Articles | Volume 27, issue 3
https://doi.org/10.5194/hess-27-837-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-27-837-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Past and future climate change effects on the thermal regime and oxygen solubility of four peri-alpine lakes
Olivia Desgué-Itier
CORRESPONDING AUTHOR
Université Savoie Mont Blanc, INRAE, CARRTEL, 74200
Thonon-les-Bains, France
Laura Melo Vieira Soares
Université Savoie Mont Blanc, INRAE, CARRTEL, 74200
Thonon-les-Bains, France
Orlane Anneville
Université Savoie Mont Blanc, INRAE, CARRTEL, 74200
Thonon-les-Bains, France
Damien Bouffard
Eawag, Swiss Federal Institute of Aquatic Science and Technology,
Surface Waters – Research and Management, 6047 Kastanienbaum, Switzerland
Faculty of Geoscience and Environment, Institute of Earth Surface
Dynamics, University of Lausanne, Lausanne, Switzerland
Vincent Chanudet
EDF, Environment and Social Department, Hydro Engineering Centre,
73290 La Motte-Servolex, France
Pierre Alain Danis
Pôle R & D “Ecla”, INRAE, 3275 Route Cézanne, 13182
Aix-en-Provence, Office Français de la Biodiversité, Unité “Ecla”, INRAE, Aix-en-Provence, France
INRAE, Aix Marseille Univ, RECOVER, Team FRESHCO, 3275 Route
Cézanne, 13182 Aix-en-Provence, France
Isabelle Domaizon
Université Savoie Mont Blanc, INRAE, CARRTEL, 74200
Thonon-les-Bains, France
Jean Guillard
Université Savoie Mont Blanc, INRAE, CARRTEL, 74200
Thonon-les-Bains, France
Théo Mazure
Université Savoie Mont Blanc, INRAE, CARRTEL, 74200
Thonon-les-Bains, France
Najwa Sharaf
Pôle R & D “Ecla”, INRAE, 3275 Route Cézanne, 13182
Aix-en-Provence, Office Français de la Biodiversité, Unité “Ecla”, INRAE, Aix-en-Provence, France
INRAE, Aix Marseille Univ, RECOVER, Team FRESHCO, 3275 Route
Cézanne, 13182 Aix-en-Provence, France
Frédéric Soulignac
CIPEL, International Commission for the protection of the waters of
Lake Geneva, 1260 Nyon, Switzerland
Viet Tran-Khac
Université Savoie Mont Blanc, INRAE, CARRTEL, 74200
Thonon-les-Bains, France
Brigitte Vinçon-Leite
Laboratoire Eau, Environnement, Systèmes Urbains (LEESU),
École Nationale des Ponts et Chaussées, Marne-la-Vallée, France
Jean-Philippe Jenny
CORRESPONDING AUTHOR
Université Savoie Mont Blanc, INRAE, CARRTEL, 74200
Thonon-les-Bains, France
Related authors
No articles found.
Anh-Thái Hoàng, Frédéric Guérin, Chandrashekhar Deshmukh, Axay Vongkhamsao, Saysoulinthone Sopraseuth, Vincent Chanudet, Stéphane Descloux, Toan Vu Duc, and Dominique Serça
EGUsphere, https://doi.org/10.5194/egusphere-2025-3295, https://doi.org/10.5194/egusphere-2025-3295, 2025
Short summary
Short summary
We studied greenhouse gas emissions from a large reservoir in Laos over 14 years to understand carbon cycling and changes over time. Methane release through bubbling remained high, while other pathways, like diffusion and degassing, declined. These findings show how emissions evolve as reservoirs age and highlight the value of long-term studies for understanding the climate impact of hydropower.
Marina Amadori, Abolfazl Irani Rahaghi, Damien Bouffard, and Marco Toffolon
Geosci. Model Dev., 18, 3473–3486, https://doi.org/10.5194/gmd-18-3473-2025, https://doi.org/10.5194/gmd-18-3473-2025, 2025
Short summary
Short summary
Models simplify reality using assumptions, which can sometimes introduce flaws and affect their accuracy. Properly calibrating model parameters is essential, and although automated tools can speed up this process, they may occasionally produce incorrect values due to inconsistencies in the model. We demonstrate that by carefully applying automated tools, we were able to identify and correct a flaw in a widely used model for lake environments.
Najwa Sharaf, Jordi Prats, Nathalie Reynaud, Thierry Tormos, Rosalie Bruel, Tiphaine Peroux, and Pierre-Alain Danis
Earth Syst. Sci. Data, 15, 5631–5650, https://doi.org/10.5194/essd-15-5631-2023, https://doi.org/10.5194/essd-15-5631-2023, 2023
Short summary
Short summary
We present a regional long-term (1959–2020) dataset (LakeTSim) of daily epilimnion and hypolimnion water temperature simulations in 401 French lakes. Overall, less uncertainty is associated with the epilimnion compared to the hypolimnion. LakeTSim is valuable for providing new insights into lake water temperature for assessing the impact of climate change, which is often hindered by the lack of observations, and for decision-making by stakeholders.
