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Abstract. The Bayesian model averaging (BMA), hydrolog-
ical uncertainty processor (HUP), and HUP-BMA methods
have been widely used to quantify flood forecast uncertainty.
This study proposes the copula-based hydrological uncer-
tainty processor BMA (CHUP-BMA) method by introduc-
ing a copula-based HUP in the framework of BMA to bypass
the need for a normal quantile transformation of the HUP-
BMA method. The proposed ensemble forecast scheme con-
sists of eight members (two forecast precipitation inputs; two
advanced long short-term memory, LSTM, models; and two
objective functions used to calibrate parameters) and is ap-
plied to the interval basin between the Xiangjiaba and Three
Gorges Reservoir (TGR) dam sites. The ensemble forecast
performance of the HUP-BMA and CHUP-BMA methods is
explored in the 6–168 h forecast horizons. The TGR inflow
forecasting results show that the two methods can improve
the forecast accuracy over the selected member with the best
forecast accuracy and that the CHUP-BMA performs much
better than the HUP-BMA. Compared with the HUP-BMA
method, the forecast interval width and continuous ranked
probability score metrics of the CHUP-BMA method are re-
duced by a maximum of 28.42 % and 17.86 % within all fore-
cast horizons, respectively. The probability forecast of the
CHUP-BMA method has better reliability and sharpness and
is more suitable for flood ensemble forecasts, providing reli-
able risk information for flood control decision-making.

1 Introduction

Accurate and reliable flood forecasting is one of the neces-
sary measures to reduce flood disasters and improve water
resource utilization (Zhou et al., 2019; Vegad and Mishra,
2022). With the development of hydrological theory and
flood forecasting techniques, the flood forecasting accuracy
and lead time have been significantly improved in recent
years (Xu et al., 2023; Cui et al., 2023). However, neither
physically based and conceptual hydrological models nor
data-driven models can guarantee obtaining perfect forecast-
ing in real conditions. Because of the influence of the chang-
ing environment and the limitations of the human percep-
tion of complex hydrological processes, the meteorological
forcing and other inputs, hydrological model structure, and
parameters, etc. contain significant uncertainties (Cloke and
Pappenberger, 2009), which leads to the simulation and fore-
cast results of the model inevitably containing integrated
uncertainties from multiple sources (Liu et al., 2022). Tra-
ditional flood forecasting schemes are mostly determinis-
tic forecast results without considering forecast uncertainty
(Zhong et al., 2018a; Gelfan et al., 2018), which makes
decision-makers unable to grasp useful risk information be-
yond the forecast value. Excessive superstition regarding a
single forecast value will likely lead to poor decision-making
(Krzysztofowicz, 1999). Therefore, it is essential to quan-
tify and reduce flood forecast uncertainty in practical appli-
cations.

Probabilistic flood forecasting is one of the effective meth-
ods of quantifying integrated forecast uncertainty (Matthews
et al., 2022). It provides not only a deterministic forecast
value, but also forecast uncertainty (or risk) information by
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means of a quantile, confidence interval, or density function
(Biondi and Todini, 2018; Ferretti et al., 2020; Zhou et al.,
2022), which is more scientifically reasonable and practi-
cally useful compared with deterministic forecasts and helps
decision-makers consider forecast risk quantitatively (Todini,
2008). Various probabilistic forecasting methods based on
statistical post-processing of numerical forecast data have
been developed in recent years. Among these methods, prob-
abilistic ensemble forecasting is considered to be able to
overcome the limitations of a single model or a simple aver-
age with fixed model weights (Han and Coulibaly, 2017) and
contains richer forecast information because it can consider
the ensemble forecast results of multiple models to quantify
and reduce integrated uncertainty that contains uncertainties
in the inputs, model structure, and parameters (Li et al., 2017;
Saleh et al., 2016). Bayesian model averaging (BMA), pro-
posed by Raftery et al. (2005), uses the Bayesian theory and
a total probability formulation to transform ensemble fore-
casts into probabilistic forecasts and is one of the most rep-
resentative and reliable methods that has been widely used to
supplement uncertainty information beyond point estimates
(Shu et al., 2022).

The BMA method has been applied to temperature, pre-
cipitation, and wind speed ensemble forecasts of meteoro-
logical forcing (Raftery et al., 2005; Sloughter et al., 2007,
2010). After confirming that the BMA method can effec-
tively quantify forecast uncertainty and obtain highly accu-
rate deterministic forecasts, it is now widely used in hydro-
logical forecasting to quantify forecast uncertainty from dif-
ferent sources, such as model inputs, structure, and param-
eters. The standard BMA method assumes that each mem-
ber’s posterior probability distribution approximately obeys
a normal distribution (Huang et al., 2019; Guo et al., 2021).
However, some variables, such as wind speed, rainfall, and
runoff, usually obey skewed distributions and require meth-
ods such as Box–Cox to convert non-Gaussian variables to
standard normal variables that affect the accuracy of prob-
ability distribution estimation (Duan et al., 2007; Liu et al.,
2018). Many authors have investigated the applicability of
BMA in flood ensemble forecasting and tried to overcome
its limitations (Madadgar and Moradkhani, 2014; Darband-
sari and Coulibaly, 2020). Sloughter et al. (2010) proposed
an improved BMA method by assuming that the posterior
probability distribution of each member could obey a specific
non-normal distribution (e.g., Gamma distribution) and using
the member forecast values to estimate the mean and vari-
ance of the distribution. Madadgar and Moradkhani (2014)
introduced the Copula function to solve the posterior proba-
bility distribution of members in the BMA method and pro-
posed the Copula-based BMA method, which avoids the as-
sumption of the posterior probability distribution and further
reduces the application limitation of the BMA method. In
order to ensure that the quantiles of forecast distributions af-
ter the Box–Cox transformation are within the actual phys-
ical range, Baran et al. (2019) introduced upper and lower

truncated normal distributions into the BMA and found that
the double truncated BMA had reliable forecasting ability
compared to ensemble model output statistics. The advan-
tage was more obvious when rolling window training peri-
ods are used. Hemri et al. (2013) introduced the principle
of geostatistical output perturbation to the BMA method and
proposed a multivariate BMA, which extended the member-
ship probability distribution into a multivariate normal distri-
bution function. Relative to the univariate BMA method, the
multivariate BMA can not only consider the temporal corre-
lation between forecast flows, but also improve the forecast
reliability when the forecast system is changing; i.e., fewer
models are available due to dropping out at particular lead
times. Meanwhile, the BMA method usually ensembles the
forecast results of multiple models to be as close to the ac-
tual values as possible. However, too many ensemble mem-
bers may generate redundant information. Darbandsari and
Coulibaly (2020) introduced the Shannon entropy theory to
select the forecast members that satisfy the above conditions
before applying BMA. Their results showed that the BMA
method incorporating entropy could improve the probabilis-
tic forecasting performance for high flows over the standard
BMA method. In addition, some studies have developed var-
ious methods based on the BMA principle, such as the multi-
model ensemble forecasting method based on a vine copula
(Zhang et al., 2022) and the combination of BMA and data
assimilation techniques (Parrish et al., 2012).

However, most studies ignore an essential issue: the BMA
does not consider the constraint of initial conditions (i.e., ob-
served flow at the start of the forecast). It can be shown from
Raftery et al. (2005) that the conditional distribution of the
member (Qf,i) in the BMA is assumed to follow the normal
distribution with expectation µi = ai+bi ·Qf,i (ai and bi are
the bias correction coefficients) and variance σi , which im-
plies that the conditional distribution is only related to the
member’s forecasted flow and not affected by the observed
flow at the forecast start time. It is unreasonable to produce
the same posterior distribution when the forecast results are
the same at different moments.

