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Abstract. Hydrological hybrid models have been proposed
as an option to combine the enhanced performance of deep
learning methods with the interpretability of process-based
models. Among the various hybrid methods available, the
dynamic parameterization of conceptual models using long
short-term memory (LSTM) networks has shown high po-
tential. We explored this method further to evaluate specifi-
cally if the flexibility given by the dynamic parameterization
overwrites the physical interpretability of the process-based
part. We conducted our study using a subset of the CAMELS-
GB dataset. First, we show that the hybrid model can reach
state-of-the-art performance, comparable with LSTM, and
surpassing the performance of conceptual models in the
same area. We then modified the conceptual model structure
to assess if the dynamic parameterization can compensate
for structural deficiencies of the model. Our results demon-
strated that the deep learning method can effectively com-
pensate for these deficiencies. A model selection technique
based purely on the performance to predict streamflow, for
this type of hybrid model, is hence not advisable. In a sec-
ond experiment, we demonstrated that if a well-tested model
architecture is combined with an LSTM, the deep learning
model can learn to operate the process-based model in a con-
sistent manner, and untrained variables can be recovered. In
conclusion, for our case study, we show that hybrid models
cannot surpass the performance of data-driven methods, and
the remaining advantage of such models is the access to un-
trained variables.

1 Introduction

Rainfall–runoff models are useful tools to support decision-
making processes related to water resources management
and flood protection. Over the past decades, hydrological
conceptual models have emerged as important tools for these
purposes, finding widespread usage in academia, industry,
and national weather services (Boughton and Droop, 2003).
These models, known for their simplicity, computational ef-
ficiency, and ability to generalize, encode our understanding
of hydrological processes within a fixed model structure. By
connecting the various macroscopic storages (also known as
buckets) through a network of fluxes, conceptual models try
to emulate the internal processes occurring within a catch-
ment. The accurate representation of these processes relies
on calibrated parameters, which are adjusted to achieve con-
sistency with observed data. Examples of widely used con-
ceptual models include Hydrologiska Byråns Vattenavdel-
ning (HBV) (Bergström, 1992), Sacramento (Burnash et al.,
1973), GR4J (Perrin et al., 2003), Precipitation-Runoff Mod-
eling System (PRMS) (Leavesley et al., 1983), and TOP-
MODEL (Beven and Kirkby, 1979), to name a few. Addition-
ally, there are software tools available, such as Raven (Craig
et al., 2020) and Superflex (Dal Molin et al., 2021), which fa-
cilitate the creation of customized models tailored to specific
basin characteristics and key hydrological processes.

Despite the widespread use of conceptual models,
data-driven techniques, particularly long short-term mem-
ory (LSTM) (Hochreiter and Schmidhuber, 1997) networks,
have recently shown the potential to outperform conceptual
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models, particularly in large sample model comparison stud-
ies (Kratzert et al., 2019b; Lees et al., 2021; Feng et al.,
2020). The improvement in performance can be attributed,
partly, to the inherent flexibility of LSTM networks (LSTMs
hereafter), which surpasses the constraints imposed by fixed
model structures by effectively mapping connections and
patterns through optimization techniques. However, the char-
acteristic that allows LSTMs to excel in performance has
also sparked criticism regarding their interpretability (Reich-
stein et al., 2019), owing to the fact that weights and biases
in LSTMs lack clear semantic meaning, making it challeng-
ing to discern the underlying reasons for their decision and
predictions. In recent years, notable advancements in linking
hydrological concepts to the internal states of LSTMs have
been made (Kratzert et al., 2019a; Lees et al., 2022), and we
seek to further contribute in this research direction.

Reichstein et al. (2019) and Shen et al. (2023) indicate that
combining process-based environmental models with ma-
chine learning (ML) approaches, into so-called hybrid mod-
els, can harness the strengths of both methodologies, lever-
aging the improved performance of data-driven techniques
while retaining the interpretability and consistency offered
by physical models. Among the various approaches pro-
posed by the authors, one method involves the parameteriza-
tion of physical models using data-driven techniques. Kraft
et al. (2022) applied this method, with the idea that replac-
ing poorly understood or challenging-to-parameterize pro-
cesses with ML models can effectively reduce model biases
and enhance local adaptivity. Moreover, their study demon-
strated that the hybrid approach achieved comparable perfor-
mance to process-based models. Feng et al. (2022) followed
a similar procedure, in which the parameters of an HBV
model were dynamically estimated using an LSTM network.
Their study convincingly demonstrates the effectiveness of
this approach, revealing its ability to achieve state-of-the-art
performance that directly rivals purely data-driven methods
when applied to the Catchment Attributes and Meteorology
for Large-sample Studies (CAMELS) dataset (Addor et al.,
2017) in the United States (CAMELS-US). In their study,
Feng et al. (2022) implemented both static and dynamic pa-
rameterization techniques and observed that the latter led to
slightly improved performance.

The dynamic parameterization of a process-based model is
not a new idea. Lan et al. (2020) indicate that, historically, the
most common approach to accomplish this is the calibration
for different sub-periods. They support this statement by ref-
erencing over 20 studies on this subject published in the last
15 years. According to those authors, this method divides the
data into sub-periods, considering seasonal characteristics or
clustering approaches and proposing a set of parameters for
each sub-period. The idea is to capture the temporal varia-
tions of the catchment characteristics.

Using an LSTM to give a dynamic parameterization of a
process-based model may be seen as a generalization of this
process. Specifically, one uses a recurrent neural network that

analyzes a given sequence length, so the proposed parameters
are context informed and reflect the current state of the sys-
tem. The main difference is that the data-driven parameter-
ization is much more flexible, as a custom parameterization
can be proposed for each prediction, and it is not constrained
to a typical small set of predefined sub-periods. Also, one can
include as input to the LSTM any information that is consid-
ered useful to make an informed parameter inference, even if
this is not used later in the conceptual part of the model.