Seyed Mahmood Hamze-Ziabari, Ulrich Lemmin, Frédéric Soulignac, Mehrshad Foroughan, and David Andrew Barry
Geosci. Model Dev., 15, 8785–8807, https://doi.org/10.5194/gmd-15-8785-2022, https://doi.org/10.5194/gmd-15-8785-2022, 2022
Short summary
Short summary
A procedure combining numerical simulations, remote sensing, and statistical analyses is developed to detect large-scale current systems in large lakes. By applying this novel procedure in Lake Geneva, strategies for detailed transect field studies of the gyres and eddies were developed. Unambiguous field evidence of 3D gyre/eddy structures in full agreement with predictions confirmed the robustness of the proposed procedure.
Artur Safin, Damien Bouffard, Firat Ozdemir, Cintia L. Ramón, James Runnalls, Fotis Georgatos, Camille Minaudo, and Jonas Šukys
Geosci. Model Dev., 15, 7715–7730, https://doi.org/10.5194/gmd-15-7715-2022, https://doi.org/10.5194/gmd-15-7715-2022, 2022
Short summary
Short summary
Reconciling the differences between numerical model predictions and observational data is always a challenge. In this paper, we investigate the viability of a novel approach to the calibration of a three-dimensional hydrodynamic model of Lake Geneva, where the target parameters are inferred in terms of distributions. We employ a filtering technique that generates physically consistent model trajectories and implement a neural network to enable bulk-to-skin temperature conversion.
Malgorzata Golub, Wim Thiery, Rafael Marcé, Don Pierson, Inne Vanderkelen, Daniel Mercado-Bettin, R. Iestyn Woolway, Luke Grant, Eleanor Jennings, Benjamin M. Kraemer, Jacob Schewe, Fang Zhao, Katja Frieler, Matthias Mengel, Vasiliy Y. Bogomolov, Damien Bouffard, Marianne Côté, Raoul-Marie Couture, Andrey V. Debolskiy, Bram Droppers, Gideon Gal, Mingyang Guo, Annette B. G. Janssen, Georgiy Kirillin, Robert Ladwig, Madeline Magee, Tadhg Moore, Marjorie Perroud, Sebastiano Piccolroaz, Love Raaman Vinnaa, Martin Schmid, Tom Shatwell, Victor M. Stepanenko, Zeli Tan, Bronwyn Woodward, Huaxia Yao, Rita Adrian, Mathew Allan, Orlane Anneville, Lauri Arvola, Karen Atkins, Leon Boegman, Cayelan Carey, Kyle Christianson, Elvira de Eyto, Curtis DeGasperi, Maria Grechushnikova, Josef Hejzlar, Klaus Joehnk, Ian D. Jones, Alo Laas, Eleanor B. Mackay, Ivan Mammarella, Hampus Markensten, Chris McBride, Deniz Özkundakci, Miguel Potes, Karsten Rinke, Dale Robertson, James A. Rusak, Rui Salgado, Leon van der Linden, Piet Verburg, Danielle Wain, Nicole K. Ward, Sabine Wollrab, and Galina Zdorovennova
Geosci. Model Dev., 15, 4597–4623, https://doi.org/10.5194/gmd-15-4597-2022, https://doi.org/10.5194/gmd-15-4597-2022, 2022
Short summary
Short summary
Lakes and reservoirs are warming across the globe. To better understand how lakes are changing and to project their future behavior amidst various sources of uncertainty, simulations with a range of lake models are required. This in turn requires international coordination across different lake modelling teams worldwide. Here we present a protocol for and results from coordinated simulations of climate change impacts on lakes worldwide.
Tomy Doda, Cintia L. Ramón, Hugo N. Ulloa, Alfred Wüest, and Damien Bouffard
Hydrol. Earth Syst. Sci., 26, 331–353, https://doi.org/10.5194/hess-26-331-2022, https://doi.org/10.5194/hess-26-331-2022, 2022
Short summary
Short summary
At night or during cold periods, the shallow littoral region of lakes cools faster than their deeper interior. This induces a cold downslope current that carries littoral waters offshore. From a 1-year-long database collected in a small temperate lake, we resolve the seasonality of this current and report its frequent occurrence from summer to winter. This study contributes to a better quantification of lateral exchange in lakes, with implications for the transport of dissolved compounds.
Marco Toffolon, Luca Cortese, and Damien Bouffard
Geosci. Model Dev., 14, 7527–7543, https://doi.org/10.5194/gmd-14-7527-2021, https://doi.org/10.5194/gmd-14-7527-2021, 2021
Short summary
Short summary
The time when lakes freeze varies considerably from year to year. A common way to predict it is to use negative degree days, i.e., the sum of air temperatures below 0 °C, a proxy for the heat lost to the atmosphere. Here, we show that this is insufficient as the mixing of the surface layer induced by wind tends to delay the formation of ice. To do so, we developed a minimal model based on a simplified energy balance, which can be used both for large-scale analyses and short-term predictions.
