Articles | Volume 27, issue 24
https://doi.org/10.5194/hess-27-4437-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-27-4437-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Effects of urbanization on the water cycle in the Shiyang River basin: based on a stable isotope method
Rui Li
College of Geography and Environmental Science, Northwest Normal University, Lanzhou 730070, Gansu, China
Shiyang River Ecological Environment Observation Station, Northwest Normal University, Lanzhou 730070, Gansu, China
Key Laboratory of Resource Environment and Sustainable Development of Oasis, Gansu Province, Lanzhou 730070, Gansu, China
College of Geography and Environmental Science, Northwest Normal University, Lanzhou 730070, Gansu, China
Shiyang River Ecological Environment Observation Station, Northwest Normal University, Lanzhou 730070, Gansu, China
Key Laboratory of Resource Environment and Sustainable Development of Oasis, Gansu Province, Lanzhou 730070, Gansu, China
Siyu Lu
College of Geography and Environmental Science, Northwest Normal University, Lanzhou 730070, Gansu, China
Shiyang River Ecological Environment Observation Station, Northwest Normal University, Lanzhou 730070, Gansu, China
Key Laboratory of Resource Environment and Sustainable Development of Oasis, Gansu Province, Lanzhou 730070, Gansu, China
Liyuan Sang
College of Geography and Environmental Science, Northwest Normal University, Lanzhou 730070, Gansu, China
Shiyang River Ecological Environment Observation Station, Northwest Normal University, Lanzhou 730070, Gansu, China
Gaojia Meng
College of Geography and Environmental Science, Northwest Normal University, Lanzhou 730070, Gansu, China
Shiyang River Ecological Environment Observation Station, Northwest Normal University, Lanzhou 730070, Gansu, China
Key Laboratory of Resource Environment and Sustainable Development of Oasis, Gansu Province, Lanzhou 730070, Gansu, China
Longhu Chen
College of Geography and Environmental Science, Northwest Normal University, Lanzhou 730070, Gansu, China
Shiyang River Ecological Environment Observation Station, Northwest Normal University, Lanzhou 730070, Gansu, China
Key Laboratory of Resource Environment and Sustainable Development of Oasis, Gansu Province, Lanzhou 730070, Gansu, China
Yinying Jiao
College of Geography and Environmental Science, Northwest Normal University, Lanzhou 730070, Gansu, China
Shiyang River Ecological Environment Observation Station, Northwest Normal University, Lanzhou 730070, Gansu, China
Key Laboratory of Resource Environment and Sustainable Development of Oasis, Gansu Province, Lanzhou 730070, Gansu, China
Qinqin Wang
College of Geography and Environmental Science, Northwest Normal University, Lanzhou 730070, Gansu, China
Shiyang River Ecological Environment Observation Station, Northwest Normal University, Lanzhou 730070, Gansu, China
Key Laboratory of Resource Environment and Sustainable Development of Oasis, Gansu Province, Lanzhou 730070, Gansu, China
Related authors
Yinying Jiao, Guofeng Zhu, Dongdong Qiu, Siyu Lu, Gaojia Meng, Rui Li, Qinqin Wang, Longhu Chen, and Wentong Li
Biogeosciences, 22, 4433–4448, https://doi.org/10.5194/bg-22-4433-2025, https://doi.org/10.5194/bg-22-4433-2025, 2025
Short summary
Short summary
This study shows that transpiration is the key reason behind the high-altitude forest zone's limited runoff generation. Furthermore, within the altitude range of 2500–3200 m, an increase in recirculated water vapour was observed alongside an increase in precipitation, suggesting a direct positive correlation between these two factors.
