly model drought duration and sever-
ity by using copula functions and the most likely realiza-
tion method. Finally, we used this framework to project fu-
ture risks of hydrological droughts as well as the associated
exposure of gross domestic product (GDP) and population.

Results showed that our hybrid hydrological–deep-learning
model achieved > 0.8 Kling–Gupta efficiency in 161 out
of the 179 catchments. By the late 21st century, bivariate
drought risk is projected to double over 60 % of the catch-
ments mainly located in southwestern China under SSP5-85,
which shows the increase in drought duration and severity.
Our hybrid model also projected substantial GDP and pop-
ulation exposure by increasing bivariate drought risks, sug-
gesting an urgent need to design climate mitigation strategies
for a sustainable development pathway.

1 Introduction

In a warming world, the change in the global water cycle is
expected to alter the regional and seasonal distribution of key
hydrological variables such as precipitation and evapotran-
spiration (Allan et al., 2020; Yin et al., 2023b). As precipi-
tation patterns are particularly sensitive to changes in atmo-
spheric forcing and local conditions, precipitation extremes
are generally increasing globally, exacerbating the spatial
heterogeneity of precipitation (Donat et al., 2016; Tabari,
2020). A suite of shared socioeconomic pathways (SSPs) has
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been proposed to simulate different possible future scenar-
ios of social responses to climate change, and these are em-
ployed to investigate the possible effects of long-term climate
change (Meinshausen et al., 2020; Zhang et al., 2021). By us-
ing the SSP framework, numerous works have indicated that
the redistribution of precipitation may lead to a decline in
water storage in some regions and intensify water scarcity in
arid regions (Sönmez and Kale, 2018; Woolway et al., 2020;
Yao et al., 2023). With increasing atmospheric greenhouse
gases, numerous studies have reported a widespread increase
in drought events, even in areas with increasing annual runoff
(Dai et al., 2018). The rapidly changing distribution of pre-
cipitation and other meteorological elements under climate
change complicates projection of future runoff and drought.

China’s socioeconomic development, particularly of its
agricultural sector, is threatened by the rapid intensification
of extreme hazards under climate change (Piao et al., 2010).
Over the past few years, China has been hit by severe drought
events which have caused considerable damage to ecosystem
productivity and socioeconomic growth (Yin et al., 2023a;
Zhai and Zou, 2005). For instance, one extreme drought in
Sichuan Province in 2022 resulted in power shortages and
led to economic losses of USD 669 million. Water shortage
is also a key challenge that hinders the sustainable develop-
ment of the North China Plain (Chen and Yang, 2013). Over
the period of 1985–2014, drought accounted for about 19 %
of economic losses from all meteorological hazards (Chen
and Sun, 2019). With continuing global warming, the eco-
nomic losses from severe drought events might increase by
over USD 10 billion per year by the late 21st century, un-
derscoring the importance of projecting future droughts over
China (Lu et al., 2023).

Droughts can be triggered by divergent mechanisms and
are thus distinguished according to the type of drought, such
as meteorological or hydrological drought (Yihdego et al.,
2019). The majority of studies have focused on meteorolog-
ical droughts, which can then be translated to a hydrologi-
cal drought, while fewer works have focused on hydrolog-
ical drought, probably due to a lack of measurements like
in the standardized runoff index (SRI) (Barker et al., 2016;
Kumar et al., 2016; Tirivarombo et al., 2018). Furthermore,
hydrological droughts are affected not only by the water cy-
cle, but also by human interventions, which makes them dif-
ficult to predict accurately (Wu et al., 2021). Currently, the
majority of drought impact assessments focus on the inves-
tigation of individual drought variables (i.e., drought dura-
tion, severity, and intensity) through univariate probabilistic
models and stochastic theory (Byakatonda et al., 2018; My-
ronidis et al., 2018; Zhang et al., 2022). However, univariate
drought analysis cannot accurately describe the probability
of drought events, because droughts of either long duration or
severe intensity can lead to substantial socio-ecosystem dam-
ages (Castle et al., 2014; Udall and Overpeck, 2017). There-
fore, the bivariate framework based on copula functions has
been developed for drought projection, compensating for the

incompleteness of a single-variable analysis (Ayantobo et al.,
2017; Nabaei et al., 2019). At present, studies on hydrolog-
ical drought within a bivariate framework are still lacking.
Beyond the choice of approach (univariate or bivariate), the
Gravity Recovery and Climate Experiment (GRACE) and
GRACE Follow-On (GRACE-FO) satellites now provide 2
decades of large-scale terrestrial water storage (TWS) data,
which capture the water deficit in various forms on land and
which can be used to monitor droughts (Schmidt et al., 2006).
The drought severity index based on TWS (TWS-DSI) can be
used to monitor past drought events and also shows potential
advantages in drought warning, forecasting, and projection
(Nie et al., 2018; Pokhrel et al., 2021).

In recent decades, many studies have used bias-corrected
outputs from global climate models (GCMs) to project fu-
ture hydrological drought scenarios (e.g., Ashrafi et al., 2020;
Dixit et al., 2022; Kim et al., 2021). The growing applica-
tion of machine learning has revealed a high potential for
improving the accuracy of hydrological simulation and pre-
diction (Mokhtar et al., 2021). In recent years, many machine
learning algorithms have been adopted in drought simulation
and have produced good performance, such as wavelet neural
networks (WNNs) (Xiujia et al., 2022), support vector ma-
chines (SVMs) (Zhu et al., 2021), and long short-term mem-
ory (LSTM) neural networks (Dikshit et al., 2021a). These
algorithms can be used to simulate the evolution of future
droughts and construct risk maps for drought contingency
planning (Rahmati et al., 2020). Among the different models,
the LSTM can effectively simulate short-term and long-term
streamflow series, and their performances have been vali-
dated at short temporal scales (Dikshit et al., 2021b; Kang
et al., 2023).

