Articles | Volume 28, issue 14
https://doi.org/10.5194/hess-28-3133-2024
https://doi.org/10.5194/hess-28-3133-2024
Research article
 | 
19 Jul 2024
Research article |  | 19 Jul 2024

Leveraging a novel hybrid ensemble and optimal interpolation approach for enhanced streamflow and flood prediction

Mohamad El Gharamti, Arezoo Rafieeinasab, and James L. McCreight

Related authors

Ensemble streamflow data assimilation using WRF-Hydro and DART: novel localization and inflation techniques applied to Hurricane Florence flooding
Mohamad El Gharamti, James L. McCreight, Seong Jin Noh, Timothy J. Hoar, Arezoo RafieeiNasab, and Benjamin K. Johnson
Hydrol. Earth Syst. Sci., 25, 5315–5336, https://doi.org/10.5194/hess-25-5315-2021,https://doi.org/10.5194/hess-25-5315-2021, 2021
Short summary
On the efficiency of the hybrid and the exact second-order sampling formulations of the EnKF: a reality-inspired 3-D test case for estimating biodegradation rates of chlorinated hydrocarbons at the port of Rotterdam
Mohamad E. Gharamti, Johan Valstar, Gijs Janssen, Annemieke Marsman, and Ibrahim Hoteit
Hydrol. Earth Syst. Sci., 20, 4561–4583, https://doi.org/10.5194/hess-20-4561-2016,https://doi.org/10.5194/hess-20-4561-2016, 2016
Short summary
A Bayesian consistent dual ensemble Kalman filter for state-parameter estimation in subsurface hydrology
Boujemaa Ait-El-Fquih, Mohamad El Gharamti, and Ibrahim Hoteit
Hydrol. Earth Syst. Sci., 20, 3289–3307, https://doi.org/10.5194/hess-20-3289-2016,https://doi.org/10.5194/hess-20-3289-2016, 2016
Short summary

Related subject area

Subject: Water Resources Management | Techniques and Approaches: Modelling approaches
Modeling hydropower operations at the scale of a power grid: a demand-based approach
Laure Baratgin, Jan Polcher, Patrice Dumas, and Philippe Quirion
Hydrol. Earth Syst. Sci., 28, 5479–5509, https://doi.org/10.5194/hess-28-5479-2024,https://doi.org/10.5194/hess-28-5479-2024, 2024
Short summary
Determining the threshold of issuing flash flood warnings based on people's response process simulation
Ruikang Zhang, Dedi Liu, Lihua Xiong, Jie Chen, Hua Chen, and Jiabo Yin
Hydrol. Earth Syst. Sci., 28, 5229–5247, https://doi.org/10.5194/hess-28-5229-2024,https://doi.org/10.5194/hess-28-5229-2024, 2024
Short summary
Modeling water balance components of conifer species using the Noah-MP model in an eastern Mediterranean ecosystem
Mohsen Amini Fasakhodi, Hakan Djuma, Ioannis Sofokleous, Marinos Eliades, and Adriana Bruggeman
Hydrol. Earth Syst. Sci., 28, 5209–5227, https://doi.org/10.5194/hess-28-5209-2024,https://doi.org/10.5194/hess-28-5209-2024, 2024
Short summary
Assessment of upscaling methodologies for daily crop transpiration using sap flows and two-source energy balance models in almonds under different water statuses and production systems
Manuel Quintanilla-Albornoz, Xavier Miarnau, Ana Pelechá, Héctor Nieto, and Joaquim Bellvert
Hydrol. Earth Syst. Sci., 28, 4797–4818, https://doi.org/10.5194/hess-28-4797-2024,https://doi.org/10.5194/hess-28-4797-2024, 2024
Short summary
Making a case for power-sensitive water modelling: a literature review
Rozemarijn ter Horst, Rossella Alba, Jeroen Vos, Maria Rusca, Jonatan Godinez-Madrigal, Lucie V. Babel, Gert Jan Veldwisch, Jean-Philippe Venot, Bruno Bonté, David W. Walker, and Tobias Krueger
Hydrol. Earth Syst. Sci., 28, 4157–4186, https://doi.org/10.5194/hess-28-4157-2024,https://doi.org/10.5194/hess-28-4157-2024, 2024
Short summary

Cited articles

Abbaszadeh, P., Moradkhani, H., and Daescu, D. N.: The quest for model uncertainty quantification: A hybrid ensemble and variational data assimilation framework, Water Resour. Res., 55, 2407–2431, 2019. a, b, c
Abbaszadeh, P., Gavahi, K., and Moradkhani, H.: Multivariate remotely sensed and in-situ data assimilation for enhancing community WRF-Hydro model forecasting, Adv. Water Resour., 145, 103721, https://doi.org/10.1016/j.advwatres.2020.103721, 2020. a
Anderson, J., Hoar, T., Raeder, K., Liu, H., Collins, N., Torn, R., and Avellano, A.: The data assimilation research testbed: A community facility, B. Am. Meteorol. Soc., 90, 1283–1296, 2009. a, b
Anderson, J. L.: A method for producing and evaluating probabilistic forecasts from ensemble model integrations, J. Climate, 9, 1518–1530, 1996. a
Anderson, J. L.: A local least squares framework for ensemble filtering, Mon. Weather Rev., 131, 634–642, 2003. a, b
Download
Short summary
This study introduces a hybrid data assimilation scheme for precise streamflow predictions during intense rainfall and hurricanes. Tested in real events, it outperforms traditional methods by up to 50 %, utilizing ensemble and climatological background covariances. The adaptive algorithm ensures reliability with a small ensemble, offering improved forecasts up to 18 h in advance, marking a significant advancement in flood prediction capabilities.