Articles | Volume 27, issue 2
https://doi.org/10.5194/hess-27-627-2023
https://doi.org/10.5194/hess-27-627-2023
Research article
 | 
01 Feb 2023
Research article |  | 01 Feb 2023

Climate sensitivity of the summer runoff of two glacierised Himalayan catchments with contrasting climate

Sourav Laha, Argha Banerjee, Ajit Singh, Parmanand Sharma, and Meloth Thamban

Related authors

Predictability of mean summertime diurnal winds over ungauged mountain glaciers
J. Krishnanand, Argha Banerjee, R. Shankar, Himanshu Kaushik, Mohd. Farooq Azam, and Chandan Sarangi
EGUsphere, https://doi.org/10.5194/egusphere-2025-3756,https://doi.org/10.5194/egusphere-2025-3756, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
A comprehensive rock glacier inventory for Jammu, Kashmir, and Ladakh, western Himalaya, India – Baseline for the permafrost research
Imtiyaz Ahmad Bhat, Irfan Rashid, RAAJ Ramsankaran, Argha Banerjee, and Saurabh Vijay
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-522,https://doi.org/10.5194/essd-2023-522, 2024
Preprint withdrawn
Short summary
The control of climate sensitivity on variability and change of summer runoff from two glacierised Himalayan catchments
Sourav Laha, Argha Banerjee, Ajit Singh, Parmanand Sharma, and Meloth Thamban
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-499,https://doi.org/10.5194/hess-2021-499, 2021
Revised manuscript not accepted
Short summary
Possible biases in scaling-based estimates of glacier change: a case study in the Himalaya
Argha Banerjee, Disha Patil, and Ajinkya Jadhav
The Cryosphere, 14, 3235–3247, https://doi.org/10.5194/tc-14-3235-2020,https://doi.org/10.5194/tc-14-3235-2020, 2020
Short summary

Cited articles

Amante, C. and Eakins, B. W.: ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis, NOAA Technical Memorandum NESDIS NGDC-24, National Geophysical Data Center, NOAA, https://doi.org/10.7289/V5C8276M, 2009. a
Anderson, B., Mackintosh, A., Stumm, D., George, L., Kerr, T., Winter-Billington, A., and Fitzsimons, S. Climate sensitivity of a high-precipitation glacier in New Zealand, J. Glaciol., 56, 114-128, https://doi.org/10.3189/002214310791190929, 2010. a
Andreadis, K. M., Storck, P., and Lettenmaier, D. P.: Modeling snow accumulation and ablation processes in forested environments, Water Resour. Res., 45, W05429, https://doi.org/10.1029/2008WR007042, 2009. a
Azam, M. F. and Srivastava, S.: Mass balance and runoff modelling of partially debris-covered Dokriani Glacier in monsoon-dominated Himalaya using ERA5 data since 1979, J. Hydrol., 590, 125432, https://doi.org/10.1016/j.jhydrol.2020.125432, 2020. a, b, c, d, e, f, g, h, i, j, k, l, m
Azam, M. F., Wagnon, P., Vincent, C., Ramanathan, A., Linda, A., and Singh, V. B.: Reconstruction of the annual mass balance of Chhota Shigri glacier, Western Himalaya, India, since 1969, Ann. Glaciol., 55, 69–80, https://doi.org/10.3189/2014AoG66A104, 2014. a
Download
Short summary
A model study of two Himalayan catchments reveals that the summer runoff from the glacierized parts of the catchments responds strongly to temperature forcing and is insensitive to precipitation forcing. The runoff from the non-glacierized parts has the exact opposite behaviour. The interannual variability and decadal changes of runoff under a warming climate is determined by the response of glaciers to temperature forcing and that of off-glacier areas to precipitation perturbations.
Share