However, it is important to note that Feng et al. (2022)
warn about the flexibility of LSTM networks when used for
dynamic parameterizations. They posed the hypothesis that,
while applying dynamic parameterization increases the like-
lihood of achieving high performance, there is a risk of com-
promising the physical significance of the model, potentially
resulting in the system behaving more like an LSTM vari-
ant rather than a hydrologically meaningful model. In other
words, model deficits and ill-defined process descriptions
might be compensated by the LSTM. Moreover, Frame et al.
(2022) argue that adding any type of constraint, physically
based or otherwise, to a data-driven model is only beneficial
when such constraints contribute to the optimization process.

Motivated by the outcomes achieved in the aforemen-
tioned articles, our study aims to dig deeper into the cou-
pling of LSTM and conceptual models. We believe that dy-
namic parameters provided by an LSTM allow the concep-
tual model to not only adapt to changes in the hydrological
regime, which is physically reasonable (Loritz et al., 2018),
but also to compensate for inherent deficiencies or oversim-
plifications within the model structure. More specifically, and
guided by the warning given by Feng et al. (2022) and Frame
et al. (2022), our study aims to address the following research
questions:

1. Do conceptual models serve as an effective regulariza-
tion mechanism for the dynamic parameterization of
LSTMs?

2. Does the data-driven dynamic parameterization com-
promise the physical interpretability of the conceptual
model?

To address the research questions at hand, we have struc-
tured our article as follows. In Sect. 2 we describe the struc-
ture and training process of the conceptual, data-driven, and
hybrid models employed in this study. Additionally, we out-
line the details of the dataset used to train and test the
rainfall–runoff models. In Sect. 3, after proving that the hy-
brid model performance is comparable with the LSTM, we
conduct experiments to answer our first research question.
By systematically modifying the conceptual model, we as-
sess how different forms of regularization affect the overall
performance of the hybrid model. This will allow us to better
understand the effect of different conceptual models as reg-
ularization and the interaction between the data-driven and
conceptual components. Furthermore, to address the second
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research question, we analyze the internal states of the con-
ceptual model to evaluate how much physical interpretability
the different variants of our conceptual model are keeping.
Finally, we summarize our key findings in Sect. 4.

2 Data and methods

To answer the research questions stated in the previous
section, we compared three types of models: purely data-
driven (LSTM), stand-alone process-based models, and the
hybrid approach. The first two types served as baselines in
the different experiments we performed for the latter.

The first subsections of this section present an overview of
the dataset utilized for training and testing our models. The
second subsection describes the dataset used to evaluate the
internal states of our process-based models. The last three
segments explain the structures of the different models.

2.1 Dataset

To train and test our rainfall–runoff models, we used the
CAMELS-GB dataset (Coxon et al., 2020a). This dataset
contains information about river discharge, catchment at-
tributes, and meteorological time series for 671 catchments
in Great Britain.

To facilitate the comparison of our results with the stud-
ies of Lees et al. (2021, 2022), we maintained the periods
for training (1 October 1980–31 December 1997), validation
(1 October 1975–30 September 1980), and testing (1 Jan-
uary 1998–31 December 2008) from their studies.

2.2 ERA5-LAND

As outlined in the Introduction, one of the primary objec-
tives of this study is to assess the physical consistency of our
hybrid model. To achieve this, we conducted several tests,
one of which involved comparing the unsaturated zone reser-
voir of the conceptual model with soil moisture estimates
(details in Sect. 3.5). Following the procedure proposed by
Lees et al. (2022)), we compared our model’s results with
data from ERA5-LAND (Muñoz Sabater et al., 2021). This
dataset, based on a 9 km× 9 km gridded format, is a land
component reanalysis of the ERA5 dataset (Hersbach et al.,
2020). According to Lees et al. (2022), reanalysis data offer
several advantages, including longer time series availability,
easy transferability to basin-average quantities (consistent
with the CAMELS-GB process) due to the gridded format,
and global coverage, enabling its application in various loca-
tions. As our study region and testing period aligns with that
of Lees et al. (2022), we utilized the NetCDF file provided
by the authors, which was publicly accessible. We then ex-
tracted the values and normalized the data to a [0–1] range for
comparative purposes. This normalization approach is con-
sistent with Ehret et al. (2020), where they followed a simi-

lar process to assess the realism of the unsaturated zone soil
moisture dynamics of a conceptual hydrological model.

ERA5-Land contains information about soil water vol-
ume at four different levels. Level 1 (swvl1) provides infor-
mation at a depth of 0 to 7 cm, level 2 (swvl2) from 7 to
28 cm, level 3 (swvl3) from 28 to 100 cm, and level 4 (swvl4)
from 100 to 289 cm. When using this information to evaluate
our models, we consistently found higher correlations for all
cases when compared against swvl3. Therefore, the results
reported in Sect. 3.5 are associated with that depth.

2.3 Conceptual hydrological model

In this study, we employ a conceptual model named the Sim-
ple Hydrological Model (SHM) (Ehret et al., 2020) that is in
its essence a slightly altered HBV model. A description of the
model architecture and its internal working can be found in
Appendix A. We used the SHM both as a stand-alone bench-
mark and as an integral component of the hybrid model.

To establish a benchmark for comparing our data-driven
and hybrid methods, we performed individual calibrations of
the SHM for each specific basin of interest. This approach
is in line with Kratzert et al. (2019b, 2024) and Nearing
et al. (2021), who indicate that conceptual models generally
perform better when calibrated at the individual basin level
rather than using a regional calibration approach. To ensure
a fair comparison and mitigate potential calibration biases
that may favor our hybrid model, we employed two estab-
lished calibration methods and selected the one that yielded
the best performance for each basin. We used “shuffled com-
plex evolution” (SCE-UA) (Duan et al., 1994) and “differen-
tial evolution adaptive metropolis” (DREAM) (Vrugt, 2016),
both implemented within the SPOTPY (Statistical Parameter
Optimization Tool for Python) library (Houska et al., 2015).