Rui Li, Guofeng Zhu, Longhu Chen, Xiaoyu Qi, Siyu Lu, Gaojia Meng, Yuhao Wang, Wenmin Li, Zhijie Zheng, Jiangwei Yang, and Yani Gun
Earth Syst. Sci. Data, 17, 2135–2145, https://doi.org/10.5194/essd-17-2135-2025, https://doi.org/10.5194/essd-17-2135-2025, 2025
Short summary
Short summary
The study of hydrogen and oxygen stable isotopes in surface water is vital for understanding the global water cycle and its response to climate change. Analysing data from 22 389 global sampling stations over 67 years, we uncover spatial and temporal variations in isotopes, showing depletion from the Equator to the poles and from coastal to inland areas. These variations, influenced by geographic, topographic and meteorological factors, reveal the water cycle's heterogeneity.
Jiangwei Yang, Liyuan Sang, Guofeng Zhu, Rui Li, Siyu Lu, QInqin Wang, Yinying Jiao, Xiaoyu Qi, Zhijie Zheng, Wenmin Li, Yuxin Miao, and Yani Gun
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-277, https://doi.org/10.5194/hess-2024-277, 2024
Manuscript not accepted for further review
Short summary
Short summary
Recent dramatic increase in dam construction on rivers has changed the water cycle pattern in arid areas. Understanding the impact of dams on these processes is a key challenge in the hydrological field. Studies show that the dam destroys the natural hydrological connectivity of rivers and increases the retention time of surface waters. Studies revealed these changes using isotope kinetic analysis, further confirming the profound effect of dams on water circulation in inland river basins.
Longhu Chen, Qinqin Wang, Guofeng Zhu, Rui Li, Siyu Lu, Xinrui Lin, Dongdong Qiu, Gaojia Meng, Yinying Jiao, Yuhao Wang, Jing Liu, Yutong He, and Yanan Li
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-171, https://doi.org/10.5194/essd-2024-171, 2024
Preprint withdrawn
Short summary
Short summary
This study provides a dataset of hydrogen and oxygen stable isotopes from 2,059 sites worldwide, showing variations in global precipitation isotopes since 1961. The dataset offers insights into climate variability and water resource management.
Qinqin Wang, Yuanxiao Xu, Guofeng Zhu, Siyu Lu, Dongdong Qiu, Yinying Jiao, Longhu Chen, Gaojia Meng, Rui Li, Xiaoyu Qi, Wenmin Li, Ling Zhao, Yuhao Wang, Enwei Huang, and Wentong Li
EGUsphere, https://doi.org/10.5194/egusphere-2024-2047, https://doi.org/10.5194/egusphere-2024-2047, 2024
Preprint archived
Short summary
Short summary
We studied the impact of agricultural activities and ecological restoration on soil organic carbon in the terraced areas of the Loess Plateau. This research is of significance for agricultural management and ecological restoration in the terraced areas of the Loess Plateau, and contributes to the formulation of rational policies for carbon sequestration in terraced farmland.
Enwei Huang, Guofeng Zhu, Yuhao Wang, Gaojia Meng, Ling Zhao, Xuan Zhang, Xiaoyu Qi, Qinqin Wang, Yinying Jiao, Jiawei Liu, Siyu Lu, Longhu Chen, and Rui Li
EGUsphere, https://doi.org/10.5194/egusphere-2024-1008, https://doi.org/10.5194/egusphere-2024-1008, 2024
Preprint archived
Short summary
Short summary
(1) the distribution of snow across the Qilian Mountains mainly splits between the central and western areas; (2) the area covered by snow in the Qilian Mountains is growing, but the depth of the snow is on a decline (3) most of the region is witnessing an earlier start of snow onset date (SOD), a longer snow-covered days (SCD), and an earlier snow end date (SED).