The hydrological uncertainty processor (HUP) can obtain
the posterior distribution function of the actual value under
the condition of the forecast value and the observed flow
at the start time based on Bayesian principles and the as-
sumption of perfect rainfall forecasting (Krzysztofowicz and
Kelly, 2000). Darbandsari and Coulibaly (2021) firstly uti-
lized the HUP method to derive the posterior distribution of
each member considering the initial constraints and then used
the BMA method to weight the conditional distribution of
all members to obtain the final posterior distribution, which
is called the HUP-BMA method. Their results showed that
the HUP-BMA method outperforms the HUP method and
improves the BMA method in short-term probabilistic fore-
casting. In addition, the derivability of the posterior distribu-
tion for the ensemble members is theoretically enhanced, the
heteroskedasticity of the ensemble members is considered,
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and the interpretability and logical rationality of the BMA
method are improved.

Although it has been demonstrated that considering ini-
tial conditions in the BMA method can improve ensemble
forecast performance, there are still issues to be explored.
The HUP-BMA method requires a normal quantile conver-
sion method to convert the flow data series to Gaussian space
to solve the posterior distribution. The process is not only te-
dious and complicated, but also prone to bias in the inverse
conversion. To this end, Liu et al. (2018) adopted a copula to
derive the conditional distribution of the observed flow un-
der the conditions of the forecasted flow, which avoids the
assumption that the flow series obeys a normal distribution
in the HUP and relaxes the application limitation. The study
shows that the copula-based hydrological uncertainty proces-
sor (CHUP) can improve the probabilistic forecasting per-
formance of the HUP method. It is anticipated that coupling
CHUP with the BMA may improve the HUP-BMA accuracy
and applicability, which motivates the current study.

The main innovations and research steps are shown as fol-
lows: (1) a novel CHUP-BMA method is proposed for the
first time by coupling CHUP with BMA, which not only
avoids the normal distribution assumption in HUP-BMA,
but also considers the constraints of the initial condition
of the forecast. (2) An ensemble forecast containing eight
members is constructed by combining two types of forecast
precipitation, two long short-term memory (LSTM) models,
i.e., the recursive encoder–decoder (RED) structure-based
LSTM-RED model and the feature–temporal dual-attention-
based DA-LSTM-RED model, and two objective functions
of model calibration. (3) The ensemble forecast performance
of the proposed method is analyzed and discussed in com-
parison to the HUP-BMA benchmark method in terms of the
deterministic and probabilistic forecasts. The interval basin
between Xiangjiaba Dam and the Three Gorges Dam in the
Yangtze River, China, is selected as case study.

The rest of the paper is organized as follows. Section 2
introduces the case study and materials. The methods are
presented in Sect. 3. Section 4 evaluates the deterministic
and ensemble forecast results. Conclusions and prospects are
given in Sect. 5.

2 Case study and materials

2.1 Study basin

The Three Gorges Reservoir (TGR) is the largest hydraulic
project in the world and plays a vital role in flood control,
power generation, and other water resource management is-
sues (Zhong et al., 2020). The TGR controls a watershed
area of about 1× 106 km2. The total reservoir capacity is
about 39.3× 109 m3, with a flood control capacity of about
22.15× 109 m3.

Table 1. List of flow propagation time for hydrological control sta-
tions to the TGR dam site.

Rivers Hydrological TGR dam flow
control stations propagation time [h]

Jinsha Pingshan 48–66
Min Gaochang 48–66
Jialing Beibei 24–42
Tuo Fushun 42–60
Wu Wulong 15–30

The TGR inflow is directly influenced by the runoff yield
of the cascade reservoir interval basin between Xiangjiaba
and TGR (Fig. 1), with a basin area of about 127 400 km2

(Zhou et al., 2019). The inflow of the TGR consists of the
outflow discharge from the Xiangjiaba Reservoir; the in-
flow of several tributaries such as Min, Tuo, Jialing, and Wu
rivers; and the rainfall of the interval basin. The flow sources
are complex and have different effects on the TGR inflow.
Moreover, TGR is a river-type reservoir with a length of
about 600 km at the normal storage level (175 m) and an aver-
age width of only 1.1 km, resulting in uncertainty in rainfall
intensity and storm-center positioning (Zhong et al., 2020).
Therefore, there is significant uncertainty in the flood fore-
cast of TGR. It has been a major challenge to quantify and
reduce forecast uncertainty.

Table 1 shows the flow propagation time from the hydro-
logical control stations of the mainstream and tributaries to
the TGR dam. The outflow discharge of Xiangjiaba Reser-
voir, located on the Jinsha River, is observed at the Pingshan
hydrological station and represents the mainstream flow.
The discharge values from large tributaries (Min, Jialing,
Tuo, and Wu rivers) are observed at the Gaochang, Fushun,
Beibei, and Wulong hydrological stations, respectively.

Considering the uneven distribution of rainfall intensity
because of the narrow and long basin, the interval basin be-
tween the Xiangjiaba and TGR dam sites is divided into
three sub-basins: Pingshan–Cuntan, Cuntan–Wanxian, and
Wanxian–TGR dam site. Their watershed areas are 76 900,
22 900, and 27 600 km2, respectively. Meanwhile, there are
45, 38, and 60 gauged rainfall stations in these three sub-
regions, respectively.

2.2 Study materials

This study collects 6 h observed flow discharges at the TGR
dam site and five hydrological stations (Table 1) and 6 h
observed rainfall in the interval basin during the 2010–
2021 flood season (May–September). The Thiessen poly-
gon method is used to calculate areal average rainfall us-
ing rainfall station data for each sub-basin area. Meanwhile,
this study collects the forecasted precipitation data issued by
the European Centre for Medium-Range Weather Forecasts
(ECMWF) and the Hydrology Bureau of the Yangtze River
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Figure 1. Schematic diagram of the interval basin between the Xiangjiaba and TGR dam sites, which is divided into three sub-regions.

Water Resources Commission (HBYRWRC) for the 2017–
2021 flood season in the three sub-basins. Their forecast time
starts at 08:00 LT, with the 6–168 h forecast horizons and
the 6 h forecast interval. The spatial resolution of each grid
for the ECMWF forecasted precipitation is 0.125°× 0.125°.
The HBYRWRC forecasted precipitation is the areal average
forecasted precipitation data.

The training period is from 2010 to 2016, and the vali-
dation period is from 2017 to 2021. Since the precipitation
forecast starts at 08:00 LT, the forecasted flow for the 6–168 h
forecast horizons is also calculated from the 08:00 LT daily
in the validation period.

3 Methods

3.1 Proposed CHUP-BMA method

3.1.1 Bayesian model averaging (BMA)

Bayesian model averaging (BMA) method’s principle is as
follows:

p(Qo|Qf,1,Qf,2, . . .,Qf,k)=

k∑
i=1

wi ·p(Qo|Qf,i), (1)

where p(·) denotes the probability density function. Qo de-
notes the observed flow corresponding to the forecast mo-

ment (target value). k is the number of ensemble members.
Qf denotes the forecasted flow of ensemble members. wi de-
notes the weight of the ith model. p(Qo|Qf,i) denotes the
conditional probability density of Qo conditional on Qf,i ,
which is assumed to approximately obey a normal distribu-
tion with the expectation of µi = ai + bi ·Qf,i and variance
of σi . ai and bi are the bias correction coefficients obtained
by the linear fitting of Qf,i to Qo.

Therefore, Eq. (1) can be rewritten as follows:

p(Qo|Qf,1,Qf,2, . . .,Qf,k)=

k∑
i=1

wi ·N(Qo|µiσi). (2)

From Eq. (2), it can be seen that the BMA method does not
consider the influence of the initial state (the actual observed
flow at the start of the forecast) on the posterior distribution.
When the member forecasts at different times are the same,
the posterior probability distribution generated by the BMA
is also the same, which lacks logical rationality.