2.4 LSTM

As mentioned in previous sections, we incorporated an
LSTM model as a benchmark for our comparison. For a com-
prehensive understanding of the internal workings of LSTM
networks, we refer to the work by Kratzert et al. (2018).
In this subsection, we will provide an overview of the key
aspects required to comprehend the training process. Our
data-driven model was implemented using the PyTorch li-
brary (Paszke et al., 2019), and the corresponding code can
be found in the repository accompanying this paper.

The model architecture and hyperparameters align with
Lees et al. (2021) and Lees et al. (2022). We used a single
LSTM layer with 64 hidden states, a dropout rate of 0.4, an
initial learning rate of 1× 10−3, and a sequence length of
365 d. The batch size was set to 256, and the initial bias of
the forget gate was set to 3. Additionally, the Adam algorithm
(Kingma and Ba, 2014) was used for the optimization.

We also maintained as input three dynamic forcing vari-
ables (precipitation, potential evapotranspiration, and tem-
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perature), along with the same 22 static attributes proposed in
the original studies, which encode key characteristics of the
catchments. The model output was compared against the ob-
served specific discharge. Following common ML practices,
both the input and output data were standardized using the
global mean and standard deviation of the training dataset.

To train the LSTM, we used the basin-averaged Nash–
Sutcliffe efficiency (NSE∗) loss function proposed by
Kratzert et al. (2019b). This function divides the squared er-
ror between the modeled and observed output by the vari-
ance of the specific discharge series associated with each
respective basin in the training period. As described by the
authors, NSE∗ provides an objective function that reduces
bias towards large humid basins during the optimization pro-
cess, avoiding the underperformance of the regional model in
catchments with lower discharges. Given that we are training
our regional model for a batch sizeN = 256, the training loss
was calculated according to Eq. (1):

NSE∗ =
1
N
·

N∑
i=1

(
yobs
i − y

sim
i

)2
(si + ε)

2 , (1)

where yobs
i is the observed discharged (standardized),

ysim
i the simulated discharged (standardized), si the standard

deviation of the flow series (in training period) for the basin
associated with element i, and ε is a numerical stabilizer
(ε = 0.1) so that the loss function remains stable even when
basins with low-flow standard deviations are considered.

2.5 Hybrid model: LSTM+SHM

Our hybrid model was created by combining an LSTM net-
work, with the same architecture as the one from the previous
section, with the SHM. The LSTM network predicts a set of
values that serve as parameters for the SHM for each simu-
lation time step. These parameter values are then utilized by
the SHM to simulate the discharge, as indicated in Fig. 1.

An alternative way to interpret the hybrid model is to see
the conceptual model as a head layer on the LSTM. As we
see in Table 1, in our stand-alone LSTM we require a dense
layer (e.g., fully connected linear layer) to translate the in-
formation contained in the hidden states into a single output
signal. In the LSTM+SHM case, a dense layer is still used to
convert the hidden states into as many output signals as pa-
rameters in the conceptual model. However, these signals are
further processed using the conceptual model to obtain the
final discharge. One of the hypotheses that will be tested in
the following sections is if further processing of the signals
through the conceptual structure allows us to recover infor-
mation about non-target variables, e.g., soil moisture.

Appendix B provides a comprehensive explanation of the
training process for the hybrid models, emphasizing the dis-
tinctions from the training approach utilized for the LSTM
models.

Table 1. Visualization of hybrid models as head layers of data-
driven methods.

Model Neural Head layer Output
network

LSTM LSTM Dense Q

LSTM+SHM LSTM Dense+SHM Q

LSTM+Bucket LSTM Dense+Bucket Q

LSTM+NonSense LSTM Dense+NonSense Q

3 Results and discussion

3.1 Benchmarking our LSTM model

Kratzert et al. (2024) explains the importance of using com-
munity benchmarks to test if new ML pipelines are config-
ured appropriately. They suggest that in the case that the re-
searchers decide to use their own models or different setups,
they should first recreate standard benchmarks to make sure
that their model is up to date with the current state of the art
and then make the respective changes.

Considering that the stand-alone LSTM model was going
to be used as a baseline for all our experiments, we trained
our LSTM model architecture on the benchmark established
by Lees et al. (2021) for CAMELS-GB and compared its
performance against their model. To further validate our ar-
chitecture, we also trained on the benchmark established by
Kratzert et al. (2019b) for CAMELS-US and again compared
the performance of our model against theirs.

As we can see in Fig. 2, the cumulative distribution func-
tions (CDFs) for the Nash–Sutcliffe efficiency (NSE) of the
different basins are very much alike. For the case of Great
Britain, Lees’ model achieved a median NSE of 0.88, while
ours reached 0.87. In the case of the USA, Kratzert’s bench-
mark reported a median NSE of 0.759, while our model
got 0.74. The small differences can be explained by the fact
that both benchmark studies make the calculation based on
an ensemble of various LSTM models, while we only pre-
sented the results for a single run. However, the overall agree-
ment validates our model’s pipeline and increases the confi-
dence in the results.

3.2 LSTM vs. LSTM+SHM

Once we tested our stand-alone LSTM pipeline, the next task
was to develop our hybrid model (LSTM+SHM). By follow-
ing the data and methods outlined in Sect. 2, we achieved a
performance comparable to that of an LSTM. When evalu-
ated across the 669 basins in the testing period, the LSTM
reported a median NSE of 0.87, while the LSTM+SHM
yielded a value of 0.84. Figure 3a displays a CDF–NSE
curve, clearly demonstrating the close performance between
both models. In the same figure, we can see that both models
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Figure 1. Structure of the hybrid hydrological model: LSTM+SHM.