Longhu Chen, Qinqin Wang, Guofeng Zhu, Xinrui Lin, Dongdong Qiu, Yinying Jiao, Siyu Lu, Rui Li, Gaojia Meng, and Yuhao Wang
Earth Syst. Sci. Data, 16, 1543–1557, https://doi.org/10.5194/essd-16-1543-2024, https://doi.org/10.5194/essd-16-1543-2024, 2024
Short summary
Short summary
We have compiled data regarding stable precipitation isotopes from 842 sampling points throughout the Eurasian continent since 1961, accumulating a total of 51 753 data records. The collected data have undergone pre-processing and statistical analysis. We also analysed the spatiotemporal distribution of stable precipitation isotopes across the Eurasian continent and their interrelationships with meteorological elements.
Gaojia Meng, Guofeng Zhu, Yinying Jiao, Dongdong Qiu, Yuhao Wang, Siyu Lu, Rui Li, Jiawei Liu, Longhu Chen, Qinqin Wang, Enwei Huang, and Wentong Li
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-76, https://doi.org/10.5194/hess-2024-76, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
Shiyang River Basin is a typical inland river basin in the arid zone, and through the study, it was found that its soil salinization area has a general trend of increasing, and the degree of salinization gradually increases. External water transfers have alleviated water shortage and salinization to a certain extent, but soil salinization has already occurred in its periphery.
Xinrui Lin, Guofeng Zhu, Dongdong Qiu, Longhu Chen, Dehong Si, Linlin Ye, Siyu Lu, Yinying Jiao, Jiawei Liu, Rui Li, Qinqin Wang, Jiangwei Yang, and Wenhao Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2023-2058, https://doi.org/10.5194/egusphere-2023-2058, 2023
Preprint archived
Short summary
Short summary
This article examines the impacts of high-temperature events on precipitation isotopes. The results show that stable precipitation isotopes are more enriched under the influence of high-temperature events than in the same month of previous years. High temperatures and atmospheric circulation patterns lead to abnormal variations in precipitation isotopes in high-temperature months. This research is instructive for disentangling the influence of high-temperature events on water cycle processes.
Siyu Lu, Guofeng Zhu, Rui Li, Yinying Jiao, Gaojia Meng, Dongdong Qiu, Yuwei Liu, Lei Wang, Xinrui Lin, Yuanxiao Xu, Qinqin Wang, and Longhu Chen
Biogeosciences Discuss., https://doi.org/10.5194/bg-2023-1, https://doi.org/10.5194/bg-2023-1, 2023
Manuscript not accepted for further review
Short summary
Short summary
The study shows that precipitation and soil water are the most important sources for forest trees in the mountainous areas, and that agricultural vegetation in the middle and lower oasis areas mainly absorbs soil water recharged by irrigation. The desert area forms vegetation in the ecological water transfer area, and the vegetation mainly absorbs soil water, lake water and groundwater formed by ecological water transfer.
Yinying Jiao, Guofeng Zhu, Dongdong Qiu, Yuwei Liu, Lei Wang, Siyu Lu, Gaojia Meng, Xinrui Lin, Rui Li, Qinqin Wang, Longhu Chen, and Niu Sun
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-375, https://doi.org/10.5194/hess-2022-375, 2023
Revised manuscript not accepted
Short summary
Short summary
Qilian Mountains are an important ecological security barrier and a priority area for biodiversity conservation in central Asia. We quantified the evapotranspiration processes in the forest belts of the Qilian Mountains as well as their contribution to runoff yield and concentration based on precipitation, soil water, and plant water samples and experimental data. We draw a conclusion that the forest zone does not yield flows in the eastern part of the Qilian Mountains.
Yinying Jiao, Guofeng Zhu, Dongdong Qiu, Siyu Lu, Gaojia Meng, Rui Li, Qinqin Wang, Longhu Chen, and Wentong Li
Biogeosciences, 22, 4433–4448, https://doi.org/10.5194/bg-22-4433-2025, https://doi.org/10.5194/bg-22-4433-2025, 2025
Short summary
Short summary
This study shows that transpiration is the key reason behind the high-altitude forest zone's limited runoff generation. Furthermore, within the altitude range of 2500–3200 m, an increase in recirculated water vapour was observed alongside an increase in precipitation, suggesting a direct positive correlation between these two factors.
