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Abstract. In the face of escalating instances of inland and
flash flooding spurred by intense rainfall and hurricanes, the
accurate prediction of rapid streamflow variations has be-
come imperative. Traditional data assimilation methods face
challenges during extreme rainfall events due to numerous
sources of error, including structural and parametric model
uncertainties, forcing biases, and noisy observations. This
study introduces a cutting-edge hybrid ensemble and opti-
mal interpolation data assimilation scheme tailored to pre-
cisely and efficiently estimate streamflow during such critical
events. Our hybrid scheme uses an ensemble-based frame-
work, integrating the flow-dependent background stream-
flow covariance with a climatological error covariance de-
rived from historical model simulations. The dynamic in-
terplay (weight) between the static background covariance
and the evolving ensemble is adaptively computed both spa-
tially and temporally. By coupling the National Water Model
(NWM) configuration of the WRF-Hydro modeling system
with the Data Assimilation Research Testbed (DART), we
evaluate the performance of our hybrid prediction system
using two impactful case studies: (1) West Virginia’s flash
flooding event in June 2016 and (2) Florida’s inland flood-
ing during Hurricane Ian in September 2022. Our findings
reveal that the hybrid scheme substantially outperforms its
ensemble counterpart, delivering enhanced streamflow esti-
mates for both low and high flow scenarios, with an improve-
ment of up to 50 %. This heightened accuracy is attributed
to the climatological background covariance, mitigating bias
and augmenting ensemble variability. The adaptive nature
of the hybrid algorithm ensures reliability, even with a very
small time-varying ensemble. Moreover, this innovative hy-

brid data assimilation system propels streamflow forecasts
up to 18 h in advance of flood peaks, marking a substantial
advancement in flood prediction capabilities.

1 Introduction

Flooding can stem from various causes, including prolonged
rainfall events like tropical storms or hurricanes, as well as
intense rainfall over short periods or complications such as
debris and ice jams. When examining events causing at least
a billion dollars in damage, river and urban flooding alone ac-
counts for 7.4 % of US natural disasters from 1980 to 2023.
Tropical cyclones top the list, contributing to 52 % of the
damage (Smith, 2020).

Tropical storms and hurricanes are characterized by de-
structive winds, storm surge, and catastrophic flooding. Hur-
ricanes can unleash 2.4×1012 gal (9.1× 1012 L) of rainwater
in a day (Nunez and Yang, 2023). According to the National
Weather Service, torrential rain from hurricanes can flood the
neighborhoods of coastal communities within minutes. This
phenomenon, known as freshwater or inland flooding, can
damage infrastructure, cause landslides, destroy crops, and
take lives. Inland flooding could be caused by either the river
water level exceeding river bank heights or the rainfall inten-
sity exceeding the infiltration capacity. The latter is the ma-
jor cause of the flooding in case of tropical storms and hur-
ricanes. Approximately 25 % of US hurricane deaths from
1963 to 2012 were related to freshwater flooding (Rappaport,
2014). Predicting floods has the potential to save lives, pro-
tect infrastructure, and minimize socio-economic impacts.
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Such predictions are challenging and remain an area of ac-
tive research and operational development.

Streamflow predictions commonly integrate real-world
observations with hydrologic model simulations, a practice
known as data assimilation (DA) (Houser et al., 1998; Mar-
gulis et al., 2002; Reichle, 2008; Yucel et al., 2015). This
approach, prevalent across diverse fields including numeri-
cal weather prediction (NWP; Lorenc, 1986), has witnessed
substantial growth in streamflow prediction applications over
the last 2 decades (e.g., Kim et al., 2021; Chao et al., 2022).
Ensemble filtering techniques, based on the Kalman filter
(Kalman, 1960), are widely adopted due to their ease of im-
plementation and high portability. The ensemble Kalman fil-
ter (EnKF; Evensen, 1994; Burgers et al., 1998) stands out
among these methods, utilizing model forecast realizations
during the analysis. The EnKF employs a minimum variance
estimator, utilizing observations to compute ensemble incre-
ments (i.e., difference between analysis and forecast) that are
subsequently linearly combined with the predicted ensem-
ble. Extensively used in real-time and operational settings,
the EnKF has been applied to enhance streamflow simula-
tions. For instance, Pauwels and De Lannoy (2006, 2009) in-
vestigated a retrospective EnKF formulation in several con-
ceptual and operational rainfall-runoff models and assessed
the impact of streamflow DA using linear and nonlinear ob-
servation operators. Rakovec et al. (2012) explored perfor-
mance of the EnKF in updating streamflow through syn-
thetic and real-world experiments in the Meuse River basin,
Belgium. In an operational hydrological context, McMillan
et al. (2013) introduced a recursive EnKF variant stabiliz-
ing streamflow estimates across different catchments in New
Zealand. Rafieeinasab et al. (2014) compared the perfor-
mance of the maximum likelihood ensemble filter with the
EnKF for real-time streamflow assimilation in a Southern
Texas headwater basin. Meanwhile, Huang et al. (2017) uti-
lized the EnKF to update streamflow using snow water equiv-
alent data in basins like the Pacific Northwest, Rocky Moun-
tains, and California in the western United States. Addition-
ally, Lee et al. (2019) developed a bias-aware version of the
EnKF to enhance flood forecasting for a subset of 10 head-
water basins in the southern United States. Beyond the EnKF,
various methods, including particle filters (e.g., Weerts and
El Serafy, 2006; DeChant and Moradkhani, 2011; Noh et al.,
2013; DeChant and Moradkhani, 2014; Abbaszadeh et al.,
2020), ensemble smoothers (e.g., Margulis et al., 2015; Meng
et al., 2017), variational methods (e.g., Seo et al., 2009;
Mazrooei et al., 2021), and machine learning (e.g., Boucher
et al., 2020), have been employed for streamflow and flood
prediction across diverse spatial and temporal scales. A com-
prehensive review of methods used in streamflow prediction
over the past 4 decades is available in Troin et al. (2021).

Despite its achievements in research, real-time applica-
tions, and operational frameworks, the EnKF operates as a
sequential estimation tool with inherent limitations, grap-
pling with biases and sampling errors. The EnKF approxi-

mates the true prior (or forecast) covariance by employing
a sample covariance from the ensemble, assuming unbiased
background errors. In scenarios with small ensemble sizes,
the estimated sample covariance may be plagued by sub-
stantial sampling errors, leading to suboptimal analysis (or
posterior) estimates. These errors often result in the under-
estimation of the true ensemble variance, potentially caus-
ing filter divergence in severe situations (Furrer and Bengts-
son, 2007). Moreover, the use of a restricted ensemble size
can introduce spurious correlations in space, proving detri-
mental over successive assimilation cycles (Anderson, 2012).
Model biases, typically unaccounted for in the EnKF, tend
to dominate other error sources, potentially causing catas-
trophic consequences such as complete ensemble collapse
(Sacher and Bartello, 2008). Localization and inflation are
commonly employed methods to address sampling errors.
Localization (Houtekamer and Mitchell, 2001) restricts the
impact of observations to nearby state variables, mitigating
nonphysical correlations, especially between spatially distant
observations and state variables. Inflation (Anderson and An-
derson, 1999) increases the ensemble spread around its mean,
countering sampling errors and enhancing the fit to obser-
vations. Both inflation and localization have become inte-
gral tools in the majority of streamflow ensemble DA studies
in the literature (e.g., Emery et al., 2020). Additional tech-
niques addressing sampling errors encompass relaxation of
prior spread and perturbations (Zhang et al., 2004; Whitaker
and Hamill, 2012), the utilization of stochastic perturbations
and multi-physics ensembles (e.g., Berner et al., 2011), and
covariance hybridization (Hamill and Snyder, 2000). Beyond
sampling errors and biases, issues such as nonlinearity and
non-Gaussianity frequently compromise the optimality of the
EnKF update step (Anderson, 2010).

Integrating the EnKF with other DA methods can mit-
igate some of its shortcomings. For instance, optimal in-
terpolation (OI) or three-dimensional variational (3D-Var)
systems1 avoid sampling errors by depending on a time-
invariant background error covariance, typically estimated
from the model’s climatology. This approach has been ex-
tensively explored in atmospheric and ocean DA literature
(Counillon et al., 2009; Bannister, 2017, and references
therein). However, in the realm of streamflow applications,
the utilization of hybrid ensemble and variational DA tech-
niques remains limited and is actively researched. In a study
on high-resolution hydrologic forecasting, Hernández and
Liang (2018) investigated streamflow predictive accuracy us-
ing a hybrid scheme that combines particle filtering (PF)
with four-dimensional variational (4D-Var) data assimila-
tion. The authors reported the hybrid algorithm’s ability to
provide skillful streamflow predictions, accommodating non-
Gaussian, nonlinear, and high-resolution estimation. In an-

1Throughout this study, the terms OI and 3D-Var are used inter-
changeably, both solving the same DA problem and relying on the
same static background error covariance matrix.
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other exploration, Abbaszadeh et al. (2019) developed a sim-
ilar hybrid PF and 4D-Var system, assessing its performance
across several river basins in the United States. Their hybrid
scheme, adept at handling various sources of uncertainties,
proved efficient and robust to the number of particles. In this
work, we delve into the functionality, performance, and effi-
ciency of a hybrid EnKF and OI scheme, hereafter referred
to as EnKF-OI, in the context of flash flooding and freshwa-
ter events. We meticulously examine the weighting between
the ensemble-based flow-dependent covariance and the cli-
matological static background covariance. Furthermore, we
implement the adaptive hybrid weighting scheme proposed
by El Gharamti (2021) and investigate the temporal and spa-
tial variations of the weighting factor across the stream net-
work. Our analysis extends to assessing the impacts of the
hybrid scheme on streamflow biases and sampling errors. To
our knowledge, this marks the inaugural application of an
adaptive hybrid EnKF and 3D-Var DA scheme to real-world
flood forecasting problems.