Figure 2. Cumulative density functions of the NSE comparing our
LSTM model with current state-of-the-art benchmarks.

outperformed the basin-wide calibration of the SHM model,
which achieved a median NSE of 0.76.

One point worth explaining is the decreased performance
of our hybrid model compared to the LSTM in the low-
performing basins. More specifically, the LSTM reported
only 3 basins with NSE lower than zero, while the hybrid
reported 44. Of these 44 basins, 37 were also the lowest-
performing basins in the stand-alone SHM model, which
suggests a problem with the input data. The LSTM network
can account for biases in the forcing variables (e.g., precipita-
tion or evapotranspiration) because mass conservation is not
enforced (Frame et al., 2023). However, both the conceptual
and the hybrid approaches have a mass conservative struc-
ture, so the input quantities cannot be adjusted. This problem
was also reported by Feng et al. (2022) when applied to cer-
tain basins in CAMELS-US. It is important to highlight that
this issue was observed in under 7 % (44/669) of the data,
and in most cases, the performance of the hybrid approach is
fully comparable with the LSTM.

In summary, we observed comparable performance be-
tween the LSTM and LSTM+SHM models. Moreover, both
models outperformed the SHM-only model, which indicates
that the dynamic parameterization given by the LSTM is able
to improve the predictive capability of the model. This find-
ing aligns with Feng et al. (2022), where they reached a simi-
lar conclusion despite using a different conceptual model and
applying it to a different dataset. However, as described in
the Introduction, we are interested in looking at the LSTM–
SHM interaction to evaluate if the good performance of the
hybrid model is due to the right reasons (Kirchner, 2006) and
based on a consistent interaction between the two model ap-
proaches, or if the LSTM network is overwriting the concep-
tual element. This will be explored in the following section.

3.3 Effect of different regularization mechanisms

The first step to answer the aforementioned research ques-
tion was to evaluate if the dynamic parameterization given
by the LSTM can overcome the regularization imposed by
the conceptual model. For this, we conducted two experi-
ments, in which the structure of the conceptual model was
modified. In the first experiment (see Fig. 4a), we substituted
the SHM with a single linear reservoir, leading to the re-
moval of most hydrological processes typically represented
in a conceptual model through different reservoirs and inter-
connecting fluxes. A single bucket model only assures mass
conservation and a dissipative effect in which the input is
lagged based on the recession coefficient in combination with
a macroscopic storage. As observed in Fig. 4a, the model in-
volves two calibration parameters: the recession parameter k
and a factor for the evapotranspiration term (α). Similar to
the previous cases, we defined predefined ranges in which
the parameters were allowed to vary, with k in the range [1–
500] and α in the range [0–1.5]. Our initial expectation was
that if our head layer (a) restricts the flexibility of the LSTM
because the output of the LSTM (after our dense layer) is
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Figure 3. Cumulative density functions of the NSE for the different models. (a) CDF was calculated using all 669 basins; (b) CDF was
calculated using a subset of 60 basins.

Figure 4. Structure of the different regularization mechanisms: (a) LSTM+Bucket; (b) LSTM+NonSense.

further passed through a one-process (single bucket) layer
and (b) the one-process layer encodes almost no hydrologi-
cal process understanding, then the performance of the model
would drop. However this was not the case. The performance
of this hybrid model (LSTM+Bucket) is fully comparable
to that of the LSTM and LSTM+SHM, achieving a median
NSE of 0.86 (see Fig. 3a). For reference, when calibrated
without dynamic parameterization, the median NSE of the
stand-alone bucket model drops to 0.59. This finding indi-
cates that the LSTM’s dynamic parameterization effectively
compensates for the missing processes, and the regulariza-
tion provided by the single bucket is insufficient to impact
the model’s performance.

Given the insights gained from the LSTM+Bucket ex-
periment, we conducted a second experiment introducing an
intentionally implausible structure in the conceptual model,
referred to as LSTM+NonSense. As shown in Fig. 4b, we

removed the fast-flow reservoir, creating a single flow path
comprising the baseflow, interflow, and unsaturated zone,
in that specific order. We also maintained the parameter
ranges specified in Table B1, which restrict the baseflow
reservoir to have smaller recession times than the interflow.
Then, only after the water has been routed through these two
reservoirs can it enter the unsaturated zone, where the out-
flow is no longer controlled by a recession parameter but
by an exponential relationship depending on su_max and β.
The stand-alone NonSense model yielded a median NSE
of 0.51. However, after applying dynamic parameterization,
the LSTM+NonSense achieved a median NSE of 0.80 (see
Fig. 3a), improving the stand-alone NonSense by over 50 %
and surpassing the SHM model in 60 % of the basins. During
the test, we observed that the optimization routines tried to
reduce the recession parameter of the baseflow and interflow
to avoid the initial lagging. This caused the optimized pa-
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Figure 5. Specific discharge series in the testing period for basin
ID 15006, simulated by the different models.

rameters to reach the lower limits, which might have limited
an additional performance increase. Expanding the param-
eter ranges might lead to a further performance gain; how-
ever, this would come at the cost of reducing the differences
between the reservoirs, which contradicts the objective of
the experiment. Taken together, these experiments provided
valuable insights into addressing the first research question
posed in the Introduction: can conceptual models effectively
serve as a regularization mechanism for the dynamic param-
eterization given by the LSTMs? Based on our results, we
observed that the regularization offered by the conceptual
model is not strong enough to reduce the hybrid model per-
formance, and the dynamic parameterization given by the
LSTM can even compensate for missing processes and im-
plausible structures. Figure 5 highlights that, for some basins,
we obtained a similar hydrograph for all models used. There-
fore, we recommend being careful about using this hybrid
scheme for comparing different types of conceptual models
or multiple working hypotheses (Clark et al., 2011), espe-
cially if we are evaluating model adequacy by performance
alone, as the overall performance can be adjusted by the data-
driven part.