3.1.2 Hydrological uncertainty processor (HUP)

Based on the assumption that the precipitation uncertainty is
zero, the posterior distribution ofQo conditional onQf,i and
Qb is as follows:
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p(Qo|Qf,i,Qb)=
p(Qf,i |Qo,Qb) ·p(Qo|Qb)∫

+∞

−∞
p(Qf,i |Qo,Qb) ·p(Qo|Qb)dQo

, (3)

where p(Qo|Qb) is the prior density function,
p(Qf,i |Qo,Qb) is the likelihood density function, and
p(Qo|Qf,i,Qb) is the posterior density function.

The HUP method assumes that flow series transformed to
normal space obey the Gaussian distribution. The cumula-
tive distribution function is different for forecasted and ob-
served flows. The common normal quantile transformation is
key to the application of the HUP method and is significant
for making the HUP method applicable to variables with any
marginal distributions, heteroskedasticity, and nonlinear de-
pendence structures (Krzysztofowicz and Kelly, 2000; Dar-
bandsari and Coulibaly, 2021).

Q̂o =N
−1(P (Qo)), Q̂f,i =N

−1(P (Qf,i)), (4)

where P(·) denotes the probability distribution function.
N−1(·) denotes the inverse function of the standard normal
distribution. Q̂o and Q̂f,i are the observed and forecasted
flow transformed to the normal space, respectively.

The HUP method also assumes that the observed flow
obeys the strictly stationary first-order Markov process
(Krzysztofowicz and Kelly, 2000); i.e., the flows between ad-
jacent forecast horizons obey the linear constraint after the
normal transformation.

Q̂o,t = ct × Q̂o,t−1+ εt , (5)

where Q̂o,t is the observed flow corresponding to the t th
forecast horizon. c is the regression coefficient. ε is the resid-
ual, obeying N(0,1− c2

t ).
The prior density function expressions are as follows:

p(Q̂o,t |Q̂b)=
1(

1−C2
t

)0.5 n
{
Q̂o,t −Ct × Q̂b(

1−C2
t

)0.5
}
,Ct =

t∏
i=1
ci, (6)

where n(·) denotes standard normal density function and Q̂b
is the observed flow at the start of the forecast transformed to
the normal space.
Q̂b, Q̂o, and Q̂f,i are assumed to obey a linear relationship.

The expression of the likelihood function in normal space is
as follows:

Q̂f,i,t = at × Q̂o,t + dt × Q̂b+ bt + θt , (7)

p(Q̂f,i,t |Q̂o,t ,Q̂b)=
1
σt
n

{
Q̂f,i,t − (at × Q̂o,t + dt × Q̂b+ bt )

σt

}
, (8)

where θt is an independent variable obeying N(0,σ 2
t ). at , dt ,

and bt are regression coefficients.

The posterior density function under normal space can be
derived by substituting Eqs. (6) and (7) in Eq. (3):

p(Q̂o,t |Q̂f,i,t ,Q̂b)=
1
Yt
n

{
Q̂o,t − (At × Q̂f,i,t +Dt × Q̂b+Bt )

Yt

}
,

At =
aty

2
t

a2
t y

2
t + σ

2
t

, Bt =
−atbty

2
t

a2
t y

2
t + σ

2
t

,

Dt =
Ctσ

2
t − atdty

2
t

a2
t y

2
t + σ

2
t

, Yt =

(
y2
t σ

2
t

a2
t y

2
t + σ

2
t

)0.5

,

y2
t = 1−C2

t . (9)

The posterior distribution function under the normal space
can be converted to the original space by Jacobian transfor-
mation (Liu et al., 2016). The posterior density function of
Qo,t under Qf,i,t and Qb conditions is as follows:

p(Qo,t |Qf,i,t ,Qb)=
J (Qo,t )

Yt
n


N−1(P (Qo,t ))

−AtN
−1(P (Qf,i,t ))

−DtN
−1(P (Qb))−Bt


Yt


,

J (Qo,t )=
p(Qo,t )

n(N−1(P (Qo,t )))
, (10)

where J (·) is the Jacobian transformation function.

3.1.3 HUP-BMA method

Darbandsari and Coulibaly et al. (2021) applied the hydro-
logical uncertainty processor (HUP) to the ensemble forecast
members, substituted the posterior density function obtained
by the HUP method (Eq. 9) in the BMA framework (Eq. 2),
and then obtained the posterior distribution function of the
target flow based on the initial state and the forecasted flow
of the ensemble member. Therefore, the expression of the
HUP-BMA method is as follows:

p(Qo|Qf,1,Qf,2, . . .,Qf,k,Qb)=

k∑
i=1

wi ·
J (Qo,t )

Yt

n




N−1(P (Qo,t ))

−AtN
−1(P (Qf,i,t ))

−DtN
−1(P (Qb))−Bt


Yt


. (11)
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3.1.4 Copula-based HUP-BMA (CHUP-BMA) method

Copula-based HUP

According to Sklar’s theorem (Sklar, 1959), the joint distri-
bution of m variables is as follows:

P(x1,x2, . . .. . .,xm)= Cm(P (x1),P (x2), . . .. . .,P (xm)), (12)

where Cm(·) denotes the m-dimensional copula distribution.
The copula-based HUP method (CHUP), which can avoid

the normal quantile transformation process of the flow se-
ries in the standard HUP method, was proposed by Liu et al.
(2018). With the help of the copula function, the prior density
function in Eq. (3) can be derived as follows:

p(Qo|Qb)=
∂2C2(P (Qo),P (Qb))

∂P (Qo)∂P (Qb)
·

dP(Qo)

dQo

= c2(P (Qo),P (Qb)) ·p(Qo),

(13)

where cm(·) denotes the m-dimensional copula density func-
tion. m denotes the dimension.

The likelihood density function in Eq. (3) can be derived
as follows:

p(Qf,i |Qo,Qb)=

∂3C3(P (Qo),P (Qf,i),P (Qb))

∂P (Qo) · ∂P (Qf,i) · ∂P (Qb)

∂2C2(P (Qo),P (Qb))

∂P (Qo) · ∂P (Qb)

·
dP(Qf,i)

dQf,i
=
c3(P (Qo),P (Qf,i),P (Qb))

c2(P (Qo),P (Qb))

·p(Qf,i). (14)

The posterior density function in Eq. (3) can be derived as
follows:

p(Qo|Qf,i ,Qb)=
c3(P (Qo),P (Qf,i),P (Qb))∫ 1

0 c3(P (Qo),P (Qf,i),P (Qb))dP(Qo)

·p(Qo). (15)

Copula-based HUP-BMA method

Applying CHUP to the ith ensemble member, the pos-
terior probability distribution function p(Qo|Qf,i,Qb) of
Qo based on Qf,i and Qb can be obtained. Coupling
p(Qo|Qf,i,Qb) with the BMA framework, the copula-based
HUP-BMA (CHUP-BMA) method can be constructed and
Eq. (2) can become as follows:

p(Qo|Qf,1,Qf,2, . . .,Qf,k,Qb)=
∑k

i=1
wi

·
c3(P (Qo),P (Qf,i),P (Qb))∫ 1

0 c3(P (Qo),P (Qf,i),P (Qb))dP(Qo)
·p(Qo).