The data assimilation framework employed in this study is
based on the integrated HydroDART system, as detailed by
El Gharamti et al. (2021). This system utilizes NOAA’s Na-
tional Water Model (NWM) configuration within the WRF-
Hydro hydrological framework (Gochis et al., 2020). Our
implementation involves a sub-model configuration of the
NWM, specifically designed to incorporate both streamflow
and conceptual groundwater storage. To facilitate the assim-
ilation process, the model is interfaced with the Data As-
similation Research Testbed (DART; Anderson et al., 2009).
The HydroDART system, as highlighted in El Gharamti
et al. (2021), incorporates along-the-stream (ATS) localiza-
tion, along with adaptive prior and posterior inflation, to en-
hance ensemble performance. To extend the capabilities of
HydroDART, we introduce a hybrid method using a 42-year
retrospective run of WRF-Hydro covering the entire contigu-
ous United States (CONUS). This extensive model run is
leveraged to construct climatological error covariances for
both streamflow and groundwater bucket storage. The imple-
mentation of the hybrid ensemble–variational scheme is the
first of its kind within DART and features several flavors for
updating the hybrid weighting coefficients including constant
weights, time-varying homogeneous weights, and the more
comprehensive temporally and spatially varying weights (as
in this work).

Our EnKF-OI prediction system undergoes testing in two
regional flooding scenarios. The initial case, spanning June
2016, addresses an 11 d flash flooding event in West Virginia.
The second case study focuses on inland flooding caused
by Hurricane Ian in central Florida (FL; from 15 Septem-
ber to 15 October 2022). In both instances, streamflow ob-
servations obtained from United States Geological Survey
(USGS) gauges are assimilated at hourly time steps. Our
evaluation encompasses an assessment of the performance of
both hybrid (EnKF-OI) and non-hybrid (EnKF) DA method-
ologies in improving simulated hydrographs under diverse

flooding conditions. To gain insights into the behavior of
the hybrid EnKF-OI algorithm, we conduct sensitivity ex-
periments concerning the hybrid weighting coefficient and
the ensemble size. Furthermore, the analyses derived from
the hybrid scheme’s posterior states contribute to generating
short-range streamflow forecasts, allowing us to evaluate the
impact of data assimilation on these predictions.

The subsequent sections delineate the paper’s organiza-
tion. Section 2 delves into the detailed description of the in-
tegrated HydroDART prediction system, shedding light on
both the model and the DA tool. Particular attention is paid
to elucidating the methodology employed in generating the
static-background covariance. Section 3 expounds on the
specifics of the test cases, providing insights into the hy-
drologic domains’ extent and elaborating on the USGS ob-
servations. Moving forward, Sect. 4 unfolds the results ob-
tained from the EnKF and the hybrid EnKF-OI methodolo-
gies across the two hydrologic domains. Distinct spatial and
temporal evaluations underscore the hybrid algorithm’s per-
formance. The concluding insights and broader discussions
emanate in Sect. 5, encapsulating a comprehensive summary
of the findings.

2 Model and methods

2.1 WRF-Hydro

The Weather Research and Forecasting hydrological mod-
eling system (WRF-Hydro) is used widely across the hy-
drology community in both coupled and uncoupled modes
with atmospheric models (e.g., Senatore et al., 2015; Kerandi
et al., 2018; Wang et al., 2022; Son et al., 2023). A promi-
nent application of WRF-Hydro is the National Water Model
(NWM) which became operational in August 2016 and has
gone through several version upgrades since then. The Na-
tional Water Model is a particular configuration of the uncou-
pled WRF-Hydro system which is operational over CONUS,
Hawaii, Puerto Rico, and the Virgin Islands (NWMv2.1) and
Alaska (NWMv3.0). The modules and physics in this paper
are equivalent to the NWM version 2.1 standard analysis and
assimilation cycle without the streamflow nudging used in
the NWM. Streamflow nudging is the current data assimi-
lation methodology in NWM operationally. “Nudging”, also
known as direct insertion, refers to moving the modeled flow
towards the observed discharge at each time step of the rout-
ing model.

The NWMv2.1 configuration consists of the Noah-MP
land surface model (Niu et al., 2011; Yang et al., 2011),
subsurface and surface flow routing, baseflow/groundwater
routing, channel and lake/reservoir (i.e., waterbodies) routing
(Cosgrove et al., 2024). In each time step, first the land sur-
face model is operated on a coarse resolution of 1 km2. Then,
terrain routing (subsurface and surface flow routing) is per-
formed on the 250 m2 grid spacing. NWM utilizes the USGS
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National Hydrography Data (NHD) Plus Version 2 medium-
resolution dataset (McKay et al., 2012), which provides both
streams and corresponding catchments. Each stream is repre-
sented by a channel/reach vector in the model, and the basin
associated with the stream acts as a conceptual groundwater
basin/bucket in the model. The inflow to each groundwater
bucket/basin is the aggregated outflow from the soil column
(1 km land surface model grid) to the NHDPlusV2 catch-
ments. Then, a conceptual groundwater routing is performed.
The outflow from the bucket/basin is estimated based on
an exponential storage–discharge function. Next, the outflow
from the groundwater basin/bucket combined with the lateral
channel inflows from the terrain routing is routed through
the channels using the Muskingum–Cunge routing method
(Read et al., 2023). WRF-Hydro also includes options to rep-
resent lakes and reservoirs. Inflow fluxes to lakes and reser-
voir objects embedded into the NWM routing network are
routed using a level pool scheme (Gochis et al., 2020; Cos-
grove et al., 2024).

A channel, reservoir, and conceptual groundwater sub-
model of the NWM is used, following El Gharamti et al.
(2021). This configuration is computationally cheaper com-
pared to the full model and therefore appealing for running an
ensemble system. The prognostic variables that are updated
in this study are the streamflow discharge and groundwater
bucket head. It should be noted that the lake/reservoir ob-
jects are defined on the stream reaches; however they are not
considered in the state updating. Figure 1 shows the chain
of modeling components in our system and how the deter-
ministic fluxes from the full NWM model arrive as boundary
conditions to the HydroDART system.

Random noise is applied to these deterministic boundary
fluxes to generate an ensemble of input fluxes for the stream-
flow, reservoir, and conceptual groundwater system. In addi-
tion to this time-varying uncertainty, we also generate an in-
variant ensemble of channel parameters similar to the config-
uration of El Gharamti et al. (2021). These two levels of per-
turbations were found necessary to generate larger variability
in the predicted ensemble. Because ensemble DA depends
on probabilistic forecasts, enhancing the variability within
the ensemble can aid the method in accurately estimating the
states of the hydrological model.

To perturb the boundary fluxes to the streamflow and
bucket models, we use Gaussian samples with zero mean and
standard deviation equal to 40 % of the flux value at each
location. The Gaussian choice yielded the best streamflow
estimates (in terms of accuracy and spread consistency) as
compared to other tested distributions (e.g., gamma, inverse-
gamma and exponential). We also perturb the geometric and
other channel parameters using uniform noise models. The
parameters of the uniform densities were carefully selected
such that the resulting streamflow ensembles were found not
only skillful but also reliable. For detailed description of the
WRF-Hydro configuration used in this paper as well as the
creation of the forcing ensemble and channel parameter en-

semble, please refer to El Gharamti et al. (2021). Here, the
model code (https://github.com/NCAR/wrf_hydro_nwm_
public/releases/tag/nwm-v2.1-beta3, last access: 1 Novem-
ber 2022), domain data and parameter sets (https://www.nco.
ncep.noaa.gov/pmb/codes/nwprod/, last access: 15 Novem-
ber 2022) are based on the NWMv2.1. There are a number
of parameters in the WRF-Hydro modules, in particular, the
Noah-MP land surface model (Mendoza et al., 2015; Cuntz
et al., 2016; He et al., 2023), with different degrees of sensi-
tivity that could be tuned via calibration. In NWMv2.1, 14
parameters impacting different processes (vegetation, soil,
snow, and runoff parameters) were chosen based on the pre-
vious sensitivity analysis and studies (Cosgrove et al., 2024).
These parameters were calibrated using the iterative Dynami-
cally Dimensioned Search approach (Tolson and Shoemaker,
2007) for a large number of basins throughout the United
States. The objective function2 was one minus weighted
Nash–Sutcliffe efficiency (NSE; Nash and Sutcliffe, 1970)
and NSE of logarithmic streamflow (NSElog), both calcu-
lated based on the hourly streamflow simulations. Summary
model statistics prior to and after calibration can be found in
Cosgrove et al. (2024). It should be noted that some model
biases remain after the calibration process.

2.2 DART

2.2.1 Ensemble filtering

The Data Assimilation Research Testbed (DART; Anderson
et al., 2009) is a sequential ensemble DA tool developed and
maintained at the National Center for Atmospheric Research.
DART employs different variants of the ensemble Kalman
filter for linear and nonlinear estimation problems. The filter-
ing schemes are based on Bayes’ rule such that the prior dis-
tribution is recursively updated using the observation likeli-
hood to obtain a posterior probability density function (pdf).
For HydroDART, several streamflow realizations are first in-
tegrated forward in time using the hydrologic model, WRF-
Hydro, denoted by M, until the next observations become
available.

x
f,i
k =M

(
x
a,i
k−1,θ

i,γ ik

)
, i = 1,2, . . .,Ne (1)

Here, x denotes the hydrologic state which consists of
streamflow and the conceptual groundwater storage. The su-
perscripts f , a, and i denote forecast, analysis, and ensemble
member, respectively. The subscript k denotes time, and Ne
is the ensemble size. θ is a set of six physical parameters that
describe the geometry of the streamflow compound channel.
The parameters are the top channel width, the bottom width,
the side slope, Manning’s N , the width of the compound
channel, and Manning’s N of the compound channel. No-
tice that for each member, a different configuration of these
channel parameters is used, as outlined in El Gharamti et al.

2Minimize J = 1− 0.5(NSE+NSElog) .
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Figure 1. Streamflow data assimilation workflow adapted from El Gharamti et al. (2021). The vertical boxes on the left depict the WRF-
Hydro components that are executed once and produce the deterministic fluxes into the channels and groundwater buckets. The arrows
represent the order of the physics component execution, and a two-way arrow represents two-way coupling. The dotted box represents the
HydroDART components. Random noise is applied to the deterministic input fluxes to HydroDART generating an ensemble of input fluxes
for both channel and conceptual groundwater models. Three arrows denote the presence of ensembles; however, the ensemble size is larger
than three. As shown in this workflow, DART assimilates USGS streamflow observations and updates the streamflow (in cubic meters per
second) and bucket head (in meters) state variables in the channel and reservoir model and groundwater bucket model, respectively.