Yinying Jiao, Guofeng Zhu, Yuxin Miao, Yani Gun, Jiangwei Yang, and Qinqin Wang
EGUsphere, https://doi.org/10.5194/egusphere-2025-2410, https://doi.org/10.5194/egusphere-2025-2410, 2025
Short summary
Short summary
This finding constitutes a major breakthrough in our understanding of land–atmosphere interactions in complex environments, advancing climate dynamics theory while also carrying profound implications for climate science—particularly in understanding and predicting vegetation-mediated extreme weather events—and providing essential insights for improving climate models and devising sustainable management strategies for arid regions.
Rui Li, Guofeng Zhu, Longhu Chen, Xiaoyu Qi, Siyu Lu, Gaojia Meng, Yuhao Wang, Wenmin Li, Zhijie Zheng, Jiangwei Yang, and Yani Gun
Earth Syst. Sci. Data, 17, 2135–2145, https://doi.org/10.5194/essd-17-2135-2025, https://doi.org/10.5194/essd-17-2135-2025, 2025
Short summary
Short summary
The study of hydrogen and oxygen stable isotopes in surface water is vital for understanding the global water cycle and its response to climate change. Analysing data from 22 389 global sampling stations over 67 years, we uncover spatial and temporal variations in isotopes, showing depletion from the Equator to the poles and from coastal to inland areas. These variations, influenced by geographic, topographic and meteorological factors, reveal the water cycle's heterogeneity.
Jiangwei Yang, Liyuan Sang, Guofeng Zhu, Rui Li, Siyu Lu, QInqin Wang, Yinying Jiao, Xiaoyu Qi, Zhijie Zheng, Wenmin Li, Yuxin Miao, and Yani Gun
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-277, https://doi.org/10.5194/hess-2024-277, 2024
Manuscript not accepted for further review
Short summary
Short summary
Recent dramatic increase in dam construction on rivers has changed the water cycle pattern in arid areas. Understanding the impact of dams on these processes is a key challenge in the hydrological field. Studies show that the dam destroys the natural hydrological connectivity of rivers and increases the retention time of surface waters. Studies revealed these changes using isotope kinetic analysis, further confirming the profound effect of dams on water circulation in inland river basins.
Longhu Chen, Qinqin Wang, Guofeng Zhu, Rui Li, Siyu Lu, Xinrui Lin, Dongdong Qiu, Gaojia Meng, Yinying Jiao, Yuhao Wang, Jing Liu, Yutong He, and Yanan Li
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-171, https://doi.org/10.5194/essd-2024-171, 2024
Preprint withdrawn
Short summary
Short summary
This study provides a dataset of hydrogen and oxygen stable isotopes from 2,059 sites worldwide, showing variations in global precipitation isotopes since 1961. The dataset offers insights into climate variability and water resource management.
Qinqin Wang, Yuanxiao Xu, Guofeng Zhu, Siyu Lu, Dongdong Qiu, Yinying Jiao, Longhu Chen, Gaojia Meng, Rui Li, Xiaoyu Qi, Wenmin Li, Ling Zhao, Yuhao Wang, Enwei Huang, and Wentong Li
EGUsphere, https://doi.org/10.5194/egusphere-2024-2047, https://doi.org/10.5194/egusphere-2024-2047, 2024
Preprint archived
Short summary
Short summary
We studied the impact of agricultural activities and ecological restoration on soil organic carbon in the terraced areas of the Loess Plateau. This research is of significance for agricultural management and ecological restoration in the terraced areas of the Loess Plateau, and contributes to the formulation of rational policies for carbon sequestration in terraced farmland.