Pascal Perolo, Bieito Fernández Castro, Nicolas Escoffier, Thibault Lambert, Damien Bouffard, and Marie-Elodie Perga
Earth Syst. Dynam., 12, 1169–1189, https://doi.org/10.5194/esd-12-1169-2021, https://doi.org/10.5194/esd-12-1169-2021, 2021
Short summary
Short summary
Wind blowing over the ocean creates waves that, by increasing the level of turbulence, promote gas exchange at the air–water interface. In this study, for the first time, we measured enhanced gas exchanges by wind-induced waves at the surface of a large lake. We adapted an ocean-based model to account for the effect of surface waves on gas exchange in lakes. We finally show that intense wind events with surface waves contribute disproportionately to the annual CO2 gas flux in a large lake.
Francesco Piccioni, Céline Casenave, Bruno Jacques Lemaire, Patrick Le Moigne, Philippe Dubois, and Brigitte Vinçon-Leite
Earth Syst. Dynam., 12, 439–456, https://doi.org/10.5194/esd-12-439-2021, https://doi.org/10.5194/esd-12-439-2021, 2021
Short summary
Short summary
Small lakes are ecosystems highly impacted by climate change. Here, the thermal regime of a small, shallow lake over the past six decades was reconstructed via 3D modelling. Significant changes were found: strong water warming in spring and summer (0.7 °C/decade) as well as increased stratification and thermal energy for cyanobacteria growth, especially in spring. The strong spatial patterns detected for stratification might create local conditions particularly favourable to cyanobacteria bloom.
Cintia L. Ramón, Hugo N. Ulloa, Tomy Doda, Kraig B. Winters, and Damien Bouffard
Hydrol. Earth Syst. Sci., 25, 1813–1825, https://doi.org/10.5194/hess-25-1813-2021, https://doi.org/10.5194/hess-25-1813-2021, 2021
Short summary
Short summary
When solar radiation penetrates the frozen surface of lakes, shallower zones underneath warm faster than deep interior waters. This numerical study shows that the transport of excess heat to the lake interior depends on the lake circulation, affected by Earth's rotation, and controls the lake warming rates and the spatial distribution of the heat flux across the ice–water interface. This work contributes to the understanding of the circulation and thermal structure patterns of ice-covered lakes.
Cited articles
Anderson, N. J., Bugmann, H., Dearing, J. A., and Gaillard, M.-J.: Linking
palaeoenvironmental data and models to understand the past and to predict the future, Trends Ecol. Evol., 21, 696–704, https://doi.org/10.1016/j.tree.2006.09.005, 2006.
Angilletta, M. J. and Dunham, A. E.: The temperature-size rule in ectotherms: simple evolutionary explanations may not be general, Am. Nat., 162, 332–342, https://doi.org/10.1086/377187, 2003.
Anneville, O., Beniston, M., Gallina, N., Gillet, C., Jacquet, S., and
Lazzarotto, J.: L'empreinte du changement climatique sur le Léman, Arch.
Sci., 16, 157–172, 2013.
Ayala, A. I., Moras, S., and Pierson, D. C.: Simulations of future changes
in thermal structure of Lake Erken: proof of concept for ISIMIP2b lake sector local simulation strategy, Hydrol. Earth Syst. Sci., 24, 3311–3330,
https://doi.org/10.5194/hess-24-3311-2020, 2020.
Balsamo, G., Salgado, R., Dutra, E., Boussetta, S., Stockdale, T., and Potes, M.: On the contribution of lakes in predicting near-surface temperature in a global weather forecasting model, Tellus A, 64, 15829, https://doi.org/10.3402/tellusa.v64i0.15829, 2012.
Baroudy, E. and Elliott, J. M.: Racial differences in eggs and juveniles of Windermere charr, Salvelinus alpinus, J. Fish Biol., 45, 407–415, https://doi.org/10.1111/j.1095-8649.1994.tb01323.x, 1994.
Bertuzzi, P. and Clastre, P.: Information sur les mailles SAFRAN, Recherche Data Gouv, V2, https://doi.org/10.57745/1PDFNL, 2022.
Bruce, L. C., Frassl, M. A., Arhonditsis, G. B., Gal, G., Hamilton, D. P., Hanson, P. C., Hetherington, A. L., Melack, J. M., Read, J. S., Rinke, K.,
Rigosi, A., Trolle, D., Winslow, L., Adrian, R., Ayala, A. I., Bocaniov, S.
A., Boehrer, B., Boon, C., Brookes, J. D., Bueche, T., Busch, B. D., Copetti, D., Cortés, A., de Eyto, E., Elliott, J. A., Gallina, N., Gilboa, Y., Guyennon, N., Huang, L., Kerimoglu, O., Lenters, J. D., MacIntyre, S., Makler-Pick, V., McBride, C. G., Moreira, S., Özkundakci, D., Pilotti, M., Rueda, F. J., Rusak, J. A., Samal, N. R., Schmid, M., Shatwell, T., Snorthheim, C., Soulignac, F., Valerio, G., van der Linden, L., Vetter, M., Vinçon-Leite, B., Wang, J., Weber, M., Wickramaratne, C., Woolway, R. I., Yao, H., and Hipsey, M. R.: A multi-lake comparative analysis of the General Lake Model (GLM): Stress-testing across a global observatory network, Environ. Model. Softw., 102, 274–291, https://doi.org/10.1016/j.envsoft.2017.11.016, 2018.