In this study, we project changes in bivariate hydrologi-
cal drought characteristics (duration and severity) and their
associated socioeconomic risks under three SSPs (i.e., SSP1-
26, SSP3-70, and SSP5-85) over 179 catchments in China.
To achieve this, we combine five hydrological models and a
deep-learning model (i.e., the LSTM) and then drive the hy-
brid models with the five bias-corrected GCM outputs in the
sixth phase of the Coupled Model Intercomparison Project
(CMIP6). Then, we employ a machine-learning-based frame-
work (i.e., a random forest (RF) model) to quantify the
sensitivity of daily streamflow to different meteorological
variables. We employ the run theory and two drought met-
rics, the SRI and TWS-DSI, to identify and explore recent
changes in drought characteristics. In addition, we use cop-
ula functions to build the bivariate model of drought dura-
tion and severity during both the reference and future pe-
riods. After identifying shifts in bivariate drought charac-
teristics based on the most likely realization approach, we
project the exposure of the gross domestic product (GDP)
and population to increasing drought risks in the future. Fi-
nally, we decompose the uncertainties arising from different
sources by employing the multivariate analysis of variance
(MANOVA) method. This study illustrates the used materi-
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als and methods in Sects. 2 and 3, respectively. We compare
the SRI and TWS-DSI when assessing drought conditions in
Sect. 4.1. The contributions of meteorological factors to sim-
ulating streamflow and calibrating hybrid terrestrial models
are shown in Sect. 4.2. The evolution of univariate droughts
is projected in Sect. 4.3. The bivariate droughts of future sce-
narios and the associated socioeconomic exposures are eval-
uated in Sect. 4.4. We discuss the uncertainty of our analysis
and the main limitations of this study in Sect. 5 and finally
summarize our work in Sect. 6.

2 Methodology

The workflow of this study is divided into four modules
(Fig. 1) described briefly below and detailed in the follow-
ing sections. In step 1, the hydrological models and LSTM
are trained using the ERA5-Land dataset, and then the out-
put of hydrological models (HMs) is used as input to feed the
LSTM. Thus we build hybrid terrestrial models (HTMs). In
step 2, the trained HTMs are validated using in situ stream-
flow observations and are then driven by using the outputs
of five GCMs from CMIP6 to project streamflow and the
SRI series. In step 3, monthly drought characteristics (i.e.,
drought duration and severity) are defined using run theory
and combined with copula functions to construct a bivari-
ate drought framework. Future bivariate drought change is
evaluated using the most likely realization method. Mean-
while, the TWS measurements from GRACE missions are
also employed to characterize recent changes in TWS-based
droughts, which are also compared with the hydrological
droughts. In step 4, we employ future scenarios of GDP and
population alongside our future drought projections to pro-
duce a socioeconomic assessment of drought exposure over
China. Finally, we examine the contribution of uncertainty
from different sources in projecting drought change and ex-
posure.

2.1 Derivation of 2 m relative and specific humidity

As relative humidity and specific humidity are not directly
available from the ERA5-Land dataset, we estimate these
two variables based on the physical relationship in the at-
mosphere. The Clausius–Clapeyron relationship is used to
derive saturated vapor pressure (es) and air temperature (T )
and is expressed as follows (Koutsoyiannis, 2012):

es(T )= e0 exp
[(

1
T0
−

1
T

)
L0

R0

]
, (1)

where T0, e0, L0, and R0 are the freezing temperature in
Kelvin, the saturated vapor pressure at the freezing tem-
perature, the latent heat of vaporization, and the gas con-
stant of water vapor (with values of 273.15 K, 611 Pa,
2.5× 106 Jkg−1, and 461 Jkg−1 K−1, respectively).

Since near-surface relative humidity (RH) cannot be di-
rectly obtained from the ERA5-Land dataset, the 2 m temper-

ature (T2 m) and dew-point temperature (Td) are substituted
into Eq. (1) to calculate RH:

RH=
es(Td)

es(T2 m)
= exp

[(
1
T2 m
−

1
Td

)
L0

R0

]
. (2)

Then, the near-surface air pressure (ps) and Td are used to
deduce the specific humidity (SH), which is mathematically
expressed as follows (Simmons et al., 1999):

SH=
0.622× es(Td)

ps− 0.378es(Td)
. (3)

2.2 Sensitivity analysis of meteorological variables for
runoff

The RF model (Catani et al., 2013) is used to calculate the
sensitivity of runoff to different meteorological variables, in-
cluding precipitation (pr), air pressure (ps), surface down-
welling shortwave and longwave radiation (srsds and srlds),
RH, SH, average temperature, and maximum and minimum
temperature. The contribution of a key variable is derived
by using the pre-established model, the perturbed meteoro-
logical variable, and the remaining (non-perturbed) variables
(Antoniadis et al., 2021; Green et al., 2020). The percentage
change in streamflow is derived from the following equation:

Si =
mean

(
R(i+1SD)−R(all)

)
stdev(Robs)

× 100%, (4)

where Si indicates the sensitivity of streamflow to the ith me-
teorological variables, which are pr, ps, SH, RH, srlds,
srsds, and temperature. Robs is the observation of streamflow
(m3 s−1). R(i+1SD) is the streamflow simulated by perturb-
ing i by +1SD. R(all) is the streamflow simulated by all the
meteorological variables. stdev(Robs) represents the standard
deviation of Robs.

2.3 Deep-learning-constrained hydrological modeling

2.3.1 Conceptual hydrological models

For preliminary hydrological simulations, we select five hy-
drological models to represent hydrological characteristics in
different environments. GR4J (Génie Rural à 4 paramètres
Journalier) is a lumped model with four parameters devel-
oped by Perrin et al. (2003). It consists of two water storage
modules (runoff yielding and routing) and uses daily rainfall
and evapotranspiration as inputs to simulate streamflow se-
ries (Kunnath-Poovakka and Eldho, 2019). This model has
been successfully used to simulate hybrid runoff processes
on many continents (Gu et al., 2023; Shin and Kim, 2021).
Additionally, we use a temperature-based method (Oudin
et al., 2005) to estimate the potential evapotranspiration of
the GR4J model.