(2021). Perturbed boundary fluxes to the streamflow and the
groundwater models are given in γ . Using Eq. (1), the first
and second moments of the prior distribution are approxi-
mated as follows:

x
f
k =

1
Ne

Ne∑
i=1

x
f,i
k , (2)

Pfk = λ ·P
f

k , (3)

= λ ·
1

Ne− 1

Ne∑
i=1

(
x
f,i
k − x

f
k

)(
x
f,i
k − x

f
k

)T
, (4)

where xfk and Pfk are the prior ensemble mean and the prior
sample covariance, respectively. The coefficient λ in Eq. (4)
is an inflation factor used to restore the ensemble variance
after the forecast. In this study, the inflation factor is se-
lected adaptively in space and time using the adaptive in-
flation scheme of El Gharamti (2018). We also apply adap-
tive posterior inflation to the analysis ensemble according to
El Gharamti et al. (2019). The estimated (inflated) prior co-
variance at time tk is given by Pfk .

At the time of the analysis, DART assimilates the observa-
tions serially according to Anderson (2003):

1yi = ya,i − yf,i, (5)

x
a,i
j,k = x

f,i
j,k + ρ

σxy

σ 2
y

1yi, j = 1,2, . . .,Nx . (6)

The subscript j is an index to the variables in the state, and
the total number of state variables is denoted by Nx . σxy is

the prior covariance between the observation y and j th state
element, while σ 2

y is the sample variance of the observed
variable. As can be shown, the EnKF solution is obtained as a
linear regression of the observation increments1y on the en-
tire state vector. We note that the assimilated observations are
noisy with Gaussian errors and their observation error covari-
ance is accounted for when computing the observation incre-
ments in Eq. (5). ρ is a localization coefficient typically be-
tween 0 and 1 and is computed using the common Gaspari–
Cohn correlation function (Gaspari and Cohn, 1999). The lo-
calization strategy employed here follows the ATS localiza-
tion scheme (El Gharamti et al., 2021) such that only reaches
upstream and downstream from a particular gauge are up-
dated during the analysis. In terms of implementation, we
note that the full state covariance in Eq. (4) is never con-
structed using this two-step serial update scheme. This also
applies for the observation error covariance matrix assuming
that the observations are uncorrelated in space. For more de-
tails on the algorithm and its implementation, the reader is
referred to the work of Anderson (2003).

2.2.2 Hybridized covariance

Hybridizing the prior ensemble covariance matrix is per-
formed linearly right before the update:

Phk = αkP
f
k + (1−αk)B, (7)

where h denotes the hybrid form of the prior covariance, and
B is a static background covariance matrix. αk is a weighting
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factor chosen between 0 and 1. Notice that B is a station-
ary covariance and is typically used in 3-4D variational sys-
tems. B can be estimated from the model’s climatology us-
ing a large inventory of historical forecasts. In NWP systems,
for instance, the National Meteorological Center (NMC; Par-
rish and Derber, 1992) technique is often used to compute B.
More details on the computation of B for the current stream-
flow work can be found in the next section. From Eq. (7),
one may argue that Phk is a better estimate of the true co-
variance compared to the ensemble one Pfk . This is because
blending in climatological information in the ensemble co-
variance usually presents the ensemble with new correction
directions (Hamill and Snyder, 2000). When αk is set to 1,
Eq. (7) results in a purely flow-dependent covariance reduc-
ing the algorithm to the EnKF. In contrast, when αk = 0,
the system morphs into an ensemble optimal interpolation
(EnOI) scheme. The hybrid EnKF-OI scheme is activated for
0< αk < 1.

Rather than manually tuning αk , one can adaptively esti-
mate it (El Gharamti, 2021) using Bayes’ rule:

p(αk|dk)≈ p(αk) ·p(dk|αk) , (8)

where dk is the background innovation (i.e., observation mi-
nus forecast). Equation (8) assumes that αk is a random vari-
able with prior distribution p(αk), which is considered Gaus-
sian in this work. The likelihood term on the right-hand side
of Eq. (8) is also assumed Gaussian with zero mean and co-
variance:

E
[
dkd

T
k

]
= Rk +HkPtkH

T
k , (9)

≈ Rk +αkHkP
f
k HT

k + (1−αk)HkBHT
k . (10)

This result holds as long as the background and observation
errors are uncorrelated (Desroziers et al., 2005). Hk is the
observation operator, and Rk is the observation error covari-
ance matrix. The hybridized covariance Phk is assumed to be
equivalent to the true background covariance Ptk allowing the
insertion of Eq. (7) in Eq. (9). Using Eq. (10), the likelihood
of the weighting coefficient can be written as

p(dk|αk)=
(√

2πβ
)−1

exp

[
−
dTk dk

2β2

]
,where (11)

β =√∑
i

(Rk)ii +αk
∑
i

(HkP
f
k HT

k )ii + (1−αk)
∑
i

(HkBHT
k )ii . (12)

The notation
∑
i(Rk)ii is equivalent to the trace of matrix

Rk . Taking the product of the likelihood and the prior of αk
results in a Gaussian posterior which can be used in subse-
quent DA cycles. The updated value of αk is obtained by
maximizing its posterior p(αk|dk) pdf. Following this for-
mulation, a spatially and temporally adaptive weighting co-
efficient can be computed. This algorithm has been incor-
porated within the coupled streamflow prediction system,

HydroDART. More details on the adaptive hybrid EnKF-OI
scheme can be found in El Gharamti (2021).

3 Test cases

3.1 Domains

Two extreme flooding events are selected for this study. One
is a flash flood resulting from a thunderstorm. The other is a
long lasting flooding event resulting from a hurricane land-
fall. Figure 2 shows the location and extent of the two do-
mains, and they are explained in more detail below.

3.1.1 Florida’s flooding case (2022)

Hurricane Ian became a tropical storm on 24 September
2022. Ian made landfall on western Cuba as a high-end cat-
egory 3 hurricane on 27 September. On 28 September, Ian
made landfall on southwestern Florida as a category 4 hurri-
cane, producing a catastrophic storm surge and historic fresh-
water flooding across much of central and northern Florida.
Ian was responsible for more than 156 fatalities in the United
States, of which 66 were directly caused by the storm. Ian
caused over USD 112 billion in damages; the costliest hurri-
cane in Florida’s history and the third costliest in US history
(National Hurricane Center Tropical Cyclone Report; Bucci
et al., 2023).

Figure 2a shows the WRF-Hydro modeling domain for
Hurricane Ian. The colored map background depicts accumu-
lated rainfall drawn for 28 September through 30 September
2022, as modeled by the NWMv2.1 Analysis and Assimi-
lation atmospheric forcing (described below) used to drive
this case. The domain is a subset of the NWMv2.1 CONUS
domain and includes 18 190 reaches and 151 lakes and reser-
voirs. Stream reaches are color-coded based on their 10-year
flood magnitudes, as calculated from the 42 year NWMv2.1
respective model simulations described in more detail below.
There are 171 USGS gauges with their drainage area fully
contained in this domain and are assimilated and also used in
performance assessment (dark red circles in Fig. 2). A total of
22 of these gauges are GAGES-II reference gauges (Falcone,
2011) which have little or no anthropogenic alterations to
their natural streamflows (green squares). Since WRF-Hydro
does not have an active reservoir model and is performing
a simple level pool routing, GAGES-II reference gauges are
better suited for verification because they avoid accounting
for heavy flow regulation at many reservoirs. Figure 2a also
shows the location of five labeled verification gauges (black
triangles) for which streamflow time series will be provided
in the results (Sect. 4).

The full WRF-Hydro/NWMv2.1 model was run (with-
out nudging data assimilation) for the test case of FL’s
Ian using the NWMv2.1 Analysis and Assimilation cy-
cle forcing dataset (https://water.noaa.gov/about/nwm, last
access: 30 November 2022). This meteorological forcing
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Figure 2. Study domains for (a) Florida’s flood due to Hurricane Ian and (b) West Virginia’s flood. The background map for Ian depicts
the accumulated rainfall drawn from NWMv2.1 Analysis and Assimilation atmospheric forcing during 28 September through 30 September
2022. In (b), the colored map depicts accumulated rainfall drawn from Analysis of Record for Calibration (AORC) atmospheric forcing
during 23 and 24 June 2016. Stream reaches in both domains are color-coded based on their 10-year flood magnitudes calculated from the
42-year NWMv2.1 retrospective model simulation. USGS streamflow observation gauges are shown by red circles. GAGES-II reference
streamflow gauges are shown by green rectangles, and five verification gauges are denoted by black triangles, each with their 15-digit gauge
identifiers. Lakes and reservoir bodies are shown as blue polygons.

set is drawn from the Multi-Radar Multi-Sensor (MRMS)
gauge-adjusted and radar-only observed precipitation prod-
ucts along with short-range Rapid Refresh (RAP) and High-
Resolution Rapid Refresh (HRRR). These atmospheric forc-
ings drive the single model run depicted vertically on the
left side of Fig. 1 and produce the output fluxes used by
HydroDART to generate ensemble forcing for the chan-
nel+conceptual groundwater submodel. The simulation pe-
riod is from 15 August to 15 October 2022. The model is
initialized based on the operational NWMv2.1 model states
on 15 August, then the first month is used as a spin-up period,
and streamflow assimilation begins on 15 September 2022.

3.1.2 West Virginia’s flooding case (2016)

Several rounds of thunderstorms on 23 June 2016 produced
torrential rainfall in West Virginia (WV) and western-central
Virginia. Record rainfall accumulations of 200–250 mm
were observed over a 24 h period ending on 12:00 UTC of
24 June (Martinaitis et al., 2020). This resulted in a rapid rise
of water (in some places less than 6 h) and extensive flood-
ing across the domain. This was one of the deadliest flood-

ing events in West Virginia’s history with 23 fatalities. The
event was classified as a billion-dollar disaster which dam-
aged thousands of structures and over 1500 roads and bridges
(Martinaitis et al., 2020). Many USGS gauges in the domain
reported some level of flooding. Five of those gauges had
their record flood stage measured in this event. The data as-
similation and verification period for this test case is from
20 through 30 June 2016, an 11 d period which encompasses
the flash flooding event and the recession period completely
at all verification gauges.

