Articles | Volume 28, issue 13
https://doi.org/10.5194/hess-28-2809-2024
https://doi.org/10.5194/hess-28-2809-2024
Research article
 | 
03 Jul 2024
Research article |  | 03 Jul 2024

Quantifying and reducing flood forecast uncertainty by the CHUP-BMA method

Zhen Cui, Shenglian Guo, Hua Chen, Dedi Liu, Yanlai Zhou, and Chong-Yu Xu

Related authors

Exploring the Potential Processes Controls for Changes of Precipitation-Runoff Relationships in Non-stationary Environments
Tian Lan, Tongfang Li, Hongbo Zhang, Jiefeng Wu, Yongqin David Chen, and Chong-Yu Xu
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-118,https://doi.org/10.5194/hess-2024-118, 2024
Preprint under review for HESS
Short summary
Determining the threshold of issuing flash flood warnings based on people’s response process simulation
Ruikang Zhang, Dedi Liu, Lihua Xiong, Jie Chen, Hua Chen, and Jiabo Yin
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-130,https://doi.org/10.5194/hess-2024-130, 2024
Preprint under review for HESS
Short summary
Variation and attribution of probable maximum precipitation of China using a high-resolution dataset in a changing climate
Jinghua Xiong, Shenglian Guo, Abhishek, Jiabo Yin, Chongyu Xu, Jun Wang, and Jing Guo
Hydrol. Earth Syst. Sci., 28, 1873–1895, https://doi.org/10.5194/hess-28-1873-2024,https://doi.org/10.5194/hess-28-1873-2024, 2024
Short summary
Enhanced Evaluation of Sub-daily and Daily Extreme Precipitation in Norway from Convection-Permitting Models at Regional and Local Scales
Kun Xie, Lu Li, Hua Chen, Stephanie Mayer, Andreas Dobler, Chong-Yu Xu, and Ozan Mert Gokturk
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-68,https://doi.org/10.5194/hess-2024-68, 2024
Preprint under review for HESS
Short summary
Regional index flood estimation at multiple durations with generalized additive models
Danielle M. Barna, Kolbjørn Engeland, Thomas Kneib, Thordis L. Thorarinsdottir, and Chong-Yu Xu
EGUsphere, https://doi.org/10.5194/egusphere-2023-2335,https://doi.org/10.5194/egusphere-2023-2335, 2023
Preprint archived
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
Developing a tile drainage module for the Cold Regions Hydrological Model: lessons from a farm in southern Ontario, Canada
Mazda Kompanizare, Diogo Costa, Merrin L. Macrae, John W. Pomeroy, and Richard M. Petrone
Hydrol. Earth Syst. Sci., 28, 2785–2807, https://doi.org/10.5194/hess-28-2785-2024,https://doi.org/10.5194/hess-28-2785-2024, 2024
Short summary
To bucket or not to bucket? Analyzing the performance and interpretability of hybrid hydrological models with dynamic parameterization
Eduardo Acuña Espinoza, Ralf Loritz, Manuel Álvarez Chaves, Nicole Bäuerle, and Uwe Ehret
Hydrol. Earth Syst. Sci., 28, 2705–2719, https://doi.org/10.5194/hess-28-2705-2024,https://doi.org/10.5194/hess-28-2705-2024, 2024
Short summary
Widespread flooding dynamics under climate change: characterising floods using grid-based hydrological modelling and regional climate projections
Adam Griffin, Alison L. Kay, Paul Sayers, Victoria Bell, Elizabeth Stewart, and Sam Carr
Hydrol. Earth Syst. Sci., 28, 2635–2650, https://doi.org/10.5194/hess-28-2635-2024,https://doi.org/10.5194/hess-28-2635-2024, 2024
Short summary
HESS Opinions: The sword of Damocles of the impossible flood
Alberto Montanari, Bruno Merz, and Günter Blöschl
Hydrol. Earth Syst. Sci., 28, 2603–2615, https://doi.org/10.5194/hess-28-2603-2024,https://doi.org/10.5194/hess-28-2603-2024, 2024
Short summary
Metamorphic testing of machine learning and conceptual hydrologic models
Peter Reichert, Kai Ma, Marvin Höge, Fabrizio Fenicia, Marco Baity-Jesi, Dapeng Feng, and Chaopeng Shen
Hydrol. Earth Syst. Sci., 28, 2505–2529, https://doi.org/10.5194/hess-28-2505-2024,https://doi.org/10.5194/hess-28-2505-2024, 2024
Short summary

Cited articles

Baran, S., Hemri, S., and El Ayari, M.: Statistical post-processing of water level forecasts using Bayesian model averaging with doubly-truncated normal components, Water Resour. Res., 55, 3997–4013, https://doi.org/10.1029/2018WR024028, 2019. 
Biondi, D. and Todini, E.: Comparing hydrological postprocessors including ensemble predictions into full predictive probability distribution of streamflow, Water Resour. Res., 54, 9860–9882, https://doi.org/10.1029/2017WR022432, 2018. 
Chen, L. and Guo, S.: Copulas and its application in hydrology and water resources, Springer Water, Springer Singapore, https://doi.org/10.1007/978-981-13-0574-0, 2019. 
Cho, K. and Kim, Y.: Improving streamflow prediction in the WRF-Hydro model with LSTM networks, J. Hydrol., 605, 127297, https://doi.org/10.1016/j.jhydrol.2021.127297, 2022. 
Cloke, H. L. and Pappenberger, F.: Ensemble flood forecasting: A review, J. Hydrol., 375, 613–626, https://doi.org/10.1016/j.jhydrol.2009.06.005, 2009. 
Download
Short summary
Ensemble forecasting facilitates reliable flood forecasting and warning. This study couples the copula-based hydrologic uncertainty processor (CHUP) with Bayesian model averaging (BMA) and proposes the novel CHUP-BMA method of reducing inflow forecasting uncertainty of the Three Gorges Reservoir. The CHUP-BMA avoids the normal distribution assumption in the HUP-BMA and considers the constraint of initial conditions, which can improve the deterministic and probabilistic forecast performance.