Butcher, J. B., Nover, D., Johnson, T. E., and Clark, C. M.: Sensitivity of
lake thermal and mixing dynamics to climate change, Climatic Change, 129,
295–305, https://doi.org/10.1007/s10584-015-1326-1, 2015.
Caudron, A., Lasne, E., Gillet, C., Guillard, J., and Champigneulle, A.: Thirty years of reoligotrophication do not contribute to restore self-sustaining fisheries of Arctic charr, Salvelinus alpinus, in Lake Geneva, Fish. Res., 154, 165–171, https://doi.org/10.1016/j.fishres.2014.01.023, 2014.
Couture, R.-M., Moe, S. J., Lin, Y., Kaste, Ø., Haande, S., and Lyche Solheim, A.: Simulating water quality and ecological status of Lake
Vansjø, Norway, under land-use and climate change by linking process-oriented models with a Bayesian network, Sci. Total Environ., 621,
713–724, https://doi.org/10.1016/j.scitotenv.2017.11.303, 2018.
Crossman, J., Eimers, M. C., Kerr, J. G., and Yao, H.: Sensitivity of physical lake processes to climate change within a large Precambrian Shield catchment, Hydrol. Process., 30, 4353–4366, https://doi.org/10.1002/hyp.10915, 2016.
Cucchi, M., Weedon, G. P., Amici, A., Bellouin, N., Lange, S., Müller
Schmied, H., Hersbach, H., and Buontempo, C.: WFDE5: bias-adjusted ERA5
reanalysis data for impact studies, Earth Syst. Sci. Data, 12, 2097–2120,
https://doi.org/10.5194/essd-12-2097-2020, 2020.
Danis, P.-A., Von Grafenstein, U., Masson-Delmotte, V., Planton, S., Gerdeaux, D., and Moisselin, J.-M.: Vulnerability of two European lakes in
response to future climatic changes, Geophys. Res. Lett., 31, L21507, https://doi.org/10.1029/2004GL020833, 2004.
Daufresne, M., Lengfellner, K., and Sommer, U.: Global warming benefits the
small in aquatic ecosystems, P. Natl. Acad. Sci. USA, 106, 12788–12793, https://doi.org/10.1073/pnas.0902080106, 2009.
Eckmann, R.: A review of the population dynamics of coregonids in European alpine lakes, Adv. Limnol., 64, 3–24, https://doi.org/10.1127/1612-166X/2013/0064-0002, 2013.
Elliott, J. M. and Elliott, J. A.: Temperature requirements of Atlantic salmon Salmo salar, brown trout Salmo trutta and Arctic charr Salvelinus alpinus: predicting the effects of climate change, J. Fish Biol., 77, 1793–1817, https://doi.org/10.1111/j.1095-8649.2010.02762.x, 2010.
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R.
J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project
Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9,
1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016.
Fernández Castro, B., Bouffard, D., Troy, C., Ulloa, H. N., Piccolroaz,
S., Sepúlveda Steiner, O., Chmiel, H. E., Serra Moncadas, L., Lavanchy,
S., and Wüest, A.: Seasonality modulates wind-driven mixing pathways in a large lake, Commun. Earth Environ., 2, 1–11, https://doi.org/10.1038/s43247-021-00288-3, 2021.
Ficker, H., Luger, M., and Gassner, H.: From dimictic to monomictic: Empirical evidence of thermal regime transitions in three deep alpine lakes
in Austria induced by climate change, Freshwater Biol., 62, 1335–1345,
https://doi.org/10.1111/fwb.12946, 2017.
Gerdeaux, D.: The recent restoration of the whitefish fisheries in Lake Geneva: The roles of stocking, reoligotrophication, and climate change, Ann. Zool. Fenn., 41, 181–189, 2004.
Gillet, C., Breton, B., Mikolajczyk, T., Bodinier, P., and Fostier, A.:
Disruption of the secretion and action of 17,20β-dihydroxy-4-pregnen-3-one in response to a rise in temperature in the Arctic charr, Salvelinus alpinus. Consequences on oocyte maturation and ovulation, Gen. Comp. Endocrinol., 172, 392–399,
https://doi.org/10.1016/j.ygcen.2011.04.002, 2011.
Guillard, J., Gillet, C., and Champigneulle, A.: Revue bibliographique –
Principales caractéristiques de l'élevage de l'omble chevalier
(Salvelinus alpinus L.) en eau douce, Bull. Fr. Pêche Piscic., 325, 47–68, https://doi.org/10.1051/kmae:1992014, 1992.
Hamilton, D. P. and Schladow, S. G.: Prediction of water quality in lakes and reservoirs. Part I – Model description, Ecol. Model., 96, 91–110,
https://doi.org/10.1016/S0304-3800(96)00062-2, 1997.