Figure 2b shows the WV flooding domain. Just like FL’s
Ian, the domain is a cutout of the NWMv2.1 CONUS domain
including 47 046 reaches and 25 lakes and reservoirs. There
are 121 USGS gauges with their drainage area fully con-
tained in the modeling domain. These gauges are assimilated
and used in performance assessment. Figure 2b shows the
location of all those gauges as well as the subset of GAGES-
II reference gauges. Figure 2b also shows the location of a
few verification gauges for which streamflow time series are
provided and analyzed in Sect. 4.

Analysis of Record for Calibration (AORC; Fall et al.,
2023) is used as the atmospheric forcing for the West Vir-
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ginia test case. This is a new dataset developed to support
NWM calibration and long term retrospective model simu-
lations. AORC data have been cut out to the West Virginia
modeling domain and used to force the WRF-Hydro model.
The inflows to the channel and conceptual groundwater from
this simulation are then used as forcing in all experiments
(both data assimilation and forecasts). The simulation pe-
riod is from 1 through 31 June 2016. The model is initial-
ized based on the NWMv2.1 retrospective model states on 1
June, and then the first 20 d is used as a spin-up period, and
streamflow assimilation begins on 20 June 2016.

3.2 Observations

Hourly or sub-hourly streamflow observations, with frequen-
cies as high as 5 min, are gathered from the USGS stream-
flow measurement sites. Our data collection involves access-
ing observations well after the events, and we do not rely on
near-real-time data acquisition. Consequently, discharge es-
timates have been updated through subsequent quality con-
trols, including potential revisions to rating curves to better
align with extreme flooding events and out-of-bank flows.
For our test cases in West Virginia and Florida (Hurricane
Ian), streamflow observations were downloaded on 1 January
2022 and 30 January 2023, respectively. In the case of FL’s
Hurricane Ian, some gauges still lack event information in the
observations, and the data remain provisional even months
after the occurrence. The assimilation is conducted hourly in
both domains, with sub-hourly USGS data averaged before
the assimilation process begins.

To model streamflow observation errors, we adopt a het-
eroscedastic Gaussian error model with zero mean and a
standard deviation set to 25 % of the observed flow, following
Abbaszadeh et al. (2019). Given that the gauges are situated
on the stream network, this results in a linear observation
operator H which simplifies the Kalman update, excluding
nonlinear issues from the analysis step of HydroDART. Ad-
ditionally, we assume that observations and their associated
errors are uncorrelated in both space and time, yielding a di-
agonal observation error covariance matrix, R.

Within the HydroDART framework, observations falling
beyond 3 total standard deviations (equivalent to the square
root of the sum of the prior ensemble and observation error
variance) from the prior ensemble mean are rejected. This
threshold, determined by the outlier threshold parameter in
DART, serves multiple purposes. It helps avoid assimilating
inaccurate observations, and it prevents the inclusion of ob-
servations where the mean of the ensemble members is quite
far from the observation value. Such assimilation could lead
to unacceptably large increments, potentially destabilizing
the model run.

3.3 Retrospective model simulations

The NOAA National Water Model version 2.1 offers a pub-
licly accessible multi-decade retrospective simulation cov-
ering the contiguous United States (CONUS). This simula-
tion is based on the NWMv2.1 model code and static files,
driven by AORC atmospheric forcings. Notably, the retro-
spective simulation lacks data assimilation within the hydro-
logic model. While serving as a valuable resource for histor-
ical modeling context and real-time operations, it also facili-
tates the assessment of flow frequencies and model verifica-
tion over an extended period. The 42-year retrospective sim-
ulation for NWMv2.1, spanning February 1979 to December
2020, is openly available in two formats: Network Common
Data Form (NetCDF) and Zarr on Amazon Web Services
(AWS). Interested users can access the data via the follow-
ing link: https://registry.opendata.aws/nwm-archive/ (last ac-
cess: 10 December 2022).

In our approach, we leverage the 42-year NWMv2.1 retro-
spective simulations to construct the static background co-
variance matrix, denoted as B, for our hybrid ensemble–
variational filter. To achieve this, we assemble a 1000-
member ensemble from the retrospective model simula-
tion. While the climatological ensemble could potentially
be larger given the extensive data volume in the retrospec-
tive simulation, we opt for 1000 samples to manage stor-
age and computational costs. Previous research has explored
the climatological ensemble size in the context of hybrid
ensemble–variational data assimilation, indicating that an en-
semble on the order of hundreds to a few thousands is gen-
erally sufficient to match the mean correlation length scales
of B (e.g., Lei et al., 2021). It is important to note that the
climatological ensemble is not advanced forward in time.

The climatological ensemble is subject to an offline em-
pirical orthogonal function (EOF) analysis. The purpose of
this analysis is to determine the spatial patterns and corre-
lations present in the ensemble. This exploration aids in un-
derstanding the variability captured by the climatology and
its potential impact on the hybrid ensemble–variational filter.
The EOF analysis reveals that employing 1000 static mem-
bers results in a covariance matrix free from noise, where
large-scale patterns dominate the initial EOFs, and smaller-
scale patterns are encapsulated in the latter EOFs. This infor-
mation is instrumental in shaping our understanding of the
climatological ensemble’s composition and behavior.

In terms of implementation, for Hurricane Ian, the process
involves extracting two state variables, streamflow and wa-
ter depth, from the dataset encompassing all 42 years for all
reaches and buckets in the domain. A temporal subset is then
created, focusing exclusively on the month of September,
given Ian’s occurrence during that period. Every model sim-
ulation within the month of September from these 42-year
model simulations is considered a plausible member of the
climatology ensemble. Because the model simulation is at an
hourly temporal scale, there are 42 (number of years)× 30
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(number of days in September)× 24 (number of hours in
a day)= 30 240 realizations to choose from. Subsequently,
1000 members are randomly selected from this dataset and
preserved for use by HydroDART, as outlined in Eq. (7). For
West Virginia, a parallel approach is adopted, with the ex-
ception that the model simulations from the month of June
are utilized in constructing the static/climatology members.
It is important to note that, for the purpose of constructing
the climatology, we exclude the year 2016 in West Virginia
to ensure that the flooding scenario under observation is not
part of the climatology. In the case of Hurricane Ian, the year
2022 is not part of the retrospective run, eliminating the need
for its exclusion.

3.4 Experimental design and verification

To test the performance of the hybrid scheme against the
EnKF, we perform different assimilation runs in which we
set the ATS localization cutoff distance to 100 km and turn on
adaptive prior and posterior inflation following El Gharamti
et al. (2021).

Our experiments commence in Sect. 4.1 by testing the per-
formance of the EnKF within the HydroDART framework
using an ensemble of 80 members. This approach is sim-
ilar to the experiments outlined in the prior HydroDART
study which focused on hurricane Florence in North Carolina
(El Gharamti et al., 2021). The objective is twofold: to assess
the prediction system’s performance in distinct basins char-
acterized by diverse modeling and precipitation complexities
and to establish a baseline performance, both qualitatively
and quantitatively, for the EnKF. This baseline serves as a
reference point from which we intend to enhance predic-
tive capabilities through the implementation of the hybrid ap-
proach in subsequent sections. For the hybrid EnKF-OI runs,
we first examine the sensitivity of the scheme with respect
to a few constant choices of the weighting factor (Sect. 4.2)
and explore the impact of hybridizing the background co-
variance on the ensemble spread and inflation (Sect. 4.2.1).
The idea is to determine whether the inclusion of clima-
tological covariances would nullify the use of inflation in
the dynamic ensemble. After determining the optimal hybrid
weight (Sect. 4.2.2), several sensitivity runs with respect to
the size of the dynamic ensemble are conducted (Sect. 4.3).
Those runs are aimed to uncover the computational charac-
teristics of the hybrid scheme and figure out whether it can
be run more efficiently than the EnKF. The adaptive variant
of the hybrid EnKF-OI algorithm is then studied in detail
in Sect. 4.4. Finally, the application of the adaptive scheme
for short-range forecasts is investigated in both domains in
Sect. 4.5.

To assess the quality of the estimated streamflow, we use
many ensemble and hydrological metrics as shown in Ta-
ble 1. Some of these metrics are deterministic in nature such
as the root mean square error (RMSE), and others are prob-
abilistic such as the reliability index (RI). We provide sum-

mary statistics by aggregating a few of these metrics for all
flow gauges using box plots. Where necessary, two-sample t
tests are conducted to comment on the statistical significance
of one experimental result over others. The metrics are also
computed separately for individual hydrographs, low flows
and high flows. Low flows are characterized by computing
the 10th percentile of observed streamflow at each gauge
over the entire assimilation period, while anything above the
90th percentile is deemed a high flow. From Table 1, the cen-
tered root mean square error is used to construct Taylor dia-
grams (Taylor, 2001), which offer a comprehensive view for
all gauges in the present hydrologic domains. For optimal
performance, Taylor diagrams are generally characterized by
a correlation of 1, with both C-RMSE and standard devia-
tion equal to 0. Rank histograms (Anderson, 1996) are also
utilized to study the reliability of the predicted streamflow
ensembles. Flat rank histograms often indicate reliable pre-
dictions, while skewed ones usually hint at limited ensemble
spread and poor coverage of the observation.

4 Results

4.1 EnKF runs

Figure 3 illustrates the estimated streamflow for St. Sebas-
tian River in FL and Kanawha River in WV. The hydrographs
depict the evolution of observed and OL discharge, overlaid
with the prior and posterior estimates. The South Prong St.
Sebastian River, located on the eastern side of FL, witnessed
a rapid surge in streamflow on 28 September 2022, coincid-
ing with the landfall of Hurricane Ian. This flooding persisted
for about a week before returning to normal flow conditions.
In comparison to the OL, both the prior ensemble estimates
and posterior ensemble estimates exhibit improved accuracy,
offering a better representation of observed flows, particu-
larly during the flooding event. On average, the prior and pos-
terior streamflow estimates are 45 % and 51 % more accurate,
respectively (measured in terms of RMSE), compared to the
OL. Additionally, the NSE and KGE values, derived from the
EnKF ensemble mean, are notably higher and closer to 1 than
those associated with the OL. This underscores the substan-
tial improvement in prediction achieved through the assimi-
lation of streamflow data with the EnKF. Adaptive inflation
plays a crucial role in this success, dynamically growing dur-
ing the flooding event to enhance ensemble spread and refine
its conformity to observed data.