The HBV (Hydrologiska Byråns Vattenbalansavdelning)
model was initially developed by the Swedish Meteorologi-
cal and Hydrological Institute for Hydrological Forecasting
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Figure 1. Schematic flowchart of the method, including machine learning (ML)-constrained hydrological simulations, evaluation of bivariate
hydrological drought characteristics and change, and socioeconomic evaluation of drought exposure under climate change.

(Bergström and Forsman, 1973). This model includes five
modules and one transform function to quantify hydrological
variables (i.e., precipitation, snow, soil moisture, runoff, and
baseflow) (Bergström, 1995). It has been employed widely to
simulate streamflow, and it has a particularly good capacity
for simulating snowmelt runoff (Kriauciuniene et al., 2013).

HMETS (Hydrological Model of École de technologie
supérieure) contains 21 parameters and two reservoirs (i.e.,
the saturated and vadose zones) and is considered to effi-
ciently complete hydrological simulation on limited scales
(Martel et al., 2017). The model can simulate six processes
in the water cycle, including the accumulation, melt, and re-
freezing of snow, water infiltration and routing, and evapo-
transpiration (Qi et al., 2020). It has been widely used for
streamflow simulation under climate change and has shown
great performance (Chen et al., 2018).

The SIMHYD (simple lumped conceptual daily rainfall-
runoff) model is a daily rainfall-runoff model developed by
Porter and McMahon (1975). There are four types of wa-
ter fluxes from different sources: impervious areas, infiltra-
tion, interflow, and groundwater storage (Chiew et al., 2002).
Although the model was developed earlier, it has shown
good accuracy in simulating runoff over China (Yu and Zhu,
2015).

The XAJ (Xinanjiang) model is a hydrological model,
which can usually achieve better performance in humid and
semi-humid areas than in arid areas (Ren-Jun, 1992). As
the model was developed based on the underlying surface
of the Yangtze River Basin in China, it is composed of a
three-layer evapotranspiration module with four parameters
and separates the runoff into four components (i.e., surface
water, groundwater, interflow water, and flow routing) (Tian
et al., 2013). To date, it has been widely reported that the

XAJ model usually shows great performance in simulating
hydrological conditions in China (Hu et al., 2005; Jiang et al.,
2007). However, due to inadequacies in the simulation of arid
regions, the results of the XAJ model were not considered the
best option in northern China.

We used the SCE (shuffled complex evolution) approach
to maximize the objective function (i.e., the Kling–Gupta
efficiency) to optimize these models (Duan et al., 1992).
The most complete 20-year observation period is selected to
calibrate five models in each watershed using a daily time
step. To calibrate the hydrological models, a cross-validation
method developed by Arsenault et al. (2017) is used for cali-
bration, which employs the odd years of the data to calibrate
the models and the even years of the data to validate them.
As the catchments are located in different climatic regions,
the parameters of the models are calibrated for each catch-
ment, which means that the parameters are not universal. Al-
though the uncertainties shown by the hydrological models
are ineradicable, the overall uncertainty is acceptable on the
current scale after optimizing the five hydrological models
for each catchment.

2.3.2 Hybrid scheme of hydrological model and
machine learning

Recurrent neural network (RNN) models have had consid-
erable success in hydrological modeling (Cho et al., 2014;
Sherstinsky, 2020). However, when considering long input
sequences, RNNs struggle to capture the relationships be-
tween distant points due to a phenomenon known as “long-
term dependencies” (Yu et al., 2019). With the development
of deep learning, this problem can be successfully avoided
by using LSTMs.
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An LSTM cell includes input, output, and forget gates. The
input gate determines which new information can be stored in
the cell state, and the forget gate identifies which information
will be discarded from the cell state. The output gate controls
which part of the cell state is selected as the output. The up-
dated cell state is a combination of the information retailed
and the new information to be added. By using this architec-
ture, the LSTM can avoid the problem of gradient vanishing
or explosion during backpropagation, especially when a se-
ries is long (Gers et al., 2000). The LSTM can be expressed
as follows:

f gt = σ(Whfhst−1+Wxf xt + bf ), (5)
igt = σ(Whihst−1+Wxixt + bi), (6)
c̃t = tanh(Wh̃chst−1+Wxc̃xt + bc̃), (7)
ct = f gt · ct−1+ igt · c̃t , (8)
ogt = σ(Whohst−1+Wxoxt + bo), (9)
hst = ogt � tanh(ct ), (10)

where xt , f gt , igt , and ogt are input variables and forget,
input, and output gates at time t . W· are the weights, where
Wi , Wc̃, Wf , and Wo are the weights of each gate, Wx· are
the weights of each gate at time t , and Wh· are the weights
of each gate at the former time t − 1. The operator � is the
symbol for the dot product of two vectors. ct and hst are the
cell state of the LSTM and the hidden unit at time t , respec-
tively, and ct−1 and hst−1 are at the former time t − 1. c̃t is
the activation function of the hidden layer. bi , bf , bo, and
bc are bias items, and σ(·) and tanh(·) are the sigmoid func-
tion and the hyperbolic tangent function, respectively. At the
initial moment, cell and hidden states are set to zero arrays.

The hydrological outputs together with other climate vari-
ables are used as inputs to feed the LSTM model (i.e., the
LSTM is thus constrained by the HMs). Because changes in
meteorological variables require some time to converge be-
fore they are reflected in the runoff, it is essential to calculate
the lag time caused by the flow convergence for the model.
The catchment response lag time d is defined as the time dur-
ing which precipitation accumulates in the river to generate
runoff for the gauge downstream, and this is expressed math-
ematically as follows (Berne et al., 2004; Ganguli and Merz,
2019):

d = 2.51A0.4
d [h] = 0.11A0.4

d [d], (11)

where Ad (km2) represents the catchment area. Meteorologi-
cal variables from day T − d to day T are employed to drive
HTMs.