(16)

The forecast uncertainty is quantified by the forecast in-
terval with a 90 % confidence level. Before constructing the
copula, selecting the marginal distribution and the copula

type is usually necessary. This study intends to select the ap-
propriate marginal distribution and copula function from five
common distribution functions, such as Pearson type III (P-
III), gamma, normal, lognormal, and Weibull, and five com-
mon copula functions, such as the Gumbel–Hougaard, Frank,
Clayton, Student t (Student), and Gaussian copulas, accord-
ing to the root mean square error (RMSE) minimization cri-
terion, respectively. For the definition and mathematical ex-
pressions of copula functions, refer to Liu et al. (2018) and
Chen and Guo (2019).

Darbandsari and Coulibaly (2021) demonstrated that the
HUP-BMA method could improve the probabilistic forecast-
ing performance of the HUP and BMA methods in the short
forecast horizons. Therefore, this paper focuses on analyz-
ing and comparing the performance of the HUP-BMA and
CHUP-BMA methods. The HUP-BMA and CHUP-BMA
methods only calibrate the ensemble members’ weights
through the expectation–maximization (EM) algorithm (Dar-
bandsari and Coulibaly, 2021). Meanwhile, since the fore-
cast accuracy of ensemble members may change with time
due to seasonality and other factors (Zhong et al., 2020),
the sliding window approach is used to update the weight-
ing parameters. Parrish et al. (2012) and Darbandsari and
Coulibaly (2020) have shown that the BMA method with the
sliding window can obtain better probabilistic forecast per-
formance compared to the method without the sliding win-
dow.

3.2 Ensemble forecasting scheme

An ensemble forecast scheme containing multi-source uncer-
tainties in the model input, the model structure, and the pa-
rameter is constructed using a multi-member approach con-
sisting of two forecasted precipitations, two models, and two
objective functions used to calibrate parameters, as shown in
Fig. 2.

3.2.1 Model input uncertainty

There are five flow discharge inputs from five large tribu-
taries (Jinsha, Min, Jialing, Tuo, and Wu rivers) in our case
study. The flow discharges are observed at the Pingshan,
Gaochang, Fushun, Beibei, and Wulong controlled hydro-
logical stations, respectively. Since these observed (or fore-
casted) flows are regulated by their respective upstream cas-
cade reservoirs, these flow data inputs are more accurate than
the rainfall inputs. This study collected the forecasted pre-
cipitation data from the European Centre for Medium-Range
Weather Forecasts (ECMWF) and HBYRWRC in these three
sub-basins. Since the rainfall data are more diverse and have
relatively large uncertainty, the forecast rainfall input vari-
able is used to explore the impact of forecast rainfall uncer-
tainty on the TGR inflow forecasts. The TGR is a river-type
reservoir, so building a river confluence model for flood fore-
casting is necessary. The observed and forecasted precipita-
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Figure 2. The TGR’s flood ensemble forecast scheme.

Table 2. The k and Im values for the three sub-basin areas.

Sub-basin k Im

Pingshan–Cuntan 0.90 50
Cuntan–Wanxian 0.95 80
Wanxian–TGR dam site 0.95 80

tions are converted into the effective precipitation in the three
sub-basin areas, which accounts for the losses of plant recep-
tion, infiltration, evaporation, etc. The rainfall–runoff rela-
tionship (Fedora and Beschta, 1989) is commonly used in the
Yangtze River basin to calculate the effective precipitation.
The antecedent precipitation index, which is the key variable
of the method, can be calculated by the following equation to
represent the soil moisture content (Zhong et al., 2018b):

Pa,t+1 = k(Pa,t +Pt ), (17)
Pa,t+1 ≤ Im, (18)

where Pa,t denotes the antecedent precipitation index on the
t th day, Pt is the daily precipitation, Im is the water storage
capacity of the basin, and k denotes evaporation reduction
index.

The values of k and Im for these three sub-basins are
listed in Table 2, which are obtained from the HBYRWRC.
Since the rainfall–runoff relationship graph method has been
widely used for runoff generation calculation in the Yangtze
River basin, the rainfall–runoff relationship between the Xi-
angjiaba and Three Gorges dam sites uncontrolled interval
basin is established and plotted in Fig. 3 and is used to calcu-
late the effective precipitation based on the antecedent pre-
cipitation index (Pa) and observed (or forecasted) precipita-
tion for these three sub-basins.

After obtaining the daily antecedent precipitation index
at 08:00 LT, the antecedent precipitation index for the 6 h
timescale is calculated as follows:

Pa,t,m =
(
Pa,t +

∑
Pt,n

)
× k

h
24 , (19)

where Pa,t,m denotes the antecedent precipitation index at
m:00 LT on the t th day.

∑
Pt,n denotes the cumulative ob-

Figure 3. Rainfall–runoff relationship between the Xiangjiaba and
Three Gorges dam sites’ uncontrolled interval basin.

served precipitation from 08:00 to m:00 LT on the t th day. h
denotes the time gap from 08:00 to m:00 LT on the t th day.

3.2.2 Model structure uncertainty

The TGR inflow forecasting is influenced by the upstream
mainstream and tributary reservoir scheduling decisions, the
rainfall intensity and distribution in the interval basin, and
the changes in the subsurface characteristics, which is chal-
lenging to establish complex and physically based hydro-
logical models (Yang et al., 2019; Cho and Kim, 2022;
Hauswirth et al., 2023). The simulation or forecast accuracy
in this interval basin needs to be improved to meet the needs
of the work. Therefore, two advanced data-driven models
for obtaining multi-step-ahead flood processes forecasting,
namely the long short-term memory model based on a recur-
sive encoder–decoder structure (LSTM-RED) and the cou-
pled dual attention LSTM-RED (DA-LSTM-RED) model,
are used for confluence calculations as a way to consider the
uncertainty in the model structure. Since the forecast data se-
ries at the outlets of tributaries are inconsistent, the observed
flow at the outlets of five large tributaries is used to train and
validate the proposed models.
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Long short-term memory model based on
encoder–decoder structure

The structure of the LSTM neural network includes the for-
getting gate, input gate, updating the state of the memory
unit, and output gate (Hochreiter and Schmidhuber, 1997).
The forgetting gate can select the relatively important infor-
mation in the previous memory unit. The input gate can se-
lect useful information from the input variables in the current
moment. The memory unit state can store relatively impor-
tant information extracted from historical moments, which is
updated under the control of the forgetting gate and the input
gate. The output gate selects and outputs useful information
from the memory cell state. More detailed procedures of the
LSTM neural network formulation have been described by
Kratzert et al. (2018).

This study nests an LSTM neural network into a recursive
encoder–decoder (RED) structure that can be obtained for
forecasting flood processes to build an LSTM-RED model.
Among them, the RED structure is similar to that of Kao et
al. (2020). The description of the LSTM neural network can
be found in Cui et al. (2022). The encoding process of the
RED structure is used to extract the critical information (Ct )
of the input (Xiang et al., 2020). In the decoding process,
forecast information of the same category as the encoding
process is another input to the neural network of the latter
moment apart from the Ct and the output of the hidden layer
in the previous moment.

LSTM-RED neural network coupled dual attention
mechanism

The LSTM-RED model based on the dual attention mecha-
nism (DA-LSTM-RED) is established by adding the feature–
temporal dual attention mechanism to the LSTM-RED
model, which can enable the model to highlight effective in-
formation in different types and moments of the input. The
DA mechanism (Fig. 4) consists of the feature attention mod-
ule, the temporal attention module, and the forecast input
processing module.

The feature attention module can adaptively highlight the
critical input types by assigning feature weights to the input
of the encoding process (Qin et al., 2017). The temporal at-
tention module can highlight the information (hidden layer
states) extracted at a critical time step by assigning temporal
weights to the information extracted at all time steps in the
encoding process (Ding et al., 2020). Meanwhile, the feature
weights are averaged based on temporal weights and applied
to the forecast information inputted in the decoding process,
thus highlighting the key forecast input variables. The prin-
ciple of the DA-LSTM-RED model can be found in Cui et
al. (2023).

