Articles | Volume 28, issue 12
https://doi.org/10.5194/hess-28-2705-2024
https://doi.org/10.5194/hess-28-2705-2024
Research article
 | 
27 Jun 2024
Research article |  | 27 Jun 2024

To bucket or not to bucket? Analyzing the performance and interpretability of hybrid hydrological models with dynamic parameterization

Eduardo Acuña Espinoza, Ralf Loritz, Manuel Álvarez Chaves, Nicole Bäuerle, and Uwe Ehret

Related authors

Unveiling the Limits of Deep Learning Models in Hydrological Extrapolation Tasks
Sanika Baste, Daniel Klotz, Eduardo Acuña Espinoza, Andras Bardossy, and Ralf Loritz
EGUsphere, https://doi.org/10.5194/egusphere-2025-425,https://doi.org/10.5194/egusphere-2025-425, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Technical note: An approach for handling multiple temporal frequencies with different input dimensions using a single LSTM cell
Eduardo Acuña Espinoza, Frederik Kratzert, Daniel Klotz, Martin Gauch, Manuel Álvarez Chaves, Ralf Loritz, and Uwe Ehret
EGUsphere, https://doi.org/10.5194/egusphere-2024-3355,https://doi.org/10.5194/egusphere-2024-3355, 2024
Short summary
CAMELS-DE: hydro-meteorological time series and attributes for 1582 catchments in Germany
Ralf Loritz, Alexander Dolich, Eduardo Acuña Espinoza, Pia Ebeling, Björn Guse, Jonas Götte, Sibylle K. Hassler, Corina Hauffe, Ingo Heidbüchel, Jens Kiesel, Mirko Mälicke, Hannes Müller-Thomy, Michael Stölzle, and Larisa Tarasova
Earth Syst. Sci. Data, 16, 5625–5642, https://doi.org/10.5194/essd-16-5625-2024,https://doi.org/10.5194/essd-16-5625-2024, 2024
Short summary
Analyzing the generalization capabilities of hybrid hydrological models for extrapolation to extreme events
Eduardo Acuna Espinoza, Ralf Loritz, Frederik Kratzert, Daniel Klotz, Martin Gauch, Manuel Álvarez Chaves, Nicole Bäuerle, and Uwe Ehret
EGUsphere, https://doi.org/10.5194/egusphere-2024-2147,https://doi.org/10.5194/egusphere-2024-2147, 2024
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
Simulating the Tone River eastward diversion project in Japan carried out 4 centuries ago
Joško Trošelj and Naota Hanasaki
Hydrol. Earth Syst. Sci., 29, 753–766, https://doi.org/10.5194/hess-29-753-2025,https://doi.org/10.5194/hess-29-753-2025, 2025
Short summary
Lack of robustness of hydrological models: a large-sample diagnosis and an attempt to identify hydrological and climatic drivers
Léonard Santos, Vazken Andréassian, Torben O. Sonnenborg, Göran Lindström, Alban de Lavenne, Charles Perrin, Lila Collet, and Guillaume Thirel
Hydrol. Earth Syst. Sci., 29, 683–700, https://doi.org/10.5194/hess-29-683-2025,https://doi.org/10.5194/hess-29-683-2025, 2025
Short summary
Achieving water budget closure through physical hydrological process modelling: insights from a large-sample study
Xudong Zheng, Dengfeng Liu, Shengzhi Huang, Hao Wang, and Xianmeng Meng
Hydrol. Earth Syst. Sci., 29, 627–653, https://doi.org/10.5194/hess-29-627-2025,https://doi.org/10.5194/hess-29-627-2025, 2025
Short summary
Heavy-tailed flood peak distributions: what is the effect of the spatial variability of rainfall and runoff generation?
Elena Macdonald, Bruno Merz, Viet Dung Nguyen, and Sergiy Vorogushyn
Hydrol. Earth Syst. Sci., 29, 447–463, https://doi.org/10.5194/hess-29-447-2025,https://doi.org/10.5194/hess-29-447-2025, 2025
Short summary
State updating of the Xin'anjiang model: joint assimilating streamflow and multi-source soil moisture data via the asynchronous ensemble Kalman filter with enhanced error models
Junfu Gong, Xingwen Liu, Cheng Yao, Zhijia Li, Albrecht H. Weerts, Qiaoling Li, Satish Bastola, Yingchun Huang, and Junzeng Xu
Hydrol. Earth Syst. Sci., 29, 335–360, https://doi.org/10.5194/hess-29-335-2025,https://doi.org/10.5194/hess-29-335-2025, 2025
Short summary

Cited articles

Acuna Espinoza, E., Loritz, R., and Álvarez Chaves, M.: KIT-HYD/Hy2DL: Preview release for submission (1.0), Zenodo [code and data set], https://doi.org/10.5281/zenodo.11103634, 2024. 
Addor, N., Newman, A. J., Mizukami, N., and Clark, M. P.: The CAMELS data set: catchment attributes and meteorology for large-sample studies, Hydrol. Earth Syst. Sci., 21, 5293–5313, https://doi.org/10.5194/hess-21-5293-2017, 2017. a
Beck, H., van Dijk, A., Roo, A., Miralles, D., McVicar, T., Schellekens, J., and Bruijnzeel, L.: Global-scale regionalization of hydrologic model parameters, Water Resour. Res., 52, 3599–3622, https://doi.org/10.1002/2015WR018247, 2016. a
Beck, H. E., Pan, M., Lin, P., Seibert, J., van Dijk, A. I. J. M., and Wood, E. F.: Global Fully Distributed Parameter Regionalization Based on Observed Streamflow From 4,229 Headwater Catchments, J. Geophys. Res.-Atmos., 125, e2019JD031485, https://doi.org/10.1029/2019JD031485, 2020. a
Bergström, S.: The HBV model – Its structure and applications (RH No. 4; SMHI Reports), Swedish Meteorological and HydrologicalInstitute (SMHI), https://www.smhi.se/en/publications/the-hbv-model-its-structure-and-applications-1.83591 (last access: 23 June 2024), 1992. a
Download
Short summary
Hydrological hybrid models promise to merge the performance of deep learning methods with the interpretability of process-based models. One hybrid approach is the dynamic parameterization of conceptual models using long short-term memory (LSTM) networks. We explored this method to evaluate the effect of the flexibility given by LSTMs on the process-based part.
Share