Enwei Huang, Guofeng Zhu, Yuhao Wang, Gaojia Meng, Ling Zhao, Xuan Zhang, Xiaoyu Qi, Qinqin Wang, Yinying Jiao, Jiawei Liu, Siyu Lu, Longhu Chen, and Rui Li
EGUsphere, https://doi.org/10.5194/egusphere-2024-1008, https://doi.org/10.5194/egusphere-2024-1008, 2024
Preprint archived
Short summary
Short summary
(1) the distribution of snow across the Qilian Mountains mainly splits between the central and western areas; (2) the area covered by snow in the Qilian Mountains is growing, but the depth of the snow is on a decline (3) most of the region is witnessing an earlier start of snow onset date (SOD), a longer snow-covered days (SCD), and an earlier snow end date (SED).
Longhu Chen, Qinqin Wang, Guofeng Zhu, Xinrui Lin, Dongdong Qiu, Yinying Jiao, Siyu Lu, Rui Li, Gaojia Meng, and Yuhao Wang
Earth Syst. Sci. Data, 16, 1543–1557, https://doi.org/10.5194/essd-16-1543-2024, https://doi.org/10.5194/essd-16-1543-2024, 2024
Short summary
Short summary
We have compiled data regarding stable precipitation isotopes from 842 sampling points throughout the Eurasian continent since 1961, accumulating a total of 51 753 data records. The collected data have undergone pre-processing and statistical analysis. We also analysed the spatiotemporal distribution of stable precipitation isotopes across the Eurasian continent and their interrelationships with meteorological elements.
Gaojia Meng, Guofeng Zhu, Yinying Jiao, Dongdong Qiu, Yuhao Wang, Siyu Lu, Rui Li, Jiawei Liu, Longhu Chen, Qinqin Wang, Enwei Huang, and Wentong Li
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-76, https://doi.org/10.5194/hess-2024-76, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
Shiyang River Basin is a typical inland river basin in the arid zone, and through the study, it was found that its soil salinization area has a general trend of increasing, and the degree of salinization gradually increases. External water transfers have alleviated water shortage and salinization to a certain extent, but soil salinization has already occurred in its periphery.
Xinrui Lin, Guofeng Zhu, Dongdong Qiu, Longhu Chen, Dehong Si, Linlin Ye, Siyu Lu, Yinying Jiao, Jiawei Liu, Rui Li, Qinqin Wang, Jiangwei Yang, and Wenhao Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2023-2058, https://doi.org/10.5194/egusphere-2023-2058, 2023
Preprint archived
Short summary
Short summary
This article examines the impacts of high-temperature events on precipitation isotopes. The results show that stable precipitation isotopes are more enriched under the influence of high-temperature events than in the same month of previous years. High temperatures and atmospheric circulation patterns lead to abnormal variations in precipitation isotopes in high-temperature months. This research is instructive for disentangling the influence of high-temperature events on water cycle processes.
Siyu Lu, Guofeng Zhu, Rui Li, Yinying Jiao, Gaojia Meng, Dongdong Qiu, Yuwei Liu, Lei Wang, Xinrui Lin, Yuanxiao Xu, Qinqin Wang, and Longhu Chen
Biogeosciences Discuss., https://doi.org/10.5194/bg-2023-1, https://doi.org/10.5194/bg-2023-1, 2023
Manuscript not accepted for further review
Short summary
Short summary
The study shows that precipitation and soil water are the most important sources for forest trees in the mountainous areas, and that agricultural vegetation in the middle and lower oasis areas mainly absorbs soil water recharged by irrigation. The desert area forms vegetation in the ecological water transfer area, and the vegetation mainly absorbs soil water, lake water and groundwater formed by ecological water transfer.