3.4 Testing on a subset of basins

In the above sections, we showed that both LSTMs and hy-
brid models outperformed stand-alone conceptual models. In
this subsequent section, we replicate the experiments focus-
ing on a subset of basins. This subset responded to an in-
herent limitation of conceptual models, which in principle
does not affect data-driven techniques. Unlike LSTM net-
works, which learn directly from the data without a prede-
fined structure, conceptual models have fixed model archi-
tectures designed to represent specific processes. This means
that anthropogenic impacts such as reservoir operations,
withdrawals, or transfers may not be adequately captured
by conceptual models unless they are directly accounted for.

While this limitation is a clear advantage of data-driven tech-
niques, we wanted to make a comparison on a level play-
ing field. Therefore, as a first filter, we selected only basins
with the label “benchmark_catch=TRUE”, which, according
to Coxon et al. (2020a), can be treated as “near-natural”, i.e.,
catchments in which the human influence in flow regimes is
modest and where natural processes predominantly drive the
flow regimes. As a second filter, we considered the tempo-
ral resolution of the data and the size of the catchment. The
CAMELS-GB dataset contains data with a daily resolution.
Consequently, we need to consider catchments with a suffi-
cient size such that discharge variations are resolved by daily
data. After applying the aforementioned filters, we identified
60 basins that passed both criteria. For detailed information
on the specific basin IDs, please refer to the Supplement of
this article.

Figure 3b shows the results when the models are tested on
the subset of 60 basins. We can see that the LSTM (median
NSE= 0.88), LSTM+SHM (0.87), LSTM+Bucket (0.88),
and LSTM+NonSense (0.82) continue to outperform the
stand-alone SHM (0.76) in a setting designed to account for
the limitation of the latter. This result reaffirms the findings
highlighted in the preceding sections.

3.5 Analysis of LSTM+SHM

To tackle our second research question and assess the inter-
pretability of the conceptual part of our LSTM+SHM model,
we conducted several tests. Hybrid models, as highlighted
by Feng et al. (2022), Kraft et al. (2022), and Hoge et al.
(2022), offer the advantage of providing access to untrained
variables as the model’s states and fluxes have dimensions
and semantic meaning. As such, our first test was a model in-
tercomparison. Specifically, we evaluated the filling level of
the unsaturated zone reservoir, representing soil moisture in
our model (LSTM+SHM), against ERA5-LAND soil water
volume information. The process of utilizing reanalysis data
and the necessary data processing steps for this comparison
are detailed in Sect. 2.2.

Across the 669 basins in the testing period, the
LSTM+SHM model demonstrated a median correlation
of 0.86 when compared against the soil moisture simulation
provided by ERA5-LAND. This result indicates that the un-
saturated zone dynamics are well represented in our model
and that the hybrid approach allows us to recover this vari-
able without including any soil moisture information in our
training.

Lees et al. (2022) present an alternative method to extract
non-target variables from data-driven techniques. They train
a model (which they call a probe) to map the information
contained in the cell states of the LSTM to a given vari-
able. Specifically, they trained an LSTM using CAMELS-
GB, mapped the soil moisture information using a probe,
and evaluated their outcome against ERA5-LAND data. Be-
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Figure 6. Comparison of soil moisture estimates using our hybrid approach method and the Lees et al. (2022) approach. The simulated
results of both approaches were compared against ERA5-Land data. (a) CDF for the correlation coefficient obtained by both models when
applied to the testing dataset; (b) comparison of correlations provided by both models.

cause our testing period was aligned with their experiment,
we were able to directly compare their results to ours.

Lees’ probe method reported a median correlation against
ERA5-LAND data of 0.9, surpassing our value of 0.86. Fig-
ure 6 shows a more detailed comparison. Both methods got
similar results in basins with high correlation; however, Lees’
method was more robust in low-performing basins. This ef-
fect can be directly linked to the explanation we gave above
when a similar behavior was observed when predicting dis-
charge. The LSTM network can account for biases in the
forcing variables because mass conservation is not enforced,
while our hybrid approach is limited by their mass conserva-
tive structure.

The main difference with Lees et al. (2022) is that their
probe to extract non-target variables needs to be trained,
while in our hybrid approach no extra training needs to be
done. The fact that in Lees et al. (2022) the probe can be as
simple as a linear model, which requires few points to train,
is not being argued, and in many cases, this will reduce the
advantage given by our method.

Lastly, we would like to point out that the cor-
relation obtained by the LSTM+Bucket (0.82) and
LSTM+NonSense (0.85) models is still high, which can be
attributed to the strong dependence of soil moisture with
the precipitation and evapotranspiration series, both of which
serve as boundary conditions for all models. This point also
highlights our previously stated concern about using hybrid
models for comparing different types of conceptual models
or multiple working hypotheses.

In addition to the comparison with external data, we
also examined the correlation between soil moisture esti-
mates produced by the LSTM+SHM model and the stand-
alone SHM. The median correlation value of 0.96 fur-
ther confirms that the unsaturated zone within our hybrid
model operates under our initial expectations. Figure 7 ex-

Figure 7. Soil moisture time series comparison during the testing
period for basin ID 42010.

emplifies this agreement for basin 42010, where the mod-
eled (LSTM+SHM) and ERA5-LAND series exhibit a cor-
relation of 0.86, equivalent to the median correlation ob-
served across all 669 basins. For reference, the median corre-
lation of the stand-alone SHM over all basins was also 0.86.