Hipsey, M. R., Bruce, L. C., Boon, C., Busch, B., Carey, C. C., Hamilton, D.
P., Hanson, P. C., Read, J. S., de Sousa, E., Weber, M., and Winslow, L. A.:
A General Lake Model (GLM 3.0) for linking with high-frequency sensor data
from the Global Lake Ecological Observatory Network (GLEON), Geosci. Model
Dev., 12, 473–523, https://doi.org/10.5194/gmd-12-473-2019, 2019.
Idso, S. B.: On the concept of lake stability1, Limnol. Oceanogr., 18, 681–683, https://doi.org/10.4319/lo.1973.18.4.0681, 1973.
Jane, S. F., Hansen, G. J. A., Kraemer, B. M., Leavitt, P. R., Mincer, J. L., North, R. L., Pilla, R. M., Stetler, J. T., Williamson, C. E., Woolway, R. I., Arvola, L., Chandra, S., DeGasperi, C. L., Diemer, L., Dunalska, J., Erina, O., Flaim, G., Grossart, H.-P., Hambright, K. D., Hein, C., Hejzlar,
J., Janus, L. L., Jenny, J.-P., Jones, J. R., Knoll, L. B., Leoni, B., Mackay, E., Matsuzaki, S.-I. S., McBride, C., Müller-Navarra, D. C., Paterson, A. M., Pierson, D., Rogora, M., Rusak, J. A., Sadro, S., Saulnier-Talbot, E., Schmid, M., Sommaruga, R., Thiery, W., Verburg, P.,
Weathers, K. C., Weyhenmeyer, G. A., Yokota, K., and Rose, K. C.: Widespread
deoxygenation of temperate lakes, Nature, 594, 66–70,
https://doi.org/10.1038/s41586-021-03550-y, 2021.
Jenny, J.-P., Anneville, O., Arnaud, F., Baulaz, Y., Bouffard, D., Domaizon,
I., Bocaniov, S. A., Chèvre, N., Dittrich, M., Dorioz, J.-M., Dunlop, E.
S., Dur, G., Guillard, J., Guinaldo, T., Jacquet, S., Jamoneau, A., Jawed,
Z., Jeppesen, E., Krantzberg, G., Lenters, J., Leoni, B., Meybeck, M., Nava,
V., Nõges, T., Nõges, P., Patelli, M., Pebbles, V., Perga, M.-E.,
Rasconi, S., Ruetz, C. R., Rudstam, L., Salmaso, N., Sapna, S., Straile, D.,
Tammeorg, O., Twiss, M. R., Uzarski, D. G., Ventelä, A.-M., Vincent, W.
F., Wilhelm, S. W., Wängberg, S.-Å., and Weyhenmeyer, G. A.: Scientists' Warning to Humanity: Rapid degradation of the world's large
lakes, J. Gt. Lakes Res., 46, 686–702, https://doi.org/10.1016/j.jglr.2020.05.006, 2020.
Jiang, L., Fang, X., Stefan, H. G., Jacobson, P. C., and Pereira, D. L.:
Oxythermal habitat parameters and identifying cisco refuge lakes in Minnesota under future climate scenarios using variable benchmark periods, Ecol. Model., 232, 14–27, https://doi.org/10.1016/j.ecolmodel.2012.02.014, 2012.
Kobler, U. G. and Schmid, M.: Ensemble modelling of ice cover for a reservoir affected by pumped-storage operation and climate change, Hydrol. Process., 33, 2676–2690, https://doi.org/10.1002/hyp.13519, 2019.
Kraemer, B. M., Pilla, R. M., Woolway, R. I., Anneville, O., Ban, S., Colom-Montero, W., Devlin, S. P., Dokulil, M. T., Gaiser, E. E., Hambright, K. D., Hessen, D. O., Higgins, S. N., Jöhnk, K. D., Keller, W., Knoll, L. B., Leavitt, P. R., Lepori, F., Luger, M. S., Maberly, S. C., Müller-Navarra, D. C., Paterson, A. M., Pierson, D. C., Richardson, D. C., Rogora, M., Rusak, J. A., Sadro, S., Salmaso, N., Schmid, M., Silow, E. A., Sommaruga, R., Stelzer, J. A. A., Straile, D., Thiery, W., Timofeyev, M. A., Verburg, P., Weyhenmeyer, G. A., and Adrian, R.: Climate change drives widespread shifts in lake thermal habitat, Nat. Clim. Change, 11, 521–529, https://doi.org/10.1038/s41558-021-01060-3, 2021.
Lange, S.: Trend-preserving bias adjustment and statistical downscaling with
ISIMIP3BASD (v1.0), Geosci. Model Dev., 12, 3055–3070,
https://doi.org/10.5194/gmd-12-3055-2019, 2019a.
Lange, S.: WFDE5 over land merged with ERA5 over the ocean (W5E5) (1.0),
PIK – Potsdam Institute For Climate Impact Reseach, https://doi.org/10.5880/PIK.2019.023, 2019b.