Kanawha River in WV underwent severe flooding in
our case study, with discharge values soaring to around
4000 m3 s−1. Similar to FL’s Ian case, the EnKF demon-
strated superior alignment with streamflow observations
compared to the OL. Notably, the EnKF estimates displayed
a precise correspondence with the falling limb of the hydro-
graph. While excelling on the rising limb, the EnKF fell short
of assimilating all data due to a pronounced underestimation
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Table 1. Performance metrics used for evaluating the streamflow ensemble estimates.Q refers to discharge or streamflow, measured in cubic
meters per second (m3 s−1). The superscript f |a means either prior or posterior discharge, and o denotes the observed discharge. Nt is the
total time steps or DA cycles. The · and ·̂ notation refers to averaging over the ensemble and time, respectively. OL is a term used to describe
the open loop or the unconstrained ensemble model run (without assimilation). F and H denote the cumulative distribution function (CDF)
and the Heaviside function, respectively. CRPS is the continuous ranked probability score (Matheson and Winkler, 1976).

Name Equation Description

Root mean square error
1
Nt

Nt∑
k=1

√
1
Ne

Ne∑
i=1

(
Q
f |a,i
k
−Qo

k

)2 Deterministic metric that varies between 0 and∞, with
(RMSE) a perfect score of 0. It measures the average distance

between the predicted ensemble members and the ob-
served discharge.

Ensemble
spread (ES)

1
Nt

Nt∑
k=1

√
1
Ne

Ne∑
i=1

(
Q
f |a,i
k
−Q

f |a
k

)2
A deterministic measure of the variability of the ensem-
ble, varying between 0 and∞.

Mean absolute error (MAE) 1
NtNe

Nt∑
k=1

Ne∑
i=1

∣∣∣Qf |a,ik
−Qo

k

∣∣∣ A deterministic measure similar to the RMSE but better
Error (MAE) suited for the case of non-Gaussian errors, using the L1

norm.

Continuous ranked probability
skill score
(CRPSS)

CRPSS= 1−CRPSf
(

CRPSOL
)−1

,

CRPS=
∫
+∞

−∞

(
F(Q)−H

(
Q≥Qo))2dQ

A probabilistic metric ∈ (−∞,1] that computes the
added skill by DA over the OL (Hersbach, 2000). A
CRPSS of 0 means that DA did not improve the predic-
tion skill of the model. CRPSS= 1 is a perfect score.
Negative CRPSS values indicate that DA yields worse
predictions than the OL.

Nash–Sutcliffe

1−

Nt∑
k=1

(
Q
f
k −Q

o
k

)2

Nt∑
k=1

(
Qo
k−Q̂

o
)2

A deterministic metric, that varies (−∞,1], to
efficiency (NSE) quantitatively assess the similarity between the esti-

mated and the observed flow (Nash and Sutcliffe, 1970).
The closer NSE to 1, the more accurate the estimated
flow is.

Kling–Gupta
efficiency (KGE)

KGE= 1−
√
(r − 1)2+ (ξ − 1)2+ (δ− 1)2 A deterministic measure combining correlation coef-

ficient r , bias ξ , and flow variability δ (Gupta et al.,
2009). It varies between (−∞,1], and it provides a sta-
tistically more concrete metric than NSE.

Coefficient of
variation (CV)

(
Nt∑
k=1

Qo
k

)−1√
Nt

Nt∑
k=1

(
Qo
k
− Q̂o

)2 A deterministic metric providing a concise measure of
the variability in the observed flow. CV= 0 refers to a
constant flow.

Centered root mean square
error (C-RMSE)

√√√√ 1
Nt

Nt∑
k=1

[(
Q
f
k −

1
Nt

Nt∑
k=1

Q
f
k

)
−
(
Qo
k
− Q̂o

)]2

Deterministic measure used to aggregate estimates from
different gauges in a single metric.

Reliability
index (RI)

1− 2

[
1
Nt

Nt∑
k=1

∣∣Fk (Qo
k

)
−U

(
Qo
k

)∣∣] Probabilistic metric (Renard et al., 2010) varying be-
tween 0 and 1 that is used to quantify how close the
empirical CDF of the observed flow is to the uniform
distribution, U . RI= 0 is the worst, and RI= 1 reflects
perfect reliability.

of streamflow. In this instance, the EnKF’s prior ensemble
yielded a RMSE that is approximately 31 % lower than the
OL.

Figure 4 presents comprehensive summary diagnostics for
both the Ian and WV flooding cases, utilizing data from
both “all” and “reference” USGS gauges within the domains.
The reference designation pertains to the GAGES-II refer-
ence gauges. Estimates derived from the OL and the EnKF at
the reference gauges exhibit enhanced accuracy compared to

those from all gauges. This improvement is attributed to the
fact that reference gauges are subject to little to no regulation
and constitute only a small subset of all gauges, resulting in
fewer extreme outliers.

The CRPSS box plots highlight the added value of the DA
system over the OL, evident in positive scores. The major-
ity of gauges achieve scores surpassing 0.5. The NSE and
KGE scores from the EnKF notably outperform those of the
OL. It is important to emphasize that the KGE and NSE
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Figure 3. (a) Streamflow time series (hydrograph) during Hurricane Ian at South Prong St. Sebastian River. Observed streamflow is given
by hourly asterisks. Green asterisks indicate that the observation was assimilated. The rejected observations due to the outlier threshold
are shown by red asterisks. OL streamflow estimates are given by the orange curve. Prior and posterior ensemble means are denoted by
the thick black and blue curves, respectively. The light gray and cyan curves show the prior and posterior ensemble members, respectively.
Time-averaged streamflow RMSE values are reported in the legend. Other metrics such as CV, NSE, KGE, and RI are also annotated. The
evolution of prior and posterior inflation over time is shown in the bottom panel. (b) Similar to (a) but for the Kanawha River at Kanawha
Falls in WV.

Figure 4. (a) RMSE box plots for OL and EnKF prior and posterior estimates for all gauges and for GAGES-II reference USGS gauges in
the FL domain. The number of all and reference gauges in both domains are given in the labels of panels (a) and (b). Note that the y axis is on
a log scale. Averaged RMSE are reported underneath the individual box plots. (c) CRPSS box plots (blue) for all gauges and for GAGES-II
reference gauges. NSE (green) and KGE (yellow) box plots are also shown for the reference gauges. Panels (b), (e), and (f) are similar to
panels (a), (c), and (d) but for the WV flash flood case.
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are not directly comparable metrics, despite having the same
range of variation (Knoben et al., 2019). For the OL run, nu-
merous gauges yielded efficiency estimates less than −10
(omitted for figure clarity). The summary box plots for the
RMSE demonstrate the superior assimilation performance of
the EnKF in both flooding cases. When averaging over all
gauges and across time, EnKF predictions exhibit at least
50 % and 30 % greater skill than the OL for the Ian and WV
flooding cases, respectively. This was also supported through
a statistical significance test using a two-sample t test. The
test (not shown) rejects the null hypothesis which states that
the RMSE averages resulting from the open loop and the Hy-
droDART priors are equal. In the subsequent sections, we
will delve into the hybrid results to explore how they build
upon the achievements of the EnKF presented in this section.

4.2 Hybrid runs

We examine five cases where we fix the hybrid weighting
coefficient both in space and time, setting α to values of 0.1,
0.3, 0.5, 0.7, and 0.9. It is crucial to note that, from Eq. (7),
α represents the weight on the dynamic background error
covariances, while (1−α) signifies the weight on the static
background. Therefore, the chosen values of α progressively
emphasize the dynamic background more in order. Experi-
ments involving adaptive hybrid weighting are discussed fur-
ther in Sect. 4.4.

Figure 5 displays hydrographs for the North Prong Alafia
River at Keysville, FL. Situated just outside Tampa on the
western corridor of the state, this gauge provides valuable
insights. All EnKF-OI runs exhibit an improved fit to the hy-
drograph peak on 29 September. Both the standard EnKF and
the OL underestimate the flooding event, predicting a very
delayed recession. Beyond the primary flooding event, the
hybrid runs precisely capture the rising and falling limbs of
the hydrographs. The EnKF-OI with α = 0.5 stands out as
the most accurate, yielding a KGE value of 0.92. However,
as α approaches 1, the performance starts to degrade due to
the heavier weight placed on the dynamic sample covariance.
Conversely, when α is close to 0, time-dependent informa-
tion in the background covariance is limited. For instance,
in the case of α = 0.1, both the prior and posterior ensemble
spread become quite large. This unusual increase in ensem-
ble spread is a result of the dominance of the climatological
ensemble over the dynamic one.

Figure 6 provides a comparison between the hybrid EnKF-
OI scheme and the standard EnKF at the Kanawha River
gauge near Charleston, WV. This area was affected severely
by the flooding event under consideration. On 23 June, the
river’s discharge rose to almost 5000 m3 s−1. The OL, rep-
resenting the hydrologic model, fails to capture the flooding
event entirely. While the EnKF struggles to accurately pre-
dict the initial day, it improves toward 24 June by simulating
the end of the flood peak and its recession. However, given
the intensity of the flood peak, the EnKF estimates, while

surpassing the OL, are not satisfactory (NSE≈ 0). In con-
trast, the hybrid EnKF-OI solution, particularly with α ≤ 0.5,
more accurately simulates the observed streamflow, result-
ing in an NSE exceeding 0.95. Increasing the hybrid weight
beyond 0.5 diminishes the EnKF-OI’s skill, although it still
shows superior performance compared to the EnKF (bottom
panels). Remarkably, such performance can be achieved by
incorporating only 10 % (i.e., α = 0.9) of the hybrid covari-
ance from the climatology in panel (f). Since the climato-
logical covariance is not susceptible to sampling errors, its
partial integration into the EnKF helps mitigate significant
model biases, especially during flooding events. This is also
apparent from the RI measures which tend to shrink as the
impact of B decreases.