We combine the five hydrological models with LSTM to
construct five HTMs. To compare the performance of these
HTMs, we use 10 HTMs as candidates for streamflow sim-
ulation in each catchment. The calibrated HTMs are then
driven by the outputs of five GCMs under each SSP (aggre-
gated to produce a basin average series) during 1985–2100
over 179 catchments to project future daily streamflow.

2.4 Drought indexes and run theory

The TWS-DSI is employed to measure the degree of terres-
trial drought severity (Zhao et al., 2017). It is a dimension-
less standardized water storage anomaly index that can in-
dicate terrestrial drought conditions when below the mean
standard value. The TWS-DSI can be expressed mathemati-
cally as follows:

TWS−DSIx,y = (TWSx,y −TWSy)/σy, (12)

where TWSx,y is the TWS at year x and month y. TWSy
and σy represent the means and standard deviation of TWS
at month y.

The SRI is a measure of the variability of runoff for
a given duration based on the percentage of accumulated
runoff (Shukla and Wood, 2008). The hydrological drought
classification and ranges indicated by the SRI are shown in
Table S1 in the Supplement. To calculate the SRI, we sim-
ulate the retrospective time series of streamflow and fit the
sample series to a probability distribution. The SRI is con-
sidered to follow a Pearson type-III distribution (Vicente-
Serrano et al., 2012) and is calculated as follows:

SRI=

−
(
r −

c0+c1r+c2r
2

1+d1r+d2r2+d3r3

)
0< F(x)≤ 0.5,

r −
c0+c1r+c2r

2

1+d1r+d2r2+d3r3 0.5< F(x)≤ 1,
(13)

where r =
√

ln[ 1
F(x)2
]. F(x) is the cumulative probability

density of the SRI. c0, c1, c2, d1, d2, and d3 are the empiri-
cal constants, taken as 2.516, 0.803, 0.010, 1.433, 0.189, and
0.001 separately.

After calculating the two drought indexes, the degree of
water deficit can be determined according to the Grades of
Meteorological Drought and the previous classification (Di-
kici, 2020). Table S1 presents the drought classification and
thresholds used to identify the drought degrees. The run the-
ory is employed to obtain characteristics of drought events
from the time series (Yevjevich, 1967). When the drought in-
dex is below a mild drought (i.e., ≤−0.5 drought index), a
drought event is detected (Fig. 2), and then the drought dura-
tion and drought severity are extracted.

2.5 Socioeconomic exposure assessments based on the
copulas and the most likely realization

To integrate the assessment of drought change arising from
the duration and severity under climate change, we employed
a copula framework by constructing the joint probability dis-
tribution of two variables. After extracting the drought dura-
tion (D) and severity (S), we fit their marginal distributions
with the seven distributions shown in Table S2. The OR case
(i.e., where a bivariate drought event is identified with ei-
ther high severity or long duration) of the joint return period
(JRP) in a copula-based framework is used to quantify the
occurrence of drought events (Yin et al., 2020). The joint
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Figure 2. Drought duration and severity identification based on the run theory, where −0.5 denotes the drought threshold (grey dashed line).

distribution of drought duration and severity is constructed
by using a copula function, which is valuable for describing
correlated hydrological variables (Li, 1999). Unlike univari-
ate drought frequency analysis, the JRP within a bivariate
framework can be represented by an isoline, which contains
infinite combinations of values of these two multivariate ar-
rays of variables. It is important for risk assessments to se-
lect a representative combination along the isoline. Previous
studies have only selected joint design values according to
the same frequency hypothesis that considering two corre-
lated variables follows the same cumulative probability in
their distributions, but this approach lacks a statistical basis
and poorly describes the physical characteristics of droughts
(Yin et al., 2018). In this paper, the joint probability density
is used to optimize the most likely realization (Fig. 3), which
is expressed mathematically as follows:


(d∗, s∗)= argmaxf (d,s)= c[Fd,Fs] · fd · fs,

C[Fd,Fs] = 1−µ/Tor,

c[Fd,Fs] =
dC(Fd,Fs)
d(Fd)d(Fs)

,

(14)

where c[Fd,Fs] is the copula probability density function;
fd and fs are the fitted probability density functions of D
and S, respectively; Fd and Fs are the marginal distributions
of D and S, respectively; (d∗, s∗) is the most likely realiza-
tion under a given JRP Tor; and µ is the mean interarrival
time between two consecutive droughts.

The future socioeconomic exposure after the 2020s has
been defined directly as ranging from 0 % to 100 % (Gu et al.,
2020a), but dynamically shifting climate risks cannot be rep-
resented under this definition without considering fluctuation
in the frequency of hazards. Here, the socioeconomic expo-
sure is defined by considering the shift in the JRP and is ex-

Figure 3. Joint distribution of drought duration and severity under
a critical Tor. The green lines are two arbitrary values of duration
and severity. The red line is the isoline of two variables under a crit-
ical Tor, and the blue line denotes the traditional equal-frequency
assumption. The dT and sT are marginal distribution quantiles for
a given probability level T . FS and FD are the cumulative proba-
bility densities of severity and duration, respectively. Tor is a given
probability level in the OR case.

pressed at the catchment scale as follows:

EPOP =
ThI (Th− Tf)

TfAd
×POP, (15)

EGDP =
ThI (Th− Tf)

TfAd
×GDP, (16)

where EPOP and EGDP denote the population and GDP ex-
posure; Th and Tf denote the historical and future JRPs, re-
spectively; I (·) denotes the controlling function, which is 1
when Th− Tf < 0 or 0 when Th− Tf ≥ 0; and POP and GDP
denote the population and the gross domestic product (USD),
respectively, of a given catchment in the future climate.
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2.6 Quantifying the uncertainty contributed by
different sources