Model input and hyperparameter selection

In this study, the input types for the encoding process include
effective precipitation in the three sub-basins, flow discharge
in the mainstream and tributaries (i.e., five hydrological sta-
tions in Table 1), and previously observed inflow to the TGR
for a total of nine data types. In order to make the model learn
comprehensive information, input variables with the last 11
time steps (66 h) are inputted to the encoding process accord-
ing to the flow propagation times from the hydrological sta-
tions to the TGR dam site in Table 1.

The forecasted effective precipitation, the forecasted flow
of the mainstream and tributaries, and the forecasted flow for
the previous forecast horizon are used as inputs to the decod-
ing process. Among them, the forecasted effective precipi-
tation is calculated by the observed precipitation during the
training period and by the forecast precipitation during the
validation period. The forecasted flow of the upstream main-
stream and tributaries is replaced by the observed flow during
the training and validation periods. The TGR’s observed in-
flow for the 6–168 h forecast horizons is the target output,
which is needed for practical forecasting.

The input and output data are handled by the normalization
method. Moreover, the trial-and-error method is used for de-
bugging the network hyperparameters. The model is trained
by the Adam method (Kingma and Ba, 2014).

3.2.3 Model parameter uncertainty

Different parameter optimization objective functions may fo-
cus on different forecast results (Zhong et al., 2020). For ex-
ample, the mean absolute error function focuses on the mag-
nitude of the error mean. The mean square error function
is usually sensitive to outliers with large errors, which may
make the model parameters with different objective functions
produce forecast results with different focus points (Duan et
al., 2007). Therefore, it is necessary to consider the uncer-
tainty of the model parameters. Neural network models usu-
ally train model parameters (such as model internal weights
and bias values) based on loss functions, so this paper uses
two common loss functions, namely the mean absolute error
and the mean square error, to train the model as a way of
considering the uncertainty of model parameters.

3.3 Evaluation metrics

3.3.1 Deterministic forecast evaluation metrics

The accuracy of deterministic forecast is evaluated by three
metrics: the Nash–Sutcliffe efficiency (NSE; Nash and Sut-
cliffe, 1970), the mean absolute error (MAE), and the relative
error in total runoff (RE).
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Figure 4. Schematic diagram of the DA-LSTM-RED model. Illustrations a and b are the encoding and decoding processes, respectively. k
is the number of input types. Xz,e is the input variable of encoding process; Xz,e = {x1

z,e,x
2
z,e, . . .,x

k−1
z,e ,yz,e}. αz denotes the weights of

the input variables; αz = {α1
z ,α

2
z . . .,α

k
z }. m is the input time steps in the encoding process. S is the hidden layer output. n is the maximum

forecast horizon. H e is the hidden layer state; H e
= {he1,h

e
2, . . .,h

e
m}. βt denotes the weights of the hidden layer states of the encoding

process; βt = {β
1
t ,β

2
t , . . .,β

m
t }. C denotes the key information highlighted by the temporal attention. α denotes the forecast input weights.

NSE= 1−
∑N
i=1(Qo,i −Qf,i)

2∑N
i=1(Qo,i −Qo)2

, (20)

RE=
∑N
i=1Qf,i −

∑N
i=1Qo,i∑N

i=1Qo,i
× 100%, (21)

MAE=
1
N

N∑
i=1
|Qo,i −Qf,i |, (22)

where N is the sample number and Qo and Qf are the aver-
age of the observed and forecasted flow, respectively.

The Nash–Sutcliffe efficiency (NSE) is one of the most
important metrics in flood forecasting, reflecting the degree
of fit between forecasted and observed flows (Nash and Sut-
cliffe, 1970). Since the accurate runoff volume predictions
are more important than peak discharge for the operation of
a large reservoir (Cui et al., 2023), the relative error for to-
tal runoff volume (RE) is also chosen. The mean absolute
error (MAE) can reflect the forecast error for each moment
and is compared with the continuous ranked probability score
(CRPS) of the ensemble forecast (Raftery et al., 2005), which
can reflect the effectiveness of the ensemble forecast correc-
tion.
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3.3.2 Probabilistic forecast evaluation metrics

Forecast interval evaluation metrics

The forecast interval is evaluated by three metrics: the aver-
age coverage rate (CR), the average interval width (IW), and
the percentage of observations bracketed by the unit confi-
dence interval (PUCI; Li et al., 2011).

CR=
nc

N
, (23)

IW=
1
N

N∑
i=1
(Qu,i −Ql,i), (24)

PUCI=
CR

1
N

∑N
i=1

(
Qu,i−Ql,i
Qo,i

) , (25)

where nc denotes the number of values of Qo located in the
forecast interval. Qu and Ql are the upper and lower bound-
aries of the forecast interval, respectively, with a 90 % confi-
dence level.

The average coverage rate (CR) is one of the most neces-
sary metrics for evaluating the reliability of forecast intervals
(Li et al., 2021). The average interval width (IW) is the metric
that directly reflects the level of forecast uncertainty, which
is an important metric for evaluating the effectiveness of the
proposed methods. The percentage of observations bracketed
by the unit confidence interval (PUCI) is a comprehensive
metric for evaluating the performance of forecast intervals in
quantifying uncertainty (Xiong et al., 2009). Therefore, the
CR, RB, and PUCI metrics are selected to evaluate the fore-
cast intervals performance.

Probabilistic forecast evaluation metrics

The probabilistic forecast is evaluated by three metrics: the
α_index (Renard et al., 2010), the ignorance score (IGS)
(Gneiting et al., 2005), and the continuous ranked probability
score (CRPS) (Raftery et al., 2005).

α_index= 1−
2
N

N∑
i=1
|qe,i − qth,i |, (26)

IGS=−
1
N

N∑
i=1

ln(p(Qo,i)), (27)

CRPS=
1
N

N∑
i=1

+∞∫
0

(Pi(r)− I (r −Qo,i))
2dr, (28)

I (r −Qo,i)=

{
1, r ≥Qo,i,

0, r < Qo,i,

where, qe,i and qth,i denote the observed and theoretical p
values of Qo,i , respectively. The p value denotes the poste-
rior probability distribution value of the Qo,i (Renard et al.,

2010). I (·) denotes the indicator function. r denotes the flow
variable.

The α_index metric can quantitatively assess the reliability
of ensemble probabilistic forecasts from the perspective of
distribution function values (Renard et al., 2010). The closer
the α_index value is to 1, the more reliable the probabilistic
forecast. The IGS and CRPS metrics can reflect the reliability
and sharpness of the probabilistic forecast. The former can
quantify the forecast probability density at the observation,
while the latter can indicate the fit performance between the
posterior probabilistic distribution and the actual probabilis-
tic distribution of Qo (Raftery et al., 2005). Both CRPS and
IGS are negative scores; i.e., the smaller the value, the better.
The IGS imposes severe penalties for particularly poor prob-
abilistic predictions and may be extremely sensitive to out-
liers and extreme events, yet it also lacks robustness (Raftery
et al., 2005).

4 Result evaluation

4.1 Deterministic forecast results of ensemble members

Since the study focuses on the differences in ensemble fore-
cast performance between the HUP-BMA and CHUP-BMA
methods, the overall forecast accuracy of members is ana-
lyzed (Fig. 5) and the differences in forecast accuracy be-
tween members are not explicitly analyzed. As shown in
Fig. 5, using the observed values as input during the train-
ing period, high forecast accuracy can be acquired in differ-
ent forecast horizons, with the NSE values exceeding 0.95,
the MAE values being below 1400 m3 s−1, and the absolute
value of RE staying within 4 %.