4.2.1 Ensemble spread and inflation

The hybrid covariance approach provides the dynamic en-
semble of the EnKF with more diverse correction directions
allowing for a better analysis. A crucial aspect of this hy-
bridization is the augmentation of ensemble variability, a
factor anticipated to improve performance in the presence
of model uncertainties and forcing biases. To illustrate this,
Fig. 7a depicts the average ensemble spread (AES) across all
gauges for both study domains. Given the unconstrained na-
ture of the OL, it is reasonable for its AES to be larger than
that of the EnKF. The EnKF, due to its hourly analyses, ex-
periences substantial shrinkage of the ensemble spread. This
becomes problematic when the shrinkage occurs far from
the observations, leading to poor streamflow estimates, es-
pecially in the presence of model biases. While inflation is
often employed to address this issue, it may not always ef-
fectively counter biases. For α = 0.1, most of the weight is
placed on the climatological information resulting in a no-
table increase in the ensemble spread. This is because the cli-
matological covariance B comprises a substantial inventory
(1000 instances over 42 years) of historical streamflow dis-
tributions, contributing to its relatively large variance. As α
increases, the ensemble spread decreases until it aligns with
the EnKF spread for α = 0.9.

The reliability of the predicted streamflow estimates is an-
alyzed in Fig. 7b and c using rank histograms. At Ogleby
Creek in FL, the discharge ensemble obtained using the
EnKF is slightly overdispersive. The hybrid scheme with 0.3
weight, on the other hand, displays a flat rank histogram in-
dicating better reliability. This also means the flow members
resulting from the EnKF-OI scheme are indistinguishable
from the observed flow. At Cowpasture River in the second
domain (panel c), a large fraction of the observations (nearly
40 %) appears to be larger than the simulated discharge indi-
cating underestimation. The rank histogram of the EnKF also
shows partial skewness to the right. The hybrid scheme suc-
cessfully mitigates that bias and yields an improved ensem-
ble spread. Assessment of the reliability at other locations
offered a similar conclusion.
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Figure 5. Hydrographs for North Prong Alafia River in FL using the EnKF and the five hybrid EnKF-OI runs. The hybrid runs use different
weighting coefficients α reported in the title of the individual legends. Similar to Fig. 3, CV, NSE, KGE, RI, and RMSE values are reported
on all panels.

Figure 8 illustrates the time evolution of prior inflation for
the same gauges examined in Figs. 5 and 6. At North Prong
Alafia River in FL, the hybrid EnKF-OI runs utilize infla-
tion solely during flooding events, turning it off completely
before and after the rainfall events. Early inflation spikes
around 16 and 17 September could be addressing modeling
bias and limited initial variability. For Kanawha River in WV,
inflation is predominantly unused by the hybrid runs, except
for a brief initial period on 20 June. In contrast, the EnKF
employs inflation not only during flooding periods but also
in non-flooding intervals. Averaging across all gauges, the
hybrid EnKF-OI with α = 0.5 requires approximately 5 % to
10 % less inflation than the EnKF, a trend consistent with
posterior inflation. Consequently, we opted to retain the in-
flation algorithm for the hybrid runs. In summary, we posit
that inflation primarily addresses instantaneous bias, while
the inclusion of static background information serves to alle-
viate long-term biases and uncertainties.

4.2.2 Optimal hybrid weight

The Taylor diagrams and RMSE box plots in Fig. 9 offer a
comprehensive view for all gauges within the FL and WV
domains. Given the multitude of gauges in each domain,
the Taylor diagram exhibits a cloud of points, one for each
streamflow gauge. Visually, the cloud of points correspond-

ing to the hybrid runs tends to cluster closer to the ideal per-
formance point than the cloud for the EnKF. For instance,
in the WV case, the EnKF cloud is perceptibly closer to the
left side of the diagram, indicating lower accuracy compared
to other schemes. Aggregating results across all gauges, the
resulting correlations for each scheme are tabulated in Ta-
ble 2. In both domains, correlations from the hybrid runs sur-
pass those of the EnKF. The EnKF-OI schemes yield com-
parable correlations, with α = 0.7 and 0.5 offering the best
performance in FL and WV, respectively. The box plots in
Fig. 9 echo a similar narrative: the hybrid EnKF-OI enhances
prior RMSE by over 50 % compared to the EnKF. Among
the tested hybrid runs, α = 0.1 contributes to the least ac-
curate results, underscoring the significance of maintaining
a dynamic ensemble in the filtering framework for skillful
streamflow estimation.

4.3 Dynamic ensemble size

The findings in Sect. 4.2.2 prompt a critical question: how
large of an ensemble is necessary to ensure precise and effi-
cient predictions?

Figure 10 illustrates the distribution of the mean absolute
error for all USGS gauges and reference gauges separately
for five different sizes, Ne = (10,20,40,60,80). Addition-
ally, we compare the results with our baseline 80-member
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Figure 6. Similar to Fig. 5 but for Kanawha River at Charleston in WV.

Table 2. Pearson correlation between the observed discharge and the prior estimates suggested by the EnKF and the hybrid EnKF-OI with
constant weights. The correlation is computed for all gauges in each domain and averaged over time.

Domain EnKF EnKF-OI (0.1) EnKF-OI (0.3) EnKF-OI (0.5) EnKF-OI (0.7) EnKF-OI (0.9)

FL 0.625 0.723 0.757 0.758 0.766 0.756
WV 0.666 0.859 0.858 0.861 0.852 0.850

EnKF runs (without hybrid) in both domains. The observed
prior MAE for the WV flash flooding is larger than that for
FL flooding, attributed to the shorter duration of the WV
event, making it inherently flashier. In comparison to the
EnKF, the hybrid runs consistently exhibit improved bias,
evident for both all and reference gauges. For instance, using
only 10 members results in an averaged prior bias of 4.79 and
12.41 m3 s−1 for FL and WV cases, respectively. This repre-
sents an average reduction of 29 % (FL) and 40 % (WV) in
prior bias compared to the 80-member EnKF runs. A two-
sample t test (with 5 % significance level) was conducted to
confirm that the differences between the runs are statistically
significant. As shown in Fig. 10a, the value of the t statistic
for all hybrid runs falls outside the cutoff region (area be-
tween the two dashed lines). This indicates that the reported

MAE average for each EnKF-OI run is not equal to that of
the EnKF, thereby rejecting the test’s null hypothesis. This
was consistent for all runs in the WV case (not shown for
figure clarity).

Among the hybrid runs, a dynamic ensemble of 80 mem-
bers achieves the best performance in both cases. However,
the difference in prediction accuracy between the EnKF-OI
with 80 and 20 members is minimal (≤ 6%). Notably, the
computational cost of running the EnKF-OI with 20 mem-
bers is approximately 4 times smaller than the run with 80
members. While reducing the ensemble size seems to slightly
compromise prediction skill in our case studies, the trade-
off of sacrificing 6 % in accuracy, particularly evident in the
20-member EnKF-OI, is considered favorable for improving
computational efficiency in operational settings. This con-
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Figure 7. (a) Average ensemble spread (AES) across all gauges for the OL, EnKF, and hybrid EnKF-OI with five distinct weights. Results
are shown for FL (thin) and WV (thick) for the prior and the posterior ensembles. Panels (b) and (c) show rank histograms for streamflow at
different locations in both test domains. The rank histograms are displayed for the EnKF and the hybrid EnKF-OI, with weighting set to 0.3.

clusion is consistent across various metrics, including the
CRPSS, NSE, KGE, and RMSE.

4.4 Adaptive hybrid scheme

Building upon the ensemble analysis discussed in the preced-
ing section, we opted for an ensemble size of 20 in our adap-
tive hybrid runs. The initial distribution for the hybrid weight
(α) was strategically chosen as a Gaussian random variable
centered at 0.5, with a standard deviation of 0.005. This de-
cision stems from insights gained in Sect. 4.2, where our
analysis revealed that a weight of 0.5 produced the optimal
representation of prior streamflow in both domains. Given
the adaptive nature of the algorithm, initiating DA with an
equal weighting of dynamic and static covariances at 0.5 was
deemed an intuitive starting point. In terms of the variance,
we conducted several sensitivity experiments to assess the
impact of the initial standard deviation of α on the accuracy
and performance of the hybrid filter. Our findings indicated
that the standard deviation primarily influences the speed at
which the weight gets updated. Consequently, a standard de-
viation value of 0.005 was selected, as it yielded the most
favorable overall behavior in our experiments.

Figure 11 displays hydrographs at Arbuckle and Taylor
creeks in FL, offering a comparative assessment of predic-
tion performance between the EnKF with 80 members and

the adaptive hybrid EnKF-OI (a-EnKF-OI) with a reduced
ensemble size of 20 members. At Arbuckle Creek, the OL
tends to overestimate the flooding event in late September by
nearly 400 m3 s−1. While the EnKF excels before the main
event, it mirrors the trajectory of the OL during the flood,
rejecting 2 d of data. In stark contrast, the a-EnKF-OI assim-
ilates all observations, achieving a near-perfect fit to the ob-
served discharge. Notably, the a-EnKF-OI attains high KGE
and NSE values of 0.92, while the EnKF lags with scores of
−0.49 and −2.80, respectively. The adaptive hybrid weight
steadily increases from 0.5 to 0.55 during the assimilation
period. Similarly, at Taylor Creek, the a-EnKF-OI performs
quite well, yielding KGE and NSE values of 0.94 and 0.96,
respectively. It further increases the reliability of the EnKF
prior ensemble by 27 %. Most improvements over the EnKF
are evident during the last 2 d of September, coinciding with
the main flood peak. The lower discharge at Taylor Creek
underscores the adaptive hybrid filter’s consistency in vary-
ing hydrological conditions. The hybrid weight demonstrates
an early increase, followed by a sharper rise on 28 Septem-
ber, reaching approximately 0.62 by the end of the simula-
tion. The adaptive scheme’s increased weighting on the dy-
namic ensemble, as reflected by the rising α, signifies re-
duced bias and improved ensemble statistics. This shift ren-
ders climatological information less crucial, indicating the
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Figure 8. Time series of prior inflation resulting from the EnKF (m, n) and the hybrid EnKF-OI with constant weights (c–i). The inflation,
denoted by λ, in Eq. (4) is adaptive in space and time. North Prong Alafia River in FL is represented by (a), (c), (e), (g), (i), (k), and (m).
Panels (b), (d), (f), (h), (j), (l), and (n) show the results for Kanawha River at Charleston in WV. Panels (a) and (b) show the open loop and
EnKF-OI (0.1) streamflow in addition to mean areal precipitation in mm h−1.

hybrid scheme’s adeptness at leveraging climatology to en-
hance ensemble bias and subsequently placing greater em-
phasis on the dynamic ensemble. In terms of computational
efficiency, the 20-member a-EnKF-OI proves to be roughly 4
times more efficient than the 80-member EnKF, further high-
lighting the advantages of the adaptive hybrid filter.