Uncertainties in the future drought projections can arise from
the SSPs, GCMs, and HTMs. During both the historical
(1985–2014) and future (2071–2100) periods, the combina-
tion of three SSPs, five GCMs, and 10 HTMs through the
impact modeling chain resulted in 150 hybrid combinations.
The overall uncertainty is calculated from the variance of
the future estimated JRP relative to the historical 50-year
droughts. To partition the uncertainty from different sources
of data and their interaction effects, the MANOVA is used
and expressed as follows (Weinfurt, 1995):

1yx,y,z =M + Sx +Gy +Hz+ Ix,y,z, (17)

whereM denotes the mean change in all the indicators in the
models; Sx , Gy , and Hz denote the impacts on the indicators
of the xth SSP, yth GCM, and zth HTM, respectively; and
Ii,j,k is the overall impact arising from the interactions of
different sources. The overall variance V is then expressed
as follows:

V = VS+VG+VH+VISG+VISH+VIGH+VISGH, (18)

where VS, VG, and VH are the variances from the SSPs,
GCMs, and HTMs, respectively. VISG, VISH, VIGH, and
VISGH denote the variances caused by the coupling between
the different sources of data. The contribution of each source
to the overall uncertainty is quantified by the variance of each
source and the total variance.

3 Data and materials

3.1 In situ observation dataset

We use a gridded meteorological dataset with 0.5°× 0.5° res-
olution, including daily temperature (maximum, minimum,
and average; °) and daily precipitation (mm) from 1961 to
2018 provided by the National Meteorological Bureau of
China. The dataset is regarded as the latest gridded meteoro-
logical dataset in China and has been applied to some stud-
ies (e.g., Wu et al., 2018; Yin et al., 2021a, b). Meanwhile,
we gathered the daily streamflow of 463 in situ hydrological
stations spanning different periods during 1961–2018 (Liu,
2023). The hydrological stations are densely distributed in
eastern China, while western China has a sparser distribution.
Through rigorous data quality checks, 179 unnested basins
with at least 20 years of data were selected, covering nine
major watersheds in China. For more details on streamflow
data processing and catchment screening, please refer to Yin
et al. (2021b).

3.2 GRACE and GRACE-FO measurements

Temporal variations in Earth’s gravitational field observed
by the GRACE satellites have been used to retrieve TWS

data (Tapley et al., 2004). Many international institutes have
released the TWS mascon products at a monthly scale, in-
cluding the JPL (Jet Propulsion Laboratory of the California
Institute of Technology), the GSFC (Goddard Space Flight
Center of NASA), and the CSR (Center for Space Research
of the University of Texas). As these three mascon solutions
are produced at different spatial resolutions, we generated
blended TWS data based on the average of the JPL, GSFC,
and CSR with a 0.5°× 0.5° resolution from 2002 to 2022 and
fill in the missing data using a linear interpolation approach
(Yin et al., 2022).

3.3 ERA5-Land dataset

ERA5-Land is a dataset that consists of a large volume of
meteorological variables, including precipitation, tempera-
ture, and air pressure. The spatial resolution of the dataset
is 9 km, and the temporal resolution is 1 h (Yilmaz, 2023).
Under the latest global reanalysis and the lapse rate correc-
tion, the ERA5-Land reanalysis dataset provides a substitute
for unavailable observed weather data by taking the effect of
altitude on the spatial scheme of climate variables into ac-
count (Pelosi et al., 2020). Six variables are used in the study
(i.e., pr, ps, T2 m, Td, srlds, and srsds) and are aggregated to
the daily scale from the hourly scale before conducting data
analysis (Muñoz Sabater, 2019).

3.4 Bias-corrected GCM outputs and socioeconomic
scenarios

The climate outputs of five GCMs of the historical sce-
nario and three SSPs (i.e., SSP1-26, SSP3-70, and SSP5-
85) in CMIP6 are used to represent different climate scenar-
ios. Generally, the SSP5-85 configured the highest carbon
emission and human interference with the natural environ-
ment. SSP3-70 and SSP1-26 have progressively conservative
changes to represent climate change resulting from different
levels of human activity. The series of bias-corrected vari-
ables have been downscaled to 0.5°× 0.5° resolution from
1850 to 2100 in the Intersectoral Impact Model Intercompar-
ison Project 3b (ISIMIP3b) (Lange, 2019). To reduce the sys-
tematic biases of CMIP6 raw outputs, seven variables from
the bias-corrected ISMIP3b dataset have been used, i.e., tem-
perature (daily average, maximum, and minimum), pr, ps,
srsds, srlds, RH, and SH (Lange and Büchner, 2021).

Population and GDP data under three SSPs are employed
to evaluate the potential socioeconomic risks of drought
in a warming world. An open-access population dataset is
adopted which takes into account the universal two-child
policy, the census results, and the statistical annual report
(Jiang et al., 2017). The economic index from 2010 to 2100
is estimated based on the Cobb–Douglas and Population–
Environment–Development model (Jiang et al., 2018). All
of the data have been used previously to assess the socioe-
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conomic impact of extreme hydrological hazards (Yin et al.,
2022).