Yinying Jiao, Guofeng Zhu, Dongdong Qiu, Yuwei Liu, Lei Wang, Siyu Lu, Gaojia Meng, Xinrui Lin, Rui Li, Qinqin Wang, Longhu Chen, and Niu Sun
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-375, https://doi.org/10.5194/hess-2022-375, 2023
Revised manuscript not accepted
Short summary
Short summary
Qilian Mountains are an important ecological security barrier and a priority area for biodiversity conservation in central Asia. We quantified the evapotranspiration processes in the forest belts of the Qilian Mountains as well as their contribution to runoff yield and concentration based on precipitation, soil water, and plant water samples and experimental data. We draw a conclusion that the forest zone does not yield flows in the eastern part of the Qilian Mountains.
Guofeng Zhu, Yuwei Liu, Peiji Shi, Wenxiong Jia, Junju Zhou, Yuanfeng Liu, Xinggang Ma, Hanxiong Pan, Yu Zhang, Zhiyuan Zhang, Zhigang Sun, Leilei Yong, and Kailiang Zhao
Earth Syst. Sci. Data, 14, 3773–3789, https://doi.org/10.5194/essd-14-3773-2022, https://doi.org/10.5194/essd-14-3773-2022, 2022
Short summary
Short summary
From 2015 to 2020, we studied the Shiyang River basin, which has the highest utilization rate of water resources and the most prominent contradiction of water use, as a typical demonstration basin to establish and improve the isotope hydrology observation system, including river source region, oasis region, reservoir channel system region, oasis farmland region, ecological engineering construction region, and salinization process region.
Guofeng Zhu, Leilei Yong, Xi Zhao, Yuwei Liu, Zhuanxia Zhang, Yuanxiao Xu, Zhigang Sun, Liyuan Sang, and Lei Wang
Hydrol. Earth Syst. Sci., 26, 3771–3784, https://doi.org/10.5194/hess-26-3771-2022, https://doi.org/10.5194/hess-26-3771-2022, 2022
Short summary
Short summary
In arid areas, the processes of water storage have not been fully understood in different vegetation zones in mountainous areas. This study monitored the stable isotopes in the precipitation and soil water of the Xiying River Basin. In the four vegetation zones, soil water evaporation intensities were mountain grassland > deciduous forest > coniferous forest > alpine meadow, and soil water storage capacity was alpine meadow > deciduous forest > coniferous forest > mountain grassland.
Guofeng Zhu, Zhigang Sun, Yuanxiao Xu, Yuwei Liu, Zhuanxia Zhang, Liyuan Sang, and Lei Wang
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-75, https://doi.org/10.5194/hess-2022-75, 2022
Revised manuscript not accepted
Short summary
Short summary
We analyzed the stable isotopic composition of surface water and estimated its evaporative loss in the Shiyang River Basin. The characteristics of stable isotopes in surface water show a gradual enrichment from mountainous areas to deserts, and the evaporation loss of surface water also shows a gradually increasing trend from upstream to downstream. The study of evaporative losses in the river-lake continuum contributes to the sustainable use of water resources.
Yuwei Liu, Guofeng Zhu, Zhuanxia Zhang, Zhigang Sun, Leilei Yong, Liyuan Sang, Lei Wang, and Kailiang Zhao
Biogeosciences, 19, 877–889, https://doi.org/10.5194/bg-19-877-2022, https://doi.org/10.5194/bg-19-877-2022, 2022
Short summary
Short summary
We took the water cycle process of soil–plant–atmospheric precipitation as the research objective. In the water cycle of soil–plant–atmospheric precipitation, precipitation plays the main controlling role. The main source of replenishment for alpine meadow plants is precipitation and alpine meltwater; the main source of replenishment for forest plants is soil water; and the plants in the arid foothills mainly use groundwater.
Guofeng Zhu, Yuwei Liu, Peiji Shi, Wenxiong Jia, Junju Zhou, Yuanfeng Liu, Xinggang Ma, Hanxiong Pan, Yu Zhang, Zhiyuan Zhang, Zhigang Sun, Leilei Yong, and Kailiang Zhao
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2021-79, https://doi.org/10.5194/essd-2021-79, 2021
Revised manuscript not accepted
Short summary
Short summary
We have established a stable water isotope monitoring network in the Shiyang River Basin. The monitoring station with six observation systems: river source area, oasis area, reservoir canal system area, oasis farmland area, ecological restoration area and salinized area.The data set includes the stable water isotopes of different water bodies and the meteorological and hydrological data in the Shiyang River Basin. So far, the data have been obtained for five consecutive years.