The last experiment to further evaluate the consistency of
our hybrid model was to analyze the parameter variation over
time. Figure 8 presents the results for four calibration param-
eters: su_max, β, kb, and ki , across two different basins (rea-
sons for choosing these two basins are explained below). We
begin by examining the behavior of the first two parameters.

The purpose of su_max and β is to control the water trans-
fer from the unsaturated zone reservoir to the interflow and
baseflow, following Eq. (2):

qu_out= qu_in ·
(

su
su_max

)β
, (2)
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Figure 8. Time variation of parameters for basins 15016 (left column panels) and 9002 (right column panels). It should be noted that the
y-axis ranges of the two basins differ.

where qu_out represents the water going out of the unsatu-
rated zone, qu_in represents the water entering the unsatu-
rated zone from precipitation and snowmelt, su refers to the
unsaturated zone storage or soil moisture, and su_max and
β are the calibration parameters. It is important to note that
the value of su cannot exceed su_max, which forces their
quotient to be less or equal to one. Consequently, a larger
value of su_max and/or β leads to a decrease in the unsatu-
rated zone outflow.

The parameter variation in basin ID 15016 presents clear
seasonal patterns. During low-flow periods, both parameters
increase, resulting in reduced water availability for the re-
maining two reservoirs and, consequently, a decrease in the
total outflow. On the other hand, during high-flow periods,
the opposite happens. As both parameters decrease, there is
an increase in water availability, resulting in higher outflows.

Regarding the other two parameters, kb and ki have a lin-
ear relationship with their respective outflows, acting as the
denominator of their storage units

(
q[i,b] =

s[i,b]
k[i,b]

)
. For kb, we

can observe seasonal patterns, which allows the model to fur-
ther increase the baseflow in wet periods and reduce it dur-
ing dry seasons. This also aligns with our knowledge that
hydraulic conductivity is lower when the soil is drier. On the
contrary, ki displays faster variations.

Basin 9002 shows high-frequency variability for most of
the parameters but still a good agreement between the ob-
served and simulated discharge. This basin also exhibits a
large increase in performance when the dynamic param-
eterization is applied, achieving an NSE of 0.90 for the
LSTM+SHM against an NSE of 0.73 for the stand-alone
SHM. This boost in performance when the dynamic parame-
terization is applied is 4 times as high as the equivalent sce-
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nario for basin 15016. We argue that this is the basis for ex-
plaining the high-frequency variability we see in the figure.

In a hypothetical case in which we have a perfect concep-
tual model that considers all the processes happening in the
basin, the predicted parameters will be constant. However,
due to structural limitations of the conceptual architecture,
the LSTM does take part in the predicting. Because of how
the LSTM and the conceptual model are connected, the only
way for the former to pass predicting information to the latter
is through the parameters. Some deficiencies can be compen-
sated with a more seasonal pattern, while others need faster
pulses.

An alternative approach is to increase the complexity of
our process-based part, reducing the necessity of the data-
driven method to compensate for structural deficiencies. For
example, Feng et al. (2022) represent the catchment pro-
cesses using 16 HBV models acting in parallel, which are
parameterized through an LSTM. In their case, the recession
parameters were predicted as constant in time, and the nec-
essary flexibility to get state-of-the-art performance and ac-
count for missing sub-processes was considered by the semi-
distributed format.

It is worth considering that the bigger and more com-
plex a process-based model is, the more similar it can be-
come to an LSTM. More buckets generate higher flexibil-
ity, which can account for more complex process represen-
tation, such as different processes, multiple residence times,
and mass transfers. Moreover, these buckets are normally up-
dated considering some input and output fluxes and some
losses. In an LSTM each cell state can be interpreted as a
bucket, which can be modified by a forget gate, input gate,
and (indirectly) output gate. The main difference is that the
gates in the LSTM depend on the input and the previous hid-
den states, and in conceptual models, for simplicity, we usu-
ally take these as constants. However, this can be modified
by making the gates of the buckets context dependent, and
then both models would be alike. Therefore, regularizing a
hybrid model with a complex conceptual model will proba-
bly reduce the work that needs to be done by the LSTM, but
the final product will not be that different from having just a
stand-alone LSTM.

4 Summary and conclusions

In recent years, the idea of creating hybrid models by com-
bining data-driven techniques and conceptual models has
gained popularity, aiming to combine the improved perfor-
mance of the former with the interpretability of the latter.
Following this line of thought, Feng et al. (2022) used as a
hybrid approach the parameterization of a process-based hy-
drological model by an LSTM network. The authors demon-
strated the potential of the technique to achieve comparable
performance as purely data-driven techniques and to outper-

form stand-alone conceptual models. Kraft et al. (2022) also
achieved promising results following a similar process.

Motivated by this outcome, our article dug into the effect
of dynamic parameterization in our conceptual model and the
consequences this might have on the interpretability of the
model. More specifically, we tried to answer the following
questions. (1) Do conceptual models effectively serve as a
regularization mechanism for the dynamic parameterization
given by the LSTMs? (2) Does the dynamic parameteriza-
tion of the data-driven component overwrite the physical in-
terpretability of the conceptual model?

The first step towards answering these questions was to
create a hybrid model. We coupled an LSTM network with
a conceptual hydrological model (SHM), using the former
as a dynamic parameterization of the latter. In our study,
we demonstrated that our hybrid approach (LSTM+SHM)
was able to achieve state-of-the-art performance, compara-
ble to purely data-driven techniques (LSTM). Both models
were trained in a regional context, using the CAMELS-GB
dataset. The median NSE of 0.87 and 0.84 for the LSTM and
LSTM+SHM, respectively, outperform the basin-wise cali-
brated conceptual model, which served as the baseline and
achieved a median NSE of 0.76. These findings align with
existing literature. For instance, Feng et al. (2022) reached
similar conclusions when applying a hybrid model to the
CAMELS-US dataset.

