Articles | Volume 28, issue 14
https://doi.org/10.5194/hess-28-3133-2024
https://doi.org/10.5194/hess-28-3133-2024
Research article
 | 
19 Jul 2024
Research article |  | 19 Jul 2024

Leveraging a novel hybrid ensemble and optimal interpolation approach for enhanced streamflow and flood prediction

Mohamad El Gharamti, Arezoo Rafieeinasab, and James L. McCreight

Viewed

Total article views: 1,469 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
1,124 292 53 1,469 47 54
  • HTML: 1,124
  • PDF: 292
  • XML: 53
  • Total: 1,469
  • BibTeX: 47
  • EndNote: 54
Views and downloads (calculated since 25 Jan 2024)
Cumulative views and downloads (calculated since 25 Jan 2024)

Viewed (geographical distribution)

Total article views: 1,469 (including HTML, PDF, and XML) Thereof 1,412 with geography defined and 57 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Latest update: 21 Apr 2025
Download
Short summary
This study introduces a hybrid data assimilation scheme for precise streamflow predictions during intense rainfall and hurricanes. Tested in real events, it outperforms traditional methods by up to 50 %, utilizing ensemble and climatological background covariances. The adaptive algorithm ensures reliability with a small ensemble, offering improved forecasts up to 18 h in advance, marking a significant advancement in flood prediction capabilities.
Share