After combining the forecasted precipitation during the
validation period, the NSE values show a decreasing trend
and the MAE and RE values show an increasing trend with
the increase in the forecast horizon. Taking the NSE met-
rics of the 1–7 d forecast horizons as an example (Table 3),
the average value of the NSE metric decreases from 0.97
to 0.89, which indicates that the forecast accuracy gradu-
ally decreases. Meanwhile, the range of evaluation metrics
gradually increases with the increase in the forecast horizon.
It can be seen from Table 3 that the difference between the
maximum and minimum values of NSE indicators for the 1 d
forecast horizon is only 0.01. In contrast, the difference for
the 7 d forecast horizon is as high as 0.05, which indicates
that the difference in forecast accuracy of members is also
more significant and that the forecast uncertainty gradually
increases. Overall, the NSE values of the forecast members
in the 6–168 h forecast horizons are higher than 0.88, and
the absolute values of the RE metrics are within 7 %. Hence,
the forecast accuracy of members is relatively high and the
forecast error is low, which can be used for flood ensemble
forecasting.

Hydrol. Earth Syst. Sci., 28, 2809–2829, 2024 https://doi.org/10.5194/hess-28-2809-2024



Z. Cui et al.: Quantifying and reducing flood forecast uncertainty by the CHUP-BMA method 2819

Figure 5. Statistical chart of evaluation metrics of eight ensemble members.

4.2 Ensemble forecast results

4.2.1 Marginal distribution and copula function
selection

It is necessary to first fit the marginal distributions of the
observed flow and the forecasted flow of the 6–168 h fore-
cast horizons. The Qo and Qb obey the same distribution.
The RMSE criterion is used to select the marginal distribu-
tion type. In each forecast horizon, the RMSE values of the
eight members are averaged to obtain the marginal distribu-
tion suitable for the forecasted flow intuitively. Meanwhile,
according to Eq. (14), the three-dimensional joint distribu-
tion of Qo, Qb, and Qf needs to be constructed. The RMSE
criterion is used to select the copula function. Similarly, the

RMSE values for the eight members of each forecast horizon
were averaged.

Figure 6a and b show the RMSE values generated by fit-
ting the marginal distribution and copula function, respec-
tively. It can be seen from Fig. 6a that the lognormal distri-
bution has the lowest RMSE value among the five alternative
marginal distributions and is chosen as the sequence marginal
distribution type. As shown in Fig. 6b, the Student copula has
the lowest RMSE value in the 6–168 h forecast horizons and
is chosen to construct the three-dimensional joint distribution
function of Qo, Qb, and Qf.
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Table 3. Mean, minimum, and maximum values of NSE metrics for eight ensemble members in the validation period.

Forecast horizon [h] Mean Max Min Forecast horizon [h] Mean Max Min

6 0.96 0.97 0.96 90 0.93 0.95 0.91
12 0.97 0.97 0.96 96 0.93 0.95 0.91
18 0.97 0.98 0.97 102 0.92 0.94 0.90
24 0.97 0.97 0.97 108 0.92 0.94 0.91
30 0.96 0.97 0.95 114 0.93 0.95 0.91
36 0.96 0.97 0.95 120 0.92 0.94 0.90
42 0.96 0.97 0.95 126 0.91 0.93 0.89
48 0.96 0.96 0.95 132 0.91 0.93 0.90
54 0.94 0.95 0.93 138 0.92 0.94 0.90
60 0.94 0.95 0.93 144 0.91 0.94 0.89
66 0.95 0.96 0.93 150 0.90 0.93 0.88
72 0.94 0.96 0.93 156 0.90 0.93 0.89
78 0.93 0.95 0.92 162 0.91 0.93 0.89
84 0.93 0.95 0.92 168 0.91 0.93 0.88

Figure 6. The RMSE values of Qo, Qb, and Qf sequence marginal distributions and copula functions. 1, 2, . . . , 28 denote 6, 12, . . . , 168 h
forecast horizons, respectively.

4.2.2 Sliding window length selection

Since there is no specific method or rule to calculate the slid-
ing window length, this study adopts the CRPS metric as the
objective function and the trial-and-error method to select
the sliding window length. The range of window lengths is
[40,200].

To facilitate the selection of the sliding window lengths,
Fig. 7 shows the average CRPS values of the HUP-BMA and
CHUP-BMA methods for all forecast horizons with different
window lengths. It can be seen from Fig. 7 that the HUP-
BMA and CHUP-BMA methods all have the lowest CRPS

values at the sliding window length of 80. Therefore, 80 is the
optimal window length for the ensemble forecasting study.

4.2.3 Deterministic forecast results of ensemble
forecast

The HUP-BMA and CHUP-BMA methods use expected val-
ues of ensemble forecasts as deterministic forecast results. In
order to analyze the deterministic forecast performance of
ensemble forecasts, one member with the best forecast accu-
racy is selected for comparative analysis based on the crite-
ria of the relatively low RE and MAE values and relatively
high NSE values, which are composed of the forecast rainfall
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Figure 7. The average CRPS values of the CHUP-BMA and HUP-
BMA methods with different window lengths.

from ECWMF, the DA-LSTM-RED model, and the objective
function with mean square error to optimize the parameters.

Figure 8a–c show the NSE, MAE, and RE metrics of three
deterministic forecast results, respectively. It can be seen that
the NSE metrics show a decreasing trend and that the MAE
metrics show an increasing trend as the forecast horizon in-
creases, indicating a gradual decrease in forecast accuracy.

As shown in Fig. 8a, the NSE metrics of three forecast re-
sults are at least 0.92 during the 6–168 h forecast horizons.
The difference between the two is small, not more than 0.02.
Among them, the CHUP-BMA method has the best NSE
metrics. However, the advantage value gradually decreases as
the forecast horizon increases. The NSE metrics of the HUP-
BMA method are better than those of the selected forecast
member in most forecast horizons. From Fig. 8b, the max-
imum and mean values of MAE are 1923 and 1513 m3 s−1

for the CHUP-BMA method, 1999 and 1582 m3 s−1 for
the HUP-BMA method, and 2179 and 1719 m3 s−1 for the
selected forecast member, respectively. The CHUP-BMA
method has the best MAE metric, with the maximum and av-
erage reduction of 10.69 % and 4.36 % relative to the HUP-
BMA method, respectively. Meanwhile, the MAE values of
two ensemble forecasting methods are lower than those of the
selected forecast members. As shown in Fig. 8c, the maxi-
mum and mean of the RE metric are 0.02 % and−0.27 % for
the CHUP-BMA method, 2.97 % and 1.36 % for the HUP-
BMA method, and 1.20 % and 0.34 % for the selected fore-
cast member, respectively. The CHUP-BMA method can re-
duce the RE metrics of the selected forecast member in most
forecast horizons, while the HUP-BMA method has no ad-
vantage in the RE metric. Overall, ensemble forecast meth-
ods can somewhat improve the selected best member fore-
cast accuracy. The CHUP-BMA method’s expectation fore-
cast has the best accuracy, which indicates that the copula-
based CHUP-BMA method can improve the performance of
the HUP-BMA method in correcting errors.

To further analyze the accuracy of ensemble forecast
methods, seven floods with peaks exceeding 50 000 m3 s−1

during the 24 and 168 h forecast horizons in the validation
period (2017–2021) are selected for analyzing. The aver-
age relative error metric of peak (PRE) (Cui et al., 2022)

is added to analyze the forecasting performance for flood
peaks. Table 4 demonstrates the forecast evaluation metrics
for the seven flood events. With the increase in the forecast
horizon, the NSE metric shows a decreasing trend and the
RE and MAE metrics show an increasing trend, indicating a
gradual decrease in forecasting performance. It can be seen
from Table 4 that (1) in the 24 h forecast horizon, the fore-
cast accuracy of the two methods is similar for most flood
events and quality metrics, and (2) in the 168 h forecast hori-
zon, the forecast accuracy of the CHUP-BMA method is bet-
ter than that of the HUP-BMA method in most flood events
and quality metrics. The average values of NSE, RE, MAE,
and PRE are 0.88, −0.63 %, 2980 m3 s−1, and −4.55 % for
CHUP-BMA and 0.84, −2.38 %, 3188 m3 s−1, and −6.46 %
for HUP-BMA, respectively, indicating an overall improve-
ment of CHUP-BMA over HUP-BMA in forecasting accu-
racy.