Having accomplished a well-performing hybrid model, we
addressed the first research question. By modifying the regu-
larization given by the conceptual model, we tested to which
degree the dynamic parameterization given by the LSTM
has the potential to compensate for missing processes. We
proved that a hybrid model composed of an LSTM plus a
single bucket (LSTM+Bucket) was able to achieve a similar
performance as the LSTM+SHM and LSTM-only models.
This indicates that the regularization given by the conceptual
model is not strong enough to drop the predictive capability
of the hybrid model, and missing processes are outsourced to
the data-driven part. We also demonstrated that if we use an
intentionally implausible structure (LSTM+NonSense), the
LSTM also has the flexibility to artificially increase perfor-
mance.

However, the fact that the data-driven component pos-
sesses this capability does not necessarily imply that a well-
structured conceptual model cannot be consistently utilized
by the LSTM. Therefore, we further analyzed the internal
functioning of our LSTM+SHM model to answer our sec-
ond research question. We compared the soil moisture pre-
dicted by our hybrid model with data from ERA5-LAND.
This test addressed one of the main benefits of hybrid mod-
els over purely data-driven ones, which is their ability to
predict untrained states. Across our testing set, comprised
of 669 basins, we obtained a median correlation of 0.86
between our simulated soil moisture and the ERA5-LAND
data. This result indicates that our hybrid model was able
to produce coherent temporal patterns of the untrained state
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variables, without having access to the corresponding data
during the training period. We also compared the unsaturated
zone reservoir of the LSTM+SHM against the unsaturated
zone of the stand-alone SHM, which reported a median cor-
relation of 0.96. These results indicate that the dynamic pa-
rameterization was operating the unsaturated zone reservoir
consistently and according to our initial expectations. The
last section of the study presented the results of the dynamic
parameterization for two basins, where we showed that the
high-frequency variations of the parameter’s time series are
caused by the LSTM trying to compensate for structural de-
ficiencies in our process-based model.

We summarize the key findings of our study as follows:

1. Do conceptual models serve as an effective regulariza-
tion mechanism for the dynamic parameterization of
LSTMs?

No. Our initial expectation was that if (a) our head layer
restricts the flexibility of the LSTM and (b) the pro-
cess layer encodes almost no hydrological understand-
ing, then the performance of the model would drop;
however, this was not the case. This indicates that struc-
tural deficiencies in the architectures can be compen-
sated by the data-driven part. Therefore, we recommend
being careful about using this hybrid scheme for com-
paring different types of process-based models, espe-
cially if we are evaluating model adequacy by perfor-
mance alone, as the overall performance can be adjusted
by the data-driven part.

2. Does the data-driven dynamic parameterization com-
promise the physical interpretability of the conceptual
model?

Partially. We showed that a well-structured concep-
tual model maintains certain interpretability and even
gives us access to untrained variables. However, we
also showed that even with a well-structured concep-
tual model, the LSTM is going to compensate for miss-
ing processes and structural limitations, especially when
the architecture of the process is not well suited for a
specific case. Increasing the complexity of the process-
based model would result in less intervention of the
data-driven part; however, we argue that the more com-
plex a process-based model is, the more similar it will
be to an LSTM network.

3. To bucket or not to bucket?

In our experiments, we were not able to increase the per-
formance of the data-driven models by adding a concep-
tual head layer, and even though the mean performance
of the different models was the same, purely data-
driven methods showed better results in low-performing
basins. Therefore, until this point, the remaining advan-
tage is the access to non-target variables, which other
authors have accomplished with the use of probes. In

future research, we will conduct other experiments to
evaluate the performance of hybrid models under dif-
ferent conditions, but until this point, we do not have
evidence that adding buckets gives a considerable ad-
vantage over purely data-driven techniques.

Appendix A: SHM model

In this section, we offer a concise overview of the concep-
tual model’s key features. For a fully detailed explanation,
we refer to Ehret et al. (2020). In a slight variation from the
original paper, we included a snow module, and the poten-
tial evapotranspiration is read directly from the CAMELS-
GB dataset.

Figure A1 illustrates the overall structure of the model.
The model input consists of three forcing variables: precip-
itation (P ) [mm d−1], temperature (T ) [°C], and potential
evapotranspiration (ETp) [mm d−1]. These three quantities
were read directly from the CAMELS-GB dataset (Coxon
et al., 2020a). To emulate the hydrological processes occur-
ring in the basin, the model uses five storage components,
namely, snow module, unsaturated zone, fast flow, interflow,
and baseflow. Overall, to regulate the fluxes between com-
ponents, eight parameters need to be calibrated: dd, f_thr,
su_max, β, perc, kf , ki , and kb (see units in Table B1).

The snow module receives P and T as inputs. Based on the
temperature, precipitation is either stored as snow or moves
forward together with additional discharge from snowmelt (if
any). Snowmelt is calculated using the degree-day method in
which the parameter dd relates to the volume of snowmelt
at a given temperature. If the outflow of the snow module
exceeds a threshold (f_thr), the excess is directed to the fast-
flow reservoir, while the remaining portion enters the unsat-
urated zone bucket. On the other hand, if the snow storage
outflow is smaller than f_thr, all water enters the unsaturated
zone as input. Within the unsaturated zone, several processes
occur. First, evapotranspiration causes water loss. The poten-
tial evapotranspiration (ETp) is provided as a forcing variable
but is adjusted to reflect the actual evapotranspiration con-
sidering water availability. Additionally, there is an outflow
from the unsaturated zone, determined by a power relation-
ship involving the parameters su_max and β. This outflow
is then divided by the perc parameter, allocating portions to
the inflows of the interflow and baseflow storages. Finally,
the total discharge of the basin is computed as the sum of the
outflows from the fast-flow, interflow, and baseflow storages.
Each outflow is a linear function of its corresponding storage
and the recession parameters kf , ki, and kb, respectively.
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Figure A1. Structure of the SHM hydrological model used for
rainfall–runoff prediction.