Livingstone, D. M.: Impact of Secular Climate Change on the Thermal Structure of a Large Temperate Central European Lake, Climatic Change, 57, 205–225, https://doi.org/10.1023/A:1022119503144, 2003.
Livingstone, D. M. and Dokulil, M. T.: Eighty years of spatially coherent Austrian lake surface temperatures and their relationship to regional air temperature and the North Atlantic Oscillation, Limnol. Oceanogr., 46, 1220–1227, https://doi.org/10.4319/lo.2001.46.5.1220, 2001.
Magee, M. R., McIntyre, P. B., and Wu, C. H.: Modeling oxythermal stress for
cool-water fishes in lakes using a cumulative dosage approach, Can. J. Fish.
Aquat. Sci., 75, 1303–1312, https://doi.org/10.1139/cjfas-2017-0260, 2018.
Mari, L., Garaud, L., Evanno, G., and Lasne, E.: Higher temperature exacerbates the impact of sediments on embryo performances in a salmonid,
Biol. Lett., 12, 20160745, https://doi.org/10.1098/rsbl.2016.0745, 2016.
Mohseni, O., Stefan, H. G., and Eaton, J. G.: Global Warming and Potential
Changes in Fish Habitat in U.S. Streams, Climatic Change, 59, 389–409,
https://doi.org/10.1023/A:1024847723344, 2003.
Moore, T. N., Mesman, J. P., Ladwig, R., Feldbauer, J., Olsson, F., Pilla, R. M., Shatwell, T., Venkiteswaran, J. J., Delany, A. D., Dugan, H., Rose, K. C., and Read, J. S.: LakeEnsemblR: An R package that facilitates ensemble
modelling of lakes, Environ. Model. Softw., 143, 105101, https://doi.org/10.1016/j.envsoft.2021.105101, 2021.
O'Reilly, C. M., Sharma, S., Gray, D. K., Hampton, S. E., Read, J. S., Rowley, R. J., Schneider, P., Lenters, J. D., McIntyre, P. B., Kraemer, B.
M., Weyhenmeyer, G. A., Straile, D., Dong, B., Adrian, R., Allan, M. G.,
Anneville, O., Arvola, L., Austin, J., Bailey, J. L., Baron, J. S., Brookes,
J. D., de Eyto, E., Dokulil, M. T., Hamilton, D. P., Havens, K., Hetherington, A. L., Higgins, S. N., Hook, S., Izmest'eva, L. R., Joehnk, K.
D., Kangur, K., Kasprzak, P., Kumagai, M., Kuusisto, E., Leshkevich, G.,
Livingstone, D. M., MacIntyre, S., May, L., Melack, J. M., Mueller-Navarra, D. C., Naumenko, M., Noges, P., Noges, T., North, R. P., Plisnier, P.-D.,
Rigosi, A., Rimmer, A., Rogora, M., Rudstam, L. G., Rusak, J. A., Salmaso,
N., Samal, N. R., Schindler, D. E., Schladow, S. G., Schmid, M., Schmidt, S.
R., Silow, E., Soylu, M. E., Teubner, K., Verburg, P., Voutilainen, A.,
Watkinson, A., Williamson, C. E., and Zhang, G.: Rapid and highly variable
warming of lake surface waters around the globe, Geophys. Res. Lett., 42,
10773–10781, https://doi.org/10.1002/2015GL066235, 2015.
Parmesan, C.: Ecological and evolutionary responses to recent climate change, Annu. Rev. Ecol. Evol. Syst., 37, 637–669, https://doi.org/10.1146/annurev.ecolsys.37.091305.110100, 2006.
Perga, M.-E., Bruel, R., Rodriguez, L., Guénand, Y., and Bouffard, D.:
Storm impacts on alpine lakes: Antecedent weather conditions matter more than the event intensity, Global Change Biol., 24, 5004–5016, https://doi.org/10.1111/gcb.14384, 2018.
Piccioni, F., Casenave, C., Lemaire, B. J., Le Moigne, P., Dubois, P., and
Vinçon-Leite, B.: The thermal response of small and shallow lakes to climate change: new insights from 3D hindcast modelling, Earth Syst. Dynam.,
12, 439–456, https://doi.org/10.5194/esd-12-439-2021, 2021.
Piccolroaz, S., Toffolon, M., and Majone, B.: A simple lumped model to convert air temperature into surface water temperature in lakes, Hydrol. Earth Syst. Sci., 17, 3323–3338, https://doi.org/10.5194/hess-17-3323-2013, 2013.
Pourriot, R. and Meybeck, M.: Limnologie générale, in: Collection d'écologie 25, Masson, Paris, p. 956, ISBN 2-225-84687-1, 1995.
Rajwa-Kuligiewicz, A., Rowiński, P., Bialik, R., and Karpiński, M.:
Stream diurnal profiles of dissolved oxygen – case studies, in: Proc. 3rd IAHR Europe Congress, Porto, Portugal, ISBN 978-989-96479-2-3, 2014.