The effectiveness of the 20-member a-EnKF-OI algorithm
is further explored through its application to the flash flood
events at Cranberry and Gauley rivers in WV, as illustrated in
Fig. 12. At Cranberry River, both the EnKF and a-EnKF-OI
schemes exhibit challenges in accurately capturing the ob-
served discharge during the main flood peak. However, the
a-EnKF-OI offers an improved prediction of the earlier event
on 21 June 2016. Notably, the rising and falling limbs of
the main event are more distinctly delineated using the hy-
brid filter. Both filtering algorithms demonstrate greater skill
compared to the OL. During the recession period, the hybrid
weight is elevated to 0.75 and subsequently decreases back
to 0.55 on 30 June. At Gauley River, the a-EnKF-OI notably
outperforms the EnKF, particularly during the early hours of
the flooding event and the subsequent recession period, re-

sulting in an improved overall NSE of 0.53 compared to the
EnKF’s score of 0.14. The hybrid weight at this gauge un-
dergoes a significant drop from 0.5 to almost 0.1 during the
heavy rainfall event. This adjustment seems to be linked to
the pronounced underestimation of streamflow. The adaptive
scheme strategically places more weight on the climatology
in an effort to alleviate the observed discrepancy between pri-
ors and observations. It is noteworthy that for both gauges,
the algorithm dynamically adjusts the hybrid weight, partic-
ularly around 23 June, showcasing its responsiveness to un-
derlying prior ensemble biases.

Figure 13 illustrates the spatial variations in hybrid
weights for streamflow (panel a) and groundwater storage
(panel b) on the last DA cycle, 14 October, in the FL case.
The most significant changes to the hybrid weights are con-
centrated in the proximity of observation points, aligning
with the ATS localization strategy. In reaches far from obser-
vations, the hybrid weighting coefficients remain relatively
stable, falling within the range of 0.48< α < 0.52 (gray col-
ored reaches). It is crucial to recall that ATS localization se-
lectively influences reaches upstream and downstream from

Hydrol. Earth Syst. Sci., 28, 3133–3159, 2024 https://doi.org/10.5194/hess-28-3133-2024



M. El Gharamti et al.: Hybrid ensemble–variational streamflow DA 3149

Figure 9. Taylor diagrams for Ian’s flood (a) and WV’s flash flood (b). Each cloud of points on the diagram denotes all gauges available
in the domain. “BEST” is the point of ideal performance, having perfect correlation with the observed flow and zero error and standard
deviation. Gauges with standard deviations larger than 3 are omitted for visual purposes. (c, d) Prior RMSE box plots for all gauges in each
domain, obtained using the EnKF and the hybrid scheme with fixed weights. Overall averaged prior RMSE in each case is reported beneath
the individual box plots.

a given gauge, using a predetermined cutoff distance, in this
case, set at 100 km. Streams with smaller hybrid weights gen-
erally indicate limited ensemble variability. A considerable
number of streams exhibit increased α, particularly on the
western side of the state (green reaches) where Hurricane
Ian made landfall. For example, Peace River near Fort My-
ers and its tributaries predominantly showcase weights ex-
ceeding 0.6. The augmentation of α corresponds to an ex-
pectation that streamflow realizations derived from the hy-
drologic model will align more closely with observed flow,
as demonstrated in Fig. 11. The adaptive hybrid scheme ex-
tends its spatial weight mapping to groundwater storage, an
active participant in the assimilation process. The distribu-
tion of α for the buckets, as depicted in Fig. 13b, mirrors that
of streamflow. This suggests a non-zero correlation between
discharge observations and groundwater storage, leading to
multivariate updates in the hydrological state.

Examining streamflow, the most significant deviations
from the initial weights (set at 0.5) are observed along
streams where inflation was minimal (λ < 1.3), as high-
lighted in the inset panel of Fig. 13. This observation implies

that α undergoes substantial updates in locations where in-
flation alone could not adequately address sampling errors
and biases in the ensemble. The synergy between covariance
hybridization and ensemble inflation techniques emerges as
crucial for enhancing the quality of streamflow predictions.
As demonstrated in Sect. 4.2, while inflation tackles current
streamflow conditions, long-term biases are effectively mit-
igated through the incorporation of climatological informa-
tion – a facet where inflation alone falls short.

The evaluation of the adaptive hybrid algorithm’s per-
formance is succinctly summarized for both low and high
streamflows in Fig. 14. The a-EnKF-OI with 20 members is
compared against the OL, the original EnKF with 80 mem-
bers, and the fixed-weight EnKF-OI (α = 0.5) with both 20
and 80 members. In FL, the most substantial improvements
offered by the various hybrid schemes over the EnKF are
observed for the lowest decile of flows. For instance, the
average prior prediction of the a-EnKF-OI (2.74 m3 s−1) is
60 % more accurate than the EnKF’s score (6.90) when con-
sidering the lowest flow decile. Conversely, for the highest
flow decile, the a-EnKF-OI (13.1 m3 s−1) exhibits a 21 %
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Figure 10. Prior mean absolute error (MAE) box plots for all and reference gauges at Ian (a) and WV (b). The box plots are obtained using
the EnKF (with 80 members) and the hybrid scheme with different dynamic ensemble sizes. Time-averaged prior MAE for all gauges in
each case is reported above the individual box plots. Note that the y axis is on a log scale. The pdfs (gray) of the two-sample t tests for each
EnKF-OI run with respect to the EnKF are shown at the top of the box plots in panel (a). The t statistics are denoted (and also annotated) by
the circles, and the dashed lines denote the critical cutoff.

gain in prediction skill over the EnKF (16.48), on average. In
WV, the advantages of the adaptive hybrid scheme over the
EnKF are comparable for both the highest and lowest decile
flows. The intriguing behavior observed in the FL case can
be attributed to two key factors. Firstly, the Ian simulation
in FL spans a full month of streamflow analysis, wherein
low-flow periods are more frequent than the main flooding
event. Consequently, the performance differences between
the schemes are expected to be more pronounced during low-
flow periods, highlighting the OI-based scheme’s benefits for
both floods and non-peak flows. Secondly, unlike WV, where
the model exhibits a strong positive bias compared to ob-
served flow, in FL, the model generally suggests a negative
bias. Compared to the 20-member EnKF-OI with a fixed α,
the adaptive variant demonstrates relatively similar accuracy
with a slight advantage in WV’s low-flow diagnostics. Over-
all, the fixed-weight 80-member EnKF-OI consistently deliv-
ers the best RMSE scores for both low and high flows across

the two hydrologic domains. The hybrid approach, encom-
passing various flavors, consistently yields substantial gains
compared to the EnKF and considerable improvements com-
pared to the OL. The 20-member a-EnKF-OI emerges as
highly competitive, showcasing exceptional computational
efficiency suitable for both flooding and non-flooding appli-
cations on larger domains.

4.5 Short-range reforecasts

The hybrid scheme and its adaptive variant have demon-
strated substantial enhancements in streamflow simulations
when contrasted with the OL and the EnKF. So far, our fo-
cus has been solely on verifying analyses (posteriors) and
forecasts (priors) within the scope of hourly DA cycling. Put
differently, we have yet to explore the influence of analyses
beyond the 1 h forecast (prior) timescale. In this section, we
delve into assessing the lasting impact of analyses on fore-
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Figure 11. Hydrographs for Arbuckle Creek near De Soto, FL (a, c), and Taylor Creek near Okeechobee, FL (b, d). Panels (a) and (b) show
the results from an 80-member EnKF together with the OL. The results from the a-EnKF-OI with 20 members are given in (c) and (d). For
the a-EnKF-OI, the change in the hybrid weight over time is displayed in purple according to the right y axis. Time-averaged metrics such
as RMSE, NSE, KGE, and RI are annotated in the individual panels.

Figure 12. Similar to Fig. 11 but for Cranberry River near Richwood and Gauley River above Belva in WV.
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Figure 13. Spatial maps for streamflow (a) and groundwater bucket (b) hybrid weight α. The maps were obtained on 14 October 2022 at
23:00 LT (local time) for Ian using the adaptive hybrid scheme. Black asterisks on the maps show the assimilated USGS gauges. The inset
panel at the top of (a) plots the time-averaged prior (λf ) and posterior (λa) streamflow inflation on the x axis and the streamflow hybrid
weight on the y axis (the same weight shown on the map). The initial starting point for the weight, i.e., 0.5, is highlighted by the dashed gray
line.

Figure 14. Box plots for prior RMSE of upper-decile (a, b) and lower-decile (c, d) streamflows. Five simulation runs are compared: OL,
80-member EnKF, 20-member EnKF-OI (α = 0.5), 80-member EnKF-OI (α = 0.5) and a 20-member a-EnKF-OI. Ian’s flooding results are
shown on the left, while WV’s flash flood estimates are shown on the right. Note that the y axis is on a log scale. Averaged RMSE values are
annotated underneath the individual box plots.
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casts spanning up to 18 h. We aim to unravel questions per-
taining to the temporal persistence of state corrections in the
model. Furthermore, we seek to identify forecast lead times
at which the hybrid streamflow predictions exhibit enhance-
ments over the OL.