Appendix B: Training process comparison between
hybrid and LSTM models

While the coupling of the data-driven and conceptual mod-
els may appear straightforward from a general perspective,
it is important to highlight several details. First, as one
can notice from Fig. 1 in the main paper, the forcing vari-
ables (P , T , ET) are used as inputs for both the LSTM and
the SHM. The forcing variables and static attributes used as
inputs for the LSTM are standardized using the method de-
scribed in the previous section. However, due to the mass-
conservative structure of the SHM, their input variables (P ,
T , ET) are used in the original scale. Second, it is impor-
tant to consider that the SHM parameters have certain feasi-
ble ranges. While the LSTM could theoretically learn these
ranges, the optimization process becomes highly challeng-
ing due to the immense search space involved. We found that
without constraining the parameter ranges, the LSTM was
not able to identify parameters that yield a functional hydro-
logical model. Hence, we predefined ranges within which the
parameters can vary (see Table B1). These ranges were de-
fined considering the findings in Beck et al. (2016, 2020),
which provide valuable insights into the appropriate parame-
ter values of conceptual models. By defining these ranges, we
not only reduced the computational costs of the optimization
but also ensured consistency with the methodology employed
by Feng et al. (2022).

To map the output of the LSTM network to the predefined
ranges, the j outputs (j = 8, one per parameter) are passed
through a sigmoid layer to transform the values to a [0, 1] in-
terval. Then the transformed values are mapped to the prede-
fined ranges through a min–max transformation, as exempli-
fied in Eq. (B1):

θj = x
min
j + sigmoid

(
oj
)
·

(
xmax
j − xmin

j

)
, (B1)

Table B1. Search range for SHM parameters during hybrid model
optimization.

Parameter Minimum Maximum Unit
value value

(xmin
j

) (xmax
j

)

dd 0.0 10.0 mm °C−1 d−1

f_thr 10.0 60.0 mm
su_max 20.0 700.0 mm
β 1.0 6.0 –
perc 0.0 1.0 %
kf 1.0 20.0 d
ki 1.0 100.0 d
kb 10.0 1000.0 d

mm: millimeters; °C: degrees Celsius; d: days.

where θj is each of the values passed as parameters to the
SHM, oj are the original outputs of the LSTM network, and
xmin
j and xmax

j correspond to the minimum and maximum
values of the predefined ranges (see Table B1) in which each
parameter can vary, respectively.

Lastly, there is a difference in how we trained our LSTM
and hybrid model. The first one was trained using a seq2one
approach, while the second one used a seq2seq methodol-
ogy. Furthermore, even though both models used a spin-up
period (e.g., sequence length), the spin-up period of the hy-
brid model also considered a time to stabilize the internal
states of the conceptual model.

To facilitate the understanding of the previous concepts,
let us create an example. Let us assume that both the LSTM
and the hybrid model were trained on 60 basins and 10 years
(∼ 3652 d) of data, even though we know from before that
this was not the case.

For training the LSTM, we use a batch size of N = 256
and a seq2one method. Therefore, to construct each batch
we randomly select, without replacement, 256 data points
from the total pool of 3652·60= 219120 training points. For
each of the 256 points of our batch, we run our LSTM for a
given sequence length (e.g., 365 time steps) and extract the
last simulated value. We then calculate our loss function with
a metric that quantifies the difference between the observed
and simulated values of the 256 training points and back-
propagate this loss to update the network weights and biases.
To complete an epoch, we iterate through the 219 120

256 = 855
batches.

In the case of the hybrid model, we train it as a seq2seq
approach; therefore, to calculate the loss function we do not
just use the last element of our simulated sequence but a
part of that sequence (e.g., 365 time steps). Therefore, for
the same scenario of 60 basins and 10 years of data, we
have 60·10·365

365 = 600 training vectors, each with 365 elements
that are used to calculate the loss. If we use a batch size of
N = 8, each batch will contain 8 randomly selected vectors
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Figure B1. Training scheme comparison for LSTM and hybrid
model. The former one uses a seq2one approach. The latter uses
a seq2seq approach, and the total spin-up period consists of a se-
quence length for the data-driven part plus a warm-up period for the
states of the conceptual part.

with 365 sequential training points each, so the loss function
will quantify the difference of 365 · 8= 2920 simulated and
observed values. To complete an epoch, we iterate through
600
8 = 75 batches.

The other small difference while training the models is the
length of the spin-up period. For the LSTM, we use a se-
quence length of 365 d, which means that we run a sequence
of 365 d and extract the last value of this sequence to calcu-
late the loss. The first 364 d help us consider the historical
information to make a good prediction and to avoid bias due
to the initialization of the cell states (usually zero). In our
hybrid model, the LSTM uses a sequence length of 180 d,
which means that only after 180 d do we start to retrieve the
parameters that go into the conceptual model. The purpose of
these 180 d is the same as before, consider the historical in-
formation to make a context-informed parameter estimation
and avoid the bias due to the initialization of the cell states.
However, we also need a warm-up period to avoid a biased
result due to the initialization of the different storages of the
conceptual part. Therefore, for each instance of the batch,
we ran our conceptual model for a 2-year period. The initial
year serves solely as a warm-up period (excluded from the
loss function), while the second year’s data are utilized for
actual training. Figure B1 illustrates the data handling while
training both models.
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