Råman Vinnå, L., Wüest, A., and Bouffard, D.: Physical effects
of thermal pollution in lakes, Water Resour. Res., 53, 3968–3987,
https://doi.org/10.1002/2016WR019686, 2017.
Råman Vinnå, L., Wüest, A., Zappa, M., Fink, G., and Bouffard,
D.: Tributaries affect the thermal response of lakes to climate change, Hydrol. Earth Syst. Sci., 22, 31–51, https://doi.org/10.5194/hess-22-31-2018, 2018.
Råman Vinnå, L., Medhaug, I., Schmid, M., and Bouffard, D.: The
vulnerability of lakes to climate change along an altitudinal gradient, Commun. Earth Environ., 2, 35, https://doi.org/10.1038/s43247-021-00106-w, 2021.
R Core Team: R: A language and environment for statistical computing, R Foundation for Statistical Computing, https://www.R-project.org/ (last access: 14 February 2023), 2021.
Réalis-Doyelle, E.: Influence de la température sur les premiers
stades de vie de trois espèces de poissons dulcicoles: étude de la
survie et de la plasticité phénotypique, Phd thesis, Université
de Lorraine, https://theses.hal.science/tel-01540861/document (last access: 13 February 2023), 2016.
Riahi, K., van Vuuren, D. P., Kriegler, E., Edmonds, J., O'Neill, B. C.,
Fujimori, S., Bauer, N., Calvin, K., Dellink, R., Fricko, O., Lutz, W., Popp, A., Cuaresma, J. C., Kc, S., Leimbach, M., Jiang, L., Kram, T., Rao, S., Emmerling, J., Ebi, K., Hasegawa, T., Havlik, P., Humpenöder, F., Da Silva, L. A., Smith, S., Stehfest, E., Bosetti, V., Eom, J., Gernaat, D.,
Masui, T., Rogelj, J., Strefler, J., Drouet, L., Krey, V., Luderer, G.,
Harmsen, M., Takahashi, K., Baumstark, L., Doelman, J. C., Kainuma, M.,
Klimont, Z., Marangoni, G., Lotze-Campen, H., Obersteiner, M., Tabeau, A.,
and Tavoni, M.: The Shared Socioeconomic Pathways and their energy, land
use, and greenhouse gas emissions implications: An overview, Global Environ.
Change, 42, 153–168, https://doi.org/10.1016/j.gloenvcha.2016.05.009, 2017.
Ridout, M. S. and Linkie, M.: Estimating overlap of daily activity patterns
from camera trap data, J. Agric. Biol. Environ. Stat., 14, 322–337,
https://doi.org/10.1198/jabes.2009.08038, 2009.
Rimet, F., Anneville, O., Barbet, D., Chardon, C., Crépin, L., Domaizon, I., Dorioz, J.-M., Espinat, L., Frossard, V., Guillard, J., Goulon, C., Hamelet, V., Hustache, J.-C., Jacquet, S., Lainé, L., Montuelle, B., Perney, P., Quetin, P., Rasconi, S., and Monet, G.: The Observatory on LAkes (OLA) database: Sixty years of environmental data accessible to the public, J. Limnol., 79, 164–178, https://doi.org/10.4081/jlimnol.2020.1944, 2020.
Roberts, J. J., Höök, T. O., Ludsin, S. A., Pothoven, S. A., Vanderploeg, H. A., and Brandt, S. B.: Effects of hypolimnetic hypoxia on
foraging and distributions of Lake Erie yellow perch, J. Exp. Mar. Biol. Ecol., 381, S132–S142, 2009a.
Roberts, J. J., Höök, T. O., Ludsin, S. A., Pothoven, S. A., Vanderploeg, H. A., and Brandt, S. B.: Effects of hypolimnetic hypoxia on
foraging and distributions of Lake Erie yellow perch, J. Exp. Mar. Biol. Ecol., 381, S132–S142, https://doi.org/10.1016/j.jembe.2009.07.017, 2009b.
Robertson, D. and Ragotzkie, R.: Changes in the thermal structure of moderate to large sized lakes in response to changes in air temperature, Aquat. Sci., 52, 360–380, https://doi.org/10.1007/BF00879763, 1990.
Sadeghian, A., Hudson, J., and Lindenschmidt, K.-E.: Effects of quality
controlled measured and re-analysed meteorological data on the performance
of water temperature simulations, Hydrolog. Sci. J., 67, 21–39, https://doi.org/10.1080/02626667.2021.1994975, 2021.
Saloranta, T. M.: Highlighting the model code selection and application
process in policy-relevant water quality modelling, Ecol. Model., 194, 316–327, https://doi.org/10.1016/j.ecolmodel.2005.10.031, 2006.
Saloranta, T. M. and Andersen, T.: MyLake – A multi-year lake simulation model code suitable for uncertainty and sensitivity analysis simulations,
Ecol. Model., 207, 45–60, https://doi.org/10.1016/j.ecolmodel.2007.03.018, 2007.
Schmid, M. and Köster, O.: Excess warming of a Central European lake
driven by solar brightening, Water Resour. Res., 52, 8103–8116,
https://doi.org/10.1002/2016WR018651, 2016.