To further demonstrate the accuracy of flood process fore-
casting and applicability of the two methods, four relatively
large flood events are selected for comparative analysis for
the 168 h forecast horizon (Fig. 9). In the 20180703 flood
event (Fig. 9a), the two methods have similar forecast per-
formance, underestimating the peak and rising water pro-
cesses and overestimating the receding water process. The
CHUP-BMA method has relatively low PRE and total runoff
error values. The HUP-BMA method accurately forecasts the
peak present time. In the 20200815 flood event (Fig. 9b), two
methods underestimate the flood peak and overestimate the
receding water process. The HUP-BMA method has a larger
flood peak error, and the CHUP-BMA method has a better fit-
ting performance. In the 20200820 flood event (Fig. 9c), two
methods overestimate the observed flood process, with the
CHUP-BMA method having the lower peak and total runoff
error than the HUP-BMA method. In the 20210907 flood
event (Fig. 9d), the CHUP-BMA and HUP-BMA methods
underestimate the flood peak and delay the forecast peak oc-
curring time. The former has smaller peak and water volume
error.

4.2.4 Probabilistic forecast results of ensemble forecast

Evaluation of forecast interval

Figure 10a–c show the CR, IW, and PUCI metrics for the
forecast interval, respectively, with a 90 % confidence level.
Figure 10a shows that during the 6–168 h forecasting period,
the maximum, minimum, and mean of the CR metric for the
forecast interval of the CHUP-BMA method are 0.92, 0.88,
and 0.89 and 0.93, 0.88, and 0.91 for the HUP-BMA method,
respectively. The CR values of the two methods’ forecast in-
tervals are close to or exceed the 90 % confidence level, indi-
cating that the forecast intervals are reliable.

It is obvious from Fig. 10b that the forecast interval width
tends to increase with the increase in the forecast horizon,
indicating that the forecast uncertainty gradually increases.
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Figure 8. Deterministic forecast evaluation metrics for the HUP-BMA, the CHUP-BMA, and the selected member with the best forecast
accuracy.

Table 4. Evaluation metrics for forecast flood events for 24 and 168 h forecast horizons.

Flood event Method Forecast horizon [h] Evaluation metric

NSE RE [%] MAE [m3 s−1] PRE [%]

20180703 HUP-BMA 24 0.93 1.95 1697 −3.29
(2018/7/1–7/7) 168 0.80 1.69 2709 −8.60

CHUP-BMA 24 0.94 3.63 1667 1.64
168 0.78 1.30 2988 −6.26

20180714 HUP-BMA 24 0.85 −1.38 2768 −8.04
(2018/7/11–7/17) 168 0.97 0.11 1101 0.88

CHUP-BMA 24 0.84 −1.97 2874 −7.70
168 0.95 −2.37 1587 −1.23

20200717 HUP-BMA 24 0.91 −7.02 3094 −10.02
(2020/7/14–7/20) 168 0.64 −11.67 5965 −19.00

CHUP-BMA 24 0.91 −4.75 3211 −8.80
168 0.75 −7.45 5255 −13.58

20200727 HUP-BMA 24 0.97 −0.22 1371 0.02
(2020/7/25–7/31) 168 0.84 −4.73 3044 −13.47

CHUP-BMA 24 0.94 4.40 1819 3.62
168 0.88 0.04 3155 −7.79

20200815 HUP-BMA 24 0.93 −1.31 2714 −8.21
(2020/8/12–8/17) 168 0.94 −1.96 2259 −9.25

CHUP-BMA 24 0.96 2.06 2062 −3.53
168 0.95 3.05 2167 −3.82

20200820 HUP-BMA 24 0.95 −0.79 2772 0.22
(2020/8/18–8/24) 168 0.92 5.74 3509 11.72

CHUP-BMA 24 0.96 2.58 2125 2.60
168 0.96 4.08 2816 6.06

20210907 HUP-BMA 24 0.94 −3.26 2231 −7.43
(2021/9/4–9/10) 168 0.87 −4.66 3042 −13.15

CHUP-BMA 24 0.97 −0.64 1722 −4.07
168 0.94 −0.99 2016 −6.82
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Figure 9. Forecasted flood events during the 168 h forecast horizon for the HUP-BMA and the CHUP-BMA methods.

Figure 10. Evaluation metrics of forecast intervals with the 90 % confidence level of the HUP-BMA and CHUP-BMA methods.

The maximum, minimum, and mean of the IW metrics for
the forecast interval of the CHUP-BMA method are 7820,
3337, and 6257 m3 s−1 and 8888, 4662, and 7345 m3 s−1 for
the HUP-BMA method, respectively. The forecast intervals
of the CHUP-BMA method are significantly narrower than
those of the HUP-BMA method, with the maximum and av-
erage reduction of 28.42 % and 15.32 %, respectively, which
indicates that the CHUP-BMA method can effectively reduce
the interval width and forecast uncertainty.

From Fig. 10c, the maximum, minimum, and mean of the
PUCI metric for the forecast interval of the CHUP-BMA
method are 6.24, 2.65, and 3.48 and 4.55, 2.35, and 2.95
for the HUP-BMA method, respectively. The CHUP-BMA

method has the higher PUCI values, indicating that the fore-
cast interval of the CHUP-BMA method reflects the forecast
uncertainty relatively well.

In summary, the CHUP-BMA outperforms the HUP-BMA
method under the premise that the CR values are close to or
exceed the 90 % confidence level. The CHUP-BMA method
has narrower forecast intervals and better performance in
quantifying forecast uncertainty. Although the HUP-BMA
method has a higher CR value, its IW value is larger and the
PUCI value is smaller for the long forecast horizon, indicat-
ing that the forecast interval is too conservative to reasonably
estimate the uncertainty range.
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In order to visually analyze the ability of the CHUP-BMA
method to quantify forecast uncertainty, the forecast intervals
with a 90 % confidence level of the HUP-BMA and CHUP-
BMA methods for 168 h forecast horizon in the 2020 flood
season are compared. It can be seen from Fig. 11 that the
forecast intervals of the two ensemble forecasts can cover
most of the observed flows and always cover the annual max-
imum flood peak, indicating that the forecast intervals are re-
liable. Meanwhile, the forecast intervals of the CHUP-BMA
method are remarkably narrower than those of the HUP-
BMA method, indicating that the forecast uncertainty of the
former is relatively low, which can provide more reasonable
risk information for TGR flood control decisions.

Evaluation of overall probabilistic forecast

Figure 12 shows the probability integral transform (PIT) his-
tograms of the HUP-BMA and CHUP-BMA methods for the
24, 96, and 168 h forecast horizons. It can be significantly
observed that the PIT plots of the HUP-BMA method show
an upside-down-U-shaped distribution, which indicates that
the forecast distribution is over-dispersed and overestimates
the forecast uncertainty, explaining the phenomenon of wide
intervals. Meanwhile, the PIT plot of CHUP-BMA is more
uniformly distributed than that of the HUP-BMA method,
which can obtain a better calibration performance.