4 Results

4.1 Observed changes in SRI- and TWS-DSI-based
drought

As there are insufficient streamflow observations to compute
the SRI in northwestern China, we also employed the TWS-
DSI as the Supplement. This approach enriches the variety
of the water storage or flux being evaluated. Based on linear
regression and the least-squares method, trends in drought
characteristics (i.e., frequency, duration, and severity) are es-
timated by using the GRACE and GRACE-FO dataset and
observed runoff across China. Figures 4 and 5 show the
drought trends based on the TWS-DSI and the SRI, respec-
tively. Overall, the two indexes show similar trends in most
catchments, suggesting that drought hazards increased from
2002 to 2022. TWS-DSI droughts increased in 54 % of the ar-
eas, which are mainly located in the Qinghai–Tibet Plateau,
the North China Plain, and northwestern Xinjiang Province.
Likewise, SRI droughts increased in over 51 % of the studied
catchments, which mainly dominate northeastern and south-
eastern China. The severity of the droughts measured by the
TWS-DSI is twice that of the hydrological drought, primar-
ily because the TWS-DSI metric incorporates all the vertical
water fluxes, offering a comprehensive view of the shifts in
water scarcity. On the other hand, the TWS-DSI can with
difficulty represent the aquifer recharge processes, which are
fundamental physical processes of baseflow and the hydro-
logical drought in its entire extension. Therefore, catchments
with aquifer recharge and storage capacity will exceed sev-
eral times the time step of the analysis, enlarging the sever-
ity of the droughts. Some locations exhibit discrepancies de-
pending on the index considered. For instance, droughts in
the Qinghai–Tibet Plateau and northeastern China show op-
posite trends. Anomalies in the Qinghai–Tibetan Plateau may
be explained by the transformation of snowpack melt into
surface runoff under the influence of climate change, which
helps to compensate for the lack of surface water in the area
(Stewart, 2009). The discrepancy observed in northeastern
China could potentially be linked to the rise in soil moisture
from increased infiltration, which causes a higher proportion
of water to be stored within the soil than at the surface, inter-
fering with the quantification of hydrological drought (Wang
et al., 2017). Finally, both indicators show a consistent posi-
tive drought trend in most areas of China, and particularly in
the North China Plain and the Pearl River Basin.

4.2 Machine-learning-constrained streamflow
simulation and model evaluation

The RF model was used to quantify the sensitivity of stream-
flow to different meteorological variables (Fig. 6). Since a

station can be attributed to catchments of different sizes, we
only considered the largest catchment scales in our analysis.
We quantified the sensitivity of seven historical mean meteo-
rological variables (i.e., pr, ps, SH, RH, srlds, srsds, and tem-
perature) to the monthly streamflow in each grid. Due to the
sparse number of observation stations in northwestern China,
the reliability of the sensitivity analysis for these regions is
lower than that of the dense observed areas. Precipitation typ-
ically plays a major role in generating runoff in southeastern
China, although SH plays the most important role in some re-
gions, such as central, southwestern, and northeastern China.
Over 30 % and 38 % of the stations show a SH sensitivity
rate of > 10 % in western and northeastern China, respec-
tively, indicating the dominance of SH in these areas. In con-
trast, RH and shortwave radiation have a negative contribu-
tion to streamflow, especially shortwave radiation, which has
a pronounced negative sensitivity in 394 stations, probably
due to enhanced evapotranspiration (Ma et al., 2019). These
negative contributions mean that enhancement of these two
variables will inhibit the generation of streamflow, showing
the potential adverse effects of climate change on streamflow
generation. In general, RH contributes to increasing stream-
flow over most regions of China, but the opposite effect is ob-
served in 179 stations mainly located in southwestern China
and in the Yellow River and Huaihe River basins. This is a re-
sult of the mutual feedback of water and heat dynamics (i.e.,
saturated vapor pressure increases with warming and inten-
sifies evaporation, leading to a decrease in surface water),
which was also found by Liu et al. (2017). The temperature
has a positive contribution to streamflow generation in north-
eastern China, suggesting potential mitigation for the defi-
ciency of the surface flow. However, there is interactive feed-
back between hydrological and thermal factors that results in
an inability to directly assess the impact of temperature on
hydrological droughts (Fig. 6i and f).

The performances of simulated streamflow by different
HTMs are shown in Fig. 7. The model that has the largest
Kling–Gupta efficiency (KGE) is considered to be the best-
performing one in each catchment. In Fig. 7a and b, the GR4J
and GR4J LSTM performed best in 77 out of the 179 stud-
ied catchments. The median KGE value of GR4J is higher
than 0.83, revealing a superior performance to the other hy-
drological models. Subsequently, the XAJ and XAJ LSTM
are the best models in 57 catchments, mainly located in the
southern Yangtze River. Finally, the HBV and HBV LSTM
performed best in only 10 catchments, where the streamflow
was impacted by snowfall in plateaus and northern frozen ar-
eas. All the catchments exhibit KGE values greater than 0.9
during the calibration period in Fig. 7c, showing good per-
formance in simulation. During the validation period, only
18 catchments have KGE values below 0.6, and most of
the catchments have KGE values greater than 0.8 (Fig. 7d).
In summary, the trained models simulate streamflow well
in all the studied catchments. Additionally, the KGE val-
ues in the southern region are generally higher than those
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Figure 4. Trends in drought frequency, duration, and severity based on the TWS-DSI from 2002 to 2022 using three GRACE and GRACE-FO
products (a–i) and the blended data (j–l).
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Figure 5. Trends in drought frequency, duration, and severity from 2002 to 2022 over China. (c) The index of severity is based on the SRI
statistic (Eq. 13).

Figure 6. Sensitivity of meteorological variables to daily streamflow. The figure uses a thin-plate smoothing spline method to interpolate the
point-based station data (circles). The grey areas indicate missing data.
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Figure 7. Hydrological simulation performances of all the candidate models. (a) The best-performing model with the highest KGE value.
The catchments are colored according to the best-performing models. (b) Boxplots of all the catchments for 10 HTMs indicated by KGE
values. (c, d) The highest KGE values during the calibration (c) and validation (d) periods, respectively.

in the northern region during the validation period, which is
consistent with previous hydrological simulation works (Gu
et al., 2020b, 2021). This phenomenon may be attributed to
the higher dependence of streamflow on rainfall in southern
China, which is governed by a humid climate pattern (Zheng
et al., 2022).

4.3 Projected changes in univariate drought
characteristics

We projected the future daily runoff series by driving the
HTMs with the bias-corrected CMIP6 variables, and then we
estimated the monthly SRI to identify the drought duration
and severity. Based on the maximum Bayesian information
criterion (BIC), we selected the best-performing marginal
distributions for duration and severity from seven candidate
distributions shown in Table S2, based on the historical data
for each catchment. Figures 8 and 9 show the multimodel

ensemble average severity and duration for the 50-year his-
torical return period (RP).