Shatwell, T., Thiery, W., and Kirillin, G.: Future projections of temperature and mixing regime of European temperate lakes, Hydrol. Earth Syst. Sci., 23, 1533–1551, https://doi.org/10.5194/hess-23-1533-2019, 2019.
Snortheim, C. A., Hanson, P. C., McMahon, K. D., Read, J. S., Carey, C. C.,
and Dugan, H. A.: Meteorological drivers of hypolimnetic anoxia in a eutrophic, north temperate lake, Ecol. Model., 343, 39–53, https://doi.org/10.1016/j.ecolmodel.2016.10.014, 2017.
Soares, L. M. V. and Calijuri, M. do C.: Deterministic modelling of freshwater lakes and reservoirs: Current trends and recent progress, Environ. Model. Softw., 144, 105143, https://doi.org/10.1016/j.envsoft.2021.105143, 2021.
Trolle, D., Hamilton, D. P., Hipsey, M. R., Bolding, K., Bruggeman, J., Mooij, W. M., Janse, J. H., Nielsen, A., Jeppesen, E., Elliott, J. A.,
Makler-Pick, V., Petzoldt, T., Rinke, K., Flindt, M. R., Arhonditsis, G. B.,
Gal, G., Bjerring, R., Tominaga, K., Hoen, J., Downing, A. S., Marques, D. M., Fragoso, C. R., Søndergaard, M., and Hanson, P. C.: A community-based
framework for aquatic ecosystem models, Hydrobiologia, 683, 25–34,
https://doi.org/10.1007/s10750-011-0957-0, 2012.
van Vuuren, D. P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., Hurtt, G. C., Kram, T., Krey, V., Lamarque, J.-F., Masui, T., Meinshausen, M., Nakicenovic, N., Smith, S. J., and Rose, S. K.: The representative concentration pathways: an overview, Climatic Change, 109, 5–31, https://doi.org/10.1007/s10584-011-0148-z, 2011.
Vinçon-Leite, B., Lemaire, B. J., Khac, V. T., and Tassin, B.: Long-term
temperature evolution in a deep sub-alpine lake, Lake Bourget, France: how a
one-dimensional model improves its trend assessment, Hydrobiologia, 731,
49–64, https://doi.org/10.1007/s10750-014-1818-4, 2014.
Walther, G. R., Post, E., Convey, P., Menzel, A., Parmesan, C., Beebee, T. J. C., Fromentin, J. M., Hoegh-Guldberg, O., and Bairlein, F.: Ecological responses to recent climate change, Nature, 416, 389–395, https://doi.org/10.1038/416389a, 2002.
Wetzel, R. G.: Limnology: Lake and River Ecosystems, Academic Press, 1024 pp., eBook ISBN 9780080574394, Hardcover ISBN 9780127447605, 2001.
Williamson, C. E., Saros, J. E., Vincent, W. F., and Smol, J. P.: Lakes and
reservoirs as sentinels, integrators, and regulators of climate change, Limnol. Oceanogr., 54, 2273–2282, https://doi.org/10.4319/lo.2009.54.6_part_2.2273, 2009.
Winslow, L., Read, J., Woolway, R., Brentrup, J., Leach, T., Zwart, J.,
Albers, S., and Collinge, D.: rLakeAnalyzer: Lake Physics Tools, https://cran.r-project.org/web/packages/rLakeAnalyzer/rLakeAnalyzer.pdf
(last access: 13 February 2023), 2019.
Woolway, R. I. and Merchant, C. J.: Worldwide alteration of lake mixing
regimes in response to climate change, Nat. Geosci., 12, 271–276,
https://doi.org/10.1038/s41561-019-0322-x, 2019.
Woolway, R. I., Sharma, S., Weyhenmeyer, G. A., Debolskiy, A., Golub, M.,
Mercado-Bettín, D., Perroud, M., Stepanenko, V., Tan, Z., Grant, L., Ladwig, R., Mesman, J., Moore, T. N., Shatwell, T., Vanderkelen, I., Austin,
J. A., DeGasperi, C. L., Dokulil, M., La Fuente, S., Mackay, E. B., Schladow, S. G., Watanabe, S., Marcé, R., Pierson, D. C., Thiery, W., and Jennings, E.: Phenological shifts in lake stratification under climate change, Nat. Commun., 12, 2318, https://doi.org/10.1038/s41467-021-22657-4, 2021.
Download
The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.
- Article
(7155 KB) - Full-text XML
- Corrigendum
-
Supplement
(951 KB) - BibTeX
- EndNote
Short summary
The long-term effects of climate change will include an increase in lake surface and deep water temperatures. Incorporating up to 6 decades of limnological monitoring into an improved 1D lake model approach allows us to predict the thermal regime and oxygen solubility in four peri-alpine lakes over the period 1850–2100. Our modeling approach includes a revised selection of forcing variables and provides a way to investigate the impacts of climate variations on lakes for centennial timescales.
The long-term effects of climate change will include an increase in lake surface and deep water...