Meanwhile, Fig. 13a–c show the evaluation metrics of
α_index, IGS, and CRPS metrics for the two ensemble prob-
abilistic forecasts, respectively. It can be seen from Fig. 13a
that the α_index metrics of the CHUP-BMA method-based
probabilistic forecasts are significantly higher than those of
the HUP-BMA method in the 6–168 h forecast horizons.
Among them, the maximum, minimum, and mean of the
α_index metric for CHUP-BMA method-based probabilis-
tic forecasts are 0.98, 0.93, and 0.97 and 0.95, 0.88, and 0.93
for the HUP-BMA method, respectively. The α_index met-
ric of the CHUP-BMA method-based probabilistic forecast
is closer to the perfect value of 1, indicating that its probabil-
ity forecast is the more reliable one.

It can be seen from Fig. 13b that the IGS values of the
two methods gradually increase with the increase in the fore-
cast horizon, indicating that the forecast uncertainty gradu-
ally increases. The maximum, minimum, and mean of the
IGS metric for the CHUP-BMA method are 9.10, 8.33, and
8.87 and 9.16, 8.59, and 8.98 for the HUP-BMA method, re-
spectively. It can be seen that the IGS metrics of the CHUP-
BMA method are consistently lower than those of the HUP-
BMA method, which indicates that the CHUP-BMA method
has better ensemble forecast performance relative to the
HUP-BMA method by assigning a higher probability density
around the actual values.

As shown in Fig. 13c, the CRPS values of the two meth-
ods are lower than the MAE values of the selected member
(Fig. 8b), indicating that the probabilistic forecasts are ef-
fective and can fit the probabilistic distribution of the target

values well. Meanwhile, during the 6–168 h forecast hori-
zons, the maximum, minimum, and mean of the CRPS metric
for the CHUP-BMA method are 1356, 625, and 1074 m3 s−1

and 1425, 662, and 1188 m3 s−1 for the HUP-BMA method,
respectively. It can be seen that the CRPS values of the
CHUP-BMA method are lower than those of the HUP-BMA
method, with a maximum and average reduction of 17.86 %
and 9.71 %, respectively. It can be seen that the CHUP-BMA
method can fit the posterior distribution of the actual values
better and effectively improve the probabilistic forecast per-
formance of the HUP-BMA method.

From Table 5, it can be seen that the t statistic values at
the 0.05 significance level for all three metrics are higher
than the threshold value, indicating that there is a significant
difference between the scores of the CHUP-BMA and HUP-
BMA methods; i.e., the CHUP-BMA method is significantly
better than the HUP-BMA method for ensemble forecasting
metrics and performance.

In summary, the CHUP-BMA method considers the influ-
ence of the initial state on the ensemble forecast, bypasses the
normal quantile transformation of the HUP-BMA method,
derives the posterior distribution of the target flow without
restrictions, and improves the probabilistic forecast perfor-
mance of the HUP-BMA method. Therefore, the ensemble
forecasting by CHUP-BMA method can provide more rea-
sonable and reliable risk information for the TGR.

5 Conclusion and prospects

In this study, we propose a novel CHUP-BMA method,
which can not only consider the influence of the initial state
on the ensemble forecast, but also avoid the assumption of
normal distribution in the HUP-BMA method and derive the
posterior distribution function more accurately. An ensemble
forecast scheme that consists of two forecasted precipitation,
two hydrological models, and two objective functions of pa-
rameter calibration was established. The ensemble forecast-
ing performance of the HUP-BMA and CHUP-BMA meth-
ods was discussed from the perspective of deterministic and
probabilistic forecasts. The flood ensemble forecasting ex-
periment with 6–168 h forecast horizons was conducted in
the Xiangjiaba–TGR dam site interval basin. The main con-
clusions were summarized as follows:

1. The two ensemble forecasting methods can improve
the members’ forecast accuracy. The proposed CHUP-
BMA method performs better than the HUP-BMA
method, and the MAE metric is reduced by a maximum
of 10.69 % within 6–168 h forecast horizons.

2. The coverage rate of the forecast interval of the CHUP-
BMA method is close to or exceeds the specified 90 %
confidence level, and the forecast interval is signifi-
cantly narrower than that of the HUP-BMA method,
with a maximum reduction of 28.42 % during 6–168 h
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Figure 11. Forecast intervals with the 90 % confidence level for the HUP-BMA and CHUP-BMA methods from 1 July 08:00 LT to
24 September 2020 08:00 LT.

Figure 12. The probability integral transform (PIT) histograms of the HUP-BMA and CHUP-BMA methods for the ensemble forecasts of
the 24, 96, and 168 h forecast horizons.

forecast horizons, which can effectively reduce the fore-
cast uncertainty.

3. The probabilistic forecast of the CHUP-BMA method
has better reliability and sharpness, and its CRPS val-
ues are reduced by a maximum of 17.86 % relative to
the HUP-BMA method, which indicates that the CHUP-

BMA method can fit the posterior distribution of the ac-
tual values better.

4. The CHUP-BMA method can derive the posterior dis-
tribution of the target flow without restriction under the
condition that the initial constraint is considered, which
brings the BMA method closer to perfection. Therefore,
it is more suitable for flood forecasting in the 6–168 h
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Figure 13. Evaluation metrics of α_index, IGS, and CRPS metrics of two ensemble forecasts. The α_index metric can assess the reliability
of ensemble forecasts, while the IGS and CRPS metrics can reflect the reliability and sharpness of the ensemble forecast. The closer the
α_index metric is to 1 and the smaller the IGS and CRPS metrics are, the better the performance of the ensemble forecast.

Table 5. T test results of ensemble forecast metrics at the 0.05 significance level.

Metric α_index IGS CRPS

HUP-BMA CHUP-BMA HUP-BMA CHUP-BMA HUP-BMA CHUP-BMA

Mean 0.93 0.97 8.98 8.87 1188 1074
Variance 0.0003 0.0001 0.02 0.03 32 247 33 716
Degree of freedom 46.00 52.00 54.00
t statistic −10.76 2.36 2.34
t threshold 1.68 1.67 1.67
Difference significance analysis Significant Significant Significant

forecast horizons and provides reliable risk information
for reservoir scheduling decision-making.

The present study focuses on flood ensemble forecasting
for the TGR 6–168 h forecast horizons. Future studies can
explore the ensemble forecasting performance of the pro-
posed CHUP-BMA method for longer forecast horizons and
further validate the effectiveness of the proposed method in
global basins. Meanwhile, the vine copula, which facilitates
multivariate joint distribution modeling, can be considered
for constructing the CHUP-BMA method and exploring its
advantages and effectiveness in ensemble flood forecasting.
The effective way or method of guiding reservoir schedul-
ing based on ensemble forecasts can also be further explored
so that ensemble forecasts can be widely used in decision-
making.

Appendix A: The model parameters for ensemble
membership

We set the number of neural network layers and neurons to
be the same for the encoding and decoding processes, with
trial-and-error preferences for the number of hidden layers,
neurons, and dropout. Meanwhile, the batch size, epoch, and

learning rate are set to 100, 500, and 0.001, respectively. The
different model parameters are shown in Table A1.

Table A1. The model parameters for ensemble membership.

Ensemble member type Neuron Hidden Dropout
layers

ECMWF&DA-LSTM-RED&MSE 64 1 0.001
ECMWF&LSTM-RED&MSE 64 1 0.001
ECMWF&DA-LSTM-RED&MAE 32 1 0.01
ECMWF&LSTM-RED&MAE 64 1 0.1
HBYRWRC&DA-LSTM-RED&MSE 32 1 0.1
HBYRWRC&LSTM-RED&MSE 32 1 0.001
HBYRWRC&DA-LSTM-RED&MAE 64 1 0.001
HBYRWRC&LSTM-RED&MAE 48 1 0.01
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