In western China, we projected a significantly increas-
ing drought trend under the three SSPs, which indicates po-
tential for increased water scarcity and more frequent ex-
treme drought events. In southeastern China, we projected
that drought events are likely to intensify under SSP3-70 but
not under SSP5-85. It is generally considered that SSP5-85
is accompanied by higher carbon emissions than SSP3-70
(O’Neill et al., 2016). However, future work should also take
significant action to control the extent of climate change,
combined with strong climate policies under SSP5-85 (Fu-
jimori et al., 2017). As a result, there is no deterioration of
drought severity with policy interventions, which emphasizes
the significance of ensuring the implementation of climate
strategies. In northern China, in contrast, we found that fu-
ture drought risks are projected to decrease in the three sce-
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Figure 8. Multimodel ensemble average design severity (dimensionless) under a 50-year RP for three SSPs, together with relative changes
(%) in 2071–2100 compared to 1985–2014.

narios, which is possibly related to more moisture conver-
gence from the East Asian monsoon circulation as the cli-
mate warms (Chowdary et al., 2019).

We display the relative change in drought characteristics
with a 50-year RP for all the catchments for five GCMs under
the three SSPs using violin plots (Fig. 10). For most catch-
ments, the relative change in drought duration and severity
is negative. However, the relative change in some scenar-
ios reached a maximum of 400 %, highlighting the extreme
change in drought. The median relative change in severity
based on IPSL-CM6A-LR under SSP3-70 is 30 %, and 22 %
of the catchments have a relative change of over 200 %, rep-
resenting the most severe case of drought evolution. Further-
more, the distributions of the projections based on the MPI-
ESM1-2-HR, MRI-ESM2-0, and UKESM1-0-LL models are
highly skewed and bimodal under SSP3-70 and SSP5-85, re-

vealing substantial spatial heterogeneity across China. Over-
all, the severity and duration of droughts slightly increase in
some catchments and have a risk of extreme intensification
as a result of global warming.

4.4 Bivariate drought changes and corresponding
socioeconomic risks

To capture the complex dependence structure between
drought severity and duration, we used a copula function
to quantify the bivariate risk of hydrological droughts un-
der climate change. Changes in the JRP of the historical
(1985–2014) drought event with the 50-year JRP in the fu-
ture (2071–2100) period are shown in Fig. 11. The medians
of the projected future JRP are 38.78, 14.52, and 19.24 years
under SSP1-26, SSP3-70, and SSP5-85, respectively. For the
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Figure 9. Multimodel ensemble average design duration (months) of the multiple models for a 50-year RP for three SSPs, together with
relative changes (%) in 2071–2100 compared to 1985–2014.

69 % and 60 % catchments under SSP3-70 and SSP5-85, we
find that the JRP of the 50-year drought is reduced to less
than 25 years in the future period, suggesting that the risk
of drought increases by more than 2 times in these catch-
ments. In addition, we find a marked increase in the num-
ber of catchments with increased drought risk compared to
the univariate drought assessments. The JRP of catchments
in northeastern and central China tends to decrease, suggest-
ing higher changes in risks than with univariate assessments.
This result is consistent with previous studies (He et al.,
2011; Xu et al., 2015), which indicates that the use of bi-
variate drought analysis can amplify the individual effects of
two drought characteristics.

Future GDP and population exposures to increasing bi-
variate drought risk in three scenarios are shown in Fig. 12.

The eastern coastal regions have higher significant economic
exposure, such as in the Huaihe River Basin, the Yangtze
River Basin, and the Pearl River Basin, which is consis-
tent with the distribution of economically developed re-
gions in China. The medians of GDP exposure are USD 5.5,
USD 9.8, and USD 14.3 million per square kilometer under
the three SSPs, respectively, which indicates the vulnerability
of economic losses to drought disasters under global warm-
ing. The population affected by drought is mainly located
in the southern Yangtze River Basin and the Huaihe River
Basin under SSP3-70, as the median exposure is 525 and
205 people per square kilometer under SSP3-70 and SSP5-
85, respectively. This is because the increase in population
is higher in Sichuan, Guangdong, and Zhejiang provinces
than in other Chinese provinces under SSP3-70 (Chen et al.,
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Figure 10. Violin plots of the relative changes (%) in severity and duration during the historical drought event with a 50-year RP under three
SSPs. The white circles are the median values of the relative changes.

2020). Overall, the exposures of GDP and population show
large heterogeneity in their sensitivities to different scenar-
ios, and the distribution of the affected catchments is consis-
tent with economic and social development.

5 Discussion

5.1 Uncertainty decomposition

The overall uncertainty in our projections arises from the
different SSPs, GCMs, and HTMs as well as their inter-
actions. We assemble these seven sources using MANOVA
(Fig. 13). For GDP and POP exposure, we find HTMs to be
the main source of uncertainty; they contribute uncertainties
of 27.55 % and 26.14 %, respectively. This indicates that the
quality of an HTM is important for the accuracy of socioe-
conomic predictions. Likewise, the GCM and GCM–HTM
provide over 30 % of the uncertainty in GDP and popula-
tion exposures, which indicates the critical importance of

bias-corrected GCM outputs for accurate projections. Fur-
ther, the contributions of the SSPs to population exposure are
1.5 times those of GDP exposure, which shows that the effect
of climate change is greater for POP exposure than for GDP
exposure. In particular, the independent factors (i.e., SSPs,
GCMs, and HTMs) contribute over 50 % of the uncertainty
of GDP and population exposures, suggesting that GDP and
population exposures are less responsive to complex cou-
pling. In contrast, the coupled factors (i.e., the combination
of SSPs, GCMs, and HTMs) mainly contribute to the uncer-
tainty of the JRP, accounting for 82.63 % of the overall un-
certainty, especially SSM–GCM–HTM, which accounts for
36.97 % of the uncertainty. Finally, the relatively low contri-
bution of the choice of SSP, SSP–GCM, and SSP–HTM to
the JRP uncertainty indicates that the future risk projection
uncertainty is relatively stable in future risk projections.
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Figure 11. The future multimodel ensemble mean JRP of the historical drought with a 50-year Tor based on the bivariate approach. The
future JRPs of 179 catchments under three SSPs are presented in panels (a–c), while panel (d) displays rain cloud plots of the projected JRP
under each SSP.