To address these inquiries, we conducted a reforecast em-
ploying identical forcing data as utilized in the analysis cy-
cles above. A comprehensive reforecast of the NWM would
typically involve utilizing its forecast forcing datasets. It
is acknowledged that these real-time forecasts might entail
larger uncertainties compared to the analysis forcing datasets
employed here. However, our primary focus lies in exploring
the DA system’s capacity to mitigate uncertainties in initial
conditions and model biases. The decision to employ retro-
spective atmospheric forcing allows us to assess the impact
of DA on enhancing initial conditions for forecast cycles,
without being overshadowed by substantial uncertainties in
the forcing dataset, as outlined by Rafieeinasab et al. (2014).
Specifically, we employ the AORC forcings in the WV case
and the NWMv2.1 analysis and assimilation forcing in the
FL case. Given its high skill and computational efficiency,
we use the 20-member a-EnKF-OI experiment for both do-
mains. In the context of hourly cycling, the ensemble-mean
posterior (analysis) at each hour furnishes initial conditions
for predictions spanning up to 18 h without additional DA.
This time frame aligns with the NWMv2.1 short-range fore-
casts. Given that the same forcings are utilized in the fore-
casts, our baseline comparison against the OL forecast in-
volves directly assessing the OL run itself.

The skill assessment of reforecasts for the FL flooding
case is summarized in the top panel of Fig. 15. Across all lead
times, the reforecasts consistently demonstrate enhanced per-
formance compared to the open loop. However, this improve-
ment diminishes with increasing lead time. For example, at
an 18 h lead time, the reforecasted streamflow (averaged over
all gauges) initialized by the a-EnKF-OI estimates is 11 %
more accurate than the OL. To underscore the significance of
DA in achieving more accurate forecasts through improved
initial states, hydrographs for the North Prong Alafia River
at Keysville, FL (gauge ID: 02301000), are provided in the
bottom panel of Fig. 15. This gauge, with a drainage area of
135 mi2 (350 km2) that experiences relatively brief flooding,
exemplifies notable improvements in the shorter lead times
(< 6 h) compared to the open loop simulation. However, as
the lead time extends to 18 h, the model’s response tends to
converge toward the OL solution.

Figure 16 encapsulates the reforecast performance for the
WV test case. Similar to Fig. 15, the top panel features box
plots illustrating streamflow RMSE across all USGS gauges
in the domain for the OL, the posterior, and various refore-
cast lead times. Just as observed in the FL case, noteworthy
enhancements in streamflow predictions during shorter lead
times gradually diminish within the first 6 h. In a median sta-
tistical sense, these improvements align closely with the OL
forecasts after approximately 10 h. Interestingly, when com-

paring FL’s Ian test case to the WV test case, forecasts for the
Ian case are superior in quality particularly in higher forecast
lead times. This distinction arises from the nature of the WV
event, characterized as a short-lived flash flood in contrast to
the more prolonged event in FL’s Ian test case. Consequently,
there is relatively less memory of the DA correction in many
streams for the WV event compared to the Ian event in FL.

Nevertheless, on average, the reforecasts for the WV test
case consistently outperform the OL up to hour 18. This trend
is attributed to the fact that the mean RMSE is generally dom-
inated by RMSEs of large rivers, which have an enduring
memory, preserving the impact of DA for many hours and
resulting in a considerable reduction in their error metrics.
Consequently, the mean RMSE across the domain remains
lower than that of the OL, even for forecast lead times ex-
ceeding 10 h. The bottom panel in Fig. 16 exemplifies this
phenomenon at the Kanawha River. In the OL simulation,
there is a substantial underestimation of streamflow com-
pared to the observations (depicted by red stars). With the
assimilation of streamflow into the a-EnKF-OI, predictions
at short lead times are aligned with the observations. How-
ever, as the forecast lead time extends, the prediction gradu-
ally converges towards the OL solution. Given the nature of
this relatively large river and the multi-day duration of the
event at this location, the model’s estimates remain notably
more accurate than the OL even after 18 h.

5 Summary and discussion

In this study, we have delved into the innovative application
of hybrid ensemble and variational data assimilation tech-
niques for streamflow and flood prediction within the WRF-
Hydro National Water Model (v2.1) configuration and the
Data Assimilation Research Testbed (DART). The resulting
“HydroDART” system is specifically tailored to offer precise
ensemble streamflow predictions during challenging flood
events, such as intense rainfall and hurricanes. HydroDART
leverages the ensemble Kalman filter, incorporating adaptive
covariance inflation and along-the-stream localization to ad-
dress issues like sampling errors and bias (e.g., El Gharamti
et al., 2021). Our system delivers hourly streamflow analy-
ses utilizing data from the extensive USGS gauging network
across the United States.

The hybrid ensemble–variational scheme presented in this
paper seamlessly combines the time-varying sample error
covariance derived from the ensemble with a static clima-
tological error covariance commonly employed in systems
like optimal interpolation and 3D- or 4D-Var. Through ex-
tensive testing conducted across two different basins – West
Virginia’s flash flooding in June 2016 and Florida’s inland
flooding triggered by Hurricane Ian in August 2022 – we il-
lustrate that the hybrid algorithm enhances the performance
of the EnKF, notably improving prediction precision.
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Figure 15. (a) Box plots summarizing the streamflow RMSE of mean ensemble over time for open loop (orange box), posterior (green
box), and reforecasts at different lead times (blue boxes). The horizontal dashed line depicts the median of streamflow RMSE for open loop.
Averaged RMSE is annotated underneath the individual box plots. Note that the y axis is on a log scale. (b) Hydrographs for North Prong
Alafia River at Keysville, FL (gauge ID: 02301000), during Hurricane Ian. Red dots represent the observed streamflow in cubic meters per
second. The dashed orange line depicts the open loop streamflow simulation. The blue lines show the model posterior (lead time of zero) and
reforecasts at different lead times.

Our findings reveal that the judicious blending of the static
background covariance with the EnKF effectively improves
the ensemble spread, successfully mitigating pronounced
model biases observed during flooding events. Optimal re-
sults from the hybrid filter were achieved when assigning
equal weight to the ensemble and climatology (i.e., a hy-
brid weight of 0.5). Notably, relying solely on climatologi-
cal information while disregarding the dynamic ensemble led
to degraded results and yielded poor-quality discharge esti-
mates. Across various gauges in both hydrologic basins, the
hybrid scheme exhibited near-perfect alignment with obser-
vations, boasting efficiency metrics such as NSE and KGE
very close to 1.

Crucially, the hybridized covariance not only height-
ened prediction skill and reliability but also demonstrated
improved efficiency by operating effectively with a time-
varying ensemble that utilized only 25 % of the members
employed by the EnKF alone. Our results indicate that em-
ploying 20 realizations in the dynamic ensemble is sufficient
to maintain high-accuracy streamflow predictions, consistent
with the findings of Abbaszadeh et al. (2019). This, coupled

with the NWM submodel design of HydroDART (utilizing
only the NWM’s streamflow, conceptual groundwater stor-
age, and reservoir models), suggests that a system like Hy-
droDART may be computationally efficient enough for oper-
ational use.

Additionally, we explored an adaptive variant of the hy-
brid scheme that automatically adjusts the hybrid weight
at each stream and bucket in the domain based on ensem-
ble statistics. The adaptive scheme, employing 20 members,
demonstrated robustness and high skill. Finally, we con-
ducted short-range streamflow forecasts initiated from the
hybrid scheme analyses and compared the results to the open
loop, revealing consistent improvements in model forecasts
for up to 18 h.

Despite its successful application, the examined frame-
work warrants further research and sensitivity studies. For
instance, the ATS localization was specifically tuned for the
EnKF and not its hybrid counterparts. It remains conceivable
that, with the integration of climatological information, a re-
duction in localization (i.e., broader cutoff radii) might be
possible. The potential for mitigating spurious correlations
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Figure 16. Similar to Fig. 15 but for Kanawha River at Kanawha Falls in WV (gauge ID: 03193000).

arising from limited ensemble sizes through the application
of the static background covariance was evident in the obser-
vations made using the hybrid EnKF-OI scheme, particularly
with a minimal number of ensemble realizations in Sect. 4.3.
Furthermore, studying the non-Gaussian aspects of stream-
flow, as in Hernández and Liang (2018), was not explored in
this work. Recent methods such as quantile-conserving en-
semble filtering (QCEF; Anderson, 2022) can be utilized
within HydroDART. Using the QCEF, streamflow can be ex-
pressed in various non-Gaussian forms during assimilation,
and this might be a more suitable approach than the on uti-
lized here.

In the case of the adaptive hybrid variant, our study fo-
cused on scenarios where the hybrid weight initiates at 0.5.
Acknowledging that smaller weights may compromise per-
formance, an exploration of commencing the algorithm with
larger weights could be a plausible avenue. This strategy
might vary across different domains, considering the dy-
namic nature of hydrologic basins and water conditions. It is
noteworthy that the weight coefficients across the stream net-
work in FL and WV did not converge to specific values. This
lack of convergence was attributed to the changing ensem-
ble conditions, such as spread and bias, over our relatively
short simulation periods. Extending the simulation duration
could potentially lead to the convergence of hybrid weights
as streamflow conditions stabilize. In our case, the adaptive

algorithm predominantly assigned a balanced weight to the
majority of gauges, i.e., α ∈ [0.48,0.52]. This aligns with
the demonstrated optimal performance of a constant homo-
geneous weight of 0.5 (Sect. 4.2). For extended simulations,
one might consider implementing a reset mechanism for the
hybrid weights or exploring the utilization of seasonal clima-
tological covariances rather than a single one.

A potential extension of the present study involves as-
sessing the efficacy of the hybrid DA approach in medium
and long-range forecasts. This expansion could encompass
a broader array of hydrologic variables, such as stream tem-
perature, and involve additional modeling components like
soil moisture and snow. Furthermore, instead of focusing
on specific flooding events, our forthcoming investigations
will delve into evaluating the performance of the hybrid DA
methodology in a comprehensive simulation covering the en-
tire CONUS. This strategic shift aims to ascertain the robust-
ness of the latest HydroDART version across diverse hydro-
logic conditions and to analyze its computational complexity
within a large-scale domain.

Code availability. The data assimilation code used in this
study is openly available as part of the DART repository
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