5.2 Limitations and future work

The uncertainty caused by the underlying surface situation
and the coupling relationships behind interrelated variables
remains unexplained in this study. Therefore, revealing in-
teractions between multisource data is important for under-
standing how the drivers affect the water cycle under climate
change. Here, only five GCM outputs and one in situ ob-
servation dataset were used to drive our HTMs. The sparse
dataset may undermine the robustness of the approach. Pro-
viding a larger number of GCMs and observational data to
assemble a more sophisticated model might be an effective
approach for improving accuracy and reliability. Although
the catchments gathered in this study cover nine major wa-
tersheds in China, there is still a requirement for stream-
flow data with a more uniform spatial density. Considering
geospatial sampling techniques, a homogeneous density of
catchments is significant for revealing the spatial distribu-
tion of drought. On the other hand, due to the heterogene-
ity of the different climatic regions in China, we would like
to expand hydrological models (e.g., the Weather Research

and Forecasting hydrological modeling system, the Soil and
Water Assessment Tool, or the hydrological modules of land
surface process models) to reduce uncertainty in future re-
search. Finally, the GDP and population projections cannot
reflect future economic development and population migra-
tion well, especially governmental intervention in immigra-
tion and economic policies. It is better to consider the dy-
namic impact of human management on socioeconomic de-
velopment, which is essential for the construction of a more
reliable projection framework.

5.3 Suggestions for drought mitigation in China

In order to curb global warming and mitigate the threats of
climate change, the Chinese government is striving to reach
its carbon peak before 2030, achieve carbon neutrality before
2060, and bolster efforts in disaster reduction (Kundzewicz
et al., 2019; Z. Liu et al., 2022). China has nonetheless ex-
perienced several extreme drought events during the past
5 years, threatening the population’s health and economic de-
velopment (Ding and Gao, 2020; Y. Liu et al., 2022; Mallap-
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Figure 12. The multimodel ensemble mean exposure of GDP (a–c) and population (d–f) to bivariate drought characteristics under different
SSPs in the future period.

aty, 2022). The Intergovernmental Panel on Climate Change
(IPCC) has emphasized that projections of future climate
trends can equip policymakers with the scientific insight
needed to navigate the challenges of climate change (Pörtner
et al., 2022). The results of this study aim to alert policymak-
ers to drought risk in southwestern China, which was just hit

by severe drought events that are expected to significantly in-
tensify with climate change. We strongly highlight the impor-
tance of strictly implementing carbon emission reduction ini-
tiatives and developing prevention programs to limit poten-
tial drought losses. Preserving local ecological balance and
employing rational use of water resources could be the key
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Figure 13. The fractional uncertainty contributions of all the sources to the GDP exposure, population exposure, and JRP estimate for all
179 catchments (a, c, e) and the average fractional contribution of each source (b, d, f).

to mitigating potential losses from extreme droughts (Chang
et al., 2019; Sohn et al., 2016). Although China has con-
structed hydraulic structures with a total water storage capac-
ity of over 7064 × 109 m3, current irrigation facilities need
to expand to mitigate the challenge of drought under climate
change (Cai et al., 2015; Xiao-jun et al., 2012). In addition, it
is beneficial for policymakers to establish a drought informa-
tion system to get a comprehensive collection of drought im-
pacts from all potential sectors, which can link government
and research organizations (Wilhite et al., 2007).

The IPCC has emphasized that projections of future cli-
mate trends can equip policymakers with the scientific in-
sight needed to navigate the challenges of climate change
(Pörtner et al., 2022). The results of this study aim to alert
policymakers to drought risk in southwestern China, which
is expected to intensify with climate change. Preserving lo-
cal ecological balance and employing rational use of water
resources could be the key to mitigating potential losses from

extreme droughts (Chang et al., 2019; Sohn et al., 2016). Fi-
nally, this work highlights the importance of strictly imple-
menting carbon emission reduction initiatives and develop-
ing prevention programs to limit potential drought losses.

6 Conclusions

In this study, hybrid LSTM-constrained hydrological mod-
els show high efficiency in studied catchments over China,
demonstrating that machine learning can effectively con-
strain hydrological simulation. Projected changes in 50-year
bivariate drought characteristics, expressed as a JRP, indicate
that the risk of hydrological drought is likely to more than
double in over 60 % of catchments by the end of the 21st cen-
tury under SSP5-85. The spatial distribution of change re-
veals that the catchments with severely increased drought
risk are mainly located in southwestern China. Notably, the
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exposure of GDP and population varies greatly across dif-
ferent SSPs. The median GDP exposure under SSP5-85 is
1.5 times that of SSP3-70, but the median population expo-
sure is just 40 % that of SSP3-70. The higher population ex-
posure under SSP3-70 can be attributed to rapid population
growth. Finally, we find that the interaction between multiple
sources of data explains more than 80 % of the uncertainty in
future changes in JRPs, showing the importance of consider-
ing the relationships between model components. Our find-
ings demonstrate that China will face higher drought risks in
a warmer future, emphasizing the urgency of implementing
strategies to reduce carbon emissions. Our study is insuffi-
cient in the revelation of drought hazard drivers and needs
to expand datasets and hydrological models to promote the
reliability of simulations in future studies. We would also
like to take governmental interference in economic and de-
mographic policies into consideration.
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