Cited articles
Anderson, B. J., Slater, L. J., Dadson, S. J., Blum, A. G., and Prosdocimi, I.: Statistical Attribution of the Influence of Urban and Tree Cover Change on Streamflow: A Comparison of Large Sample Statistical Approaches, Water Resour. Res., 58, e2021WR030742, https://doi.org/10.1029/2021WR030742, 2022.
Bhaskar, A. S. and Welty, C.: Analysis of subriver storage and streamflow generation in urban basins, Water Resour. Res., 51, 1493–1513, https://doi.org/10.1002/2014WR015607, 2015.
Blum, A. G., Ferraro, P. J., Archfield, S. A., and Ryberg, K. R.: Causal Effect of Impervious Cover on Annual Flood Magnitude for the United States, Geophys. Res. Lett., 47, e2019GL086480, https://doi.org/10.1029/2019GL086480, 2020.
Bruwier, M., Maravat, C., Mustafa, A., Teller, J., Pirotton, M., Erpicum, S., Archambeau, P., and Dewals, B.: Influence of urban forms on river flow in urban pluvial flooding, J. Hydrol., 582, 124493, https://doi.org/10.1016/j.jhydrol.2019.124493, 2020.
Burian, S. J. and Shepherd, J. M.: Effect of urbanization on the diurnal rainfall pattern in Houston, Hydrol. Process., 19, 1089–1103, https://doi.org/10.1002/hyp.5647, 2005.
Caldwell, P. V., Sun, G., McNulty, S. G., Cohen, E. C., and Moore Myers, J. A.: Impacts of impervious cover, water withdrawals, and climate change on river flows in the conterminous US, Hydrol. Earth Syst. Sci., 16, 2839–2857, https://doi.org/10.5194/hess-16-2839-2012, 2012.
Chen, G., Li, X., Liu, X., Chen, Y., Liang, X., Leng, J., Xu, X., Liao, W., Qiu, Y., Wu, Q., and Huang, K.: Global projections of future urban land expansion under shared socioeconomic pathways, Nat. Commun., 11, 537, https://doi.org/10.1038/s41467-020-14386-x, 2020.
Dansgaard, W.: Stable isotopes in precipitation, Tellus, 16, 436–468, https://doi.org/10.1111/j.2153-3490.1964.tb00181.x, 1964.
De Niel, J. and Willems, P.: Climate or land cover variations: what is driving observed changes in river peak flows? A data-based attribution study, Hydrol. Earth Syst. Sci., 23, 871–882, https://doi.org/10.5194/hess-23-871-2019, 2019.
Deng, K., Yang, S., Lian, E., Li, C., Yang, C., and Wei, H.: Three Gorges Dam alters the Changjiang (Yangtze) river water cycle in the dry seasons: Evidence from H-O isotopes, Sci. Total Environ., 562, 89–97, https://doi.org/10.1016/j.scitotenv.2016.03.213, 2016.
Duan, W., Hanasaki, N., Shiogama, H., Chen, Y., Zou, S., Nover, D., Zhou, B., and Wang, Y.: Evaluation and Future Projection of Chinese Precipitation Extremes Using Large Ensemble High-Resolution Climate Simulations, J. Climate, 32, 2169–2183, https://doi.org/10.1175/JCLI-D-18-0465.1, 2019.
Fekete, B. M., Gibson, J. J., Aggarwal, P., and Vörösmarty, C. J.: Application of isotope tracers in continental scale hydrological modeling, J. Hydrol., 330, 444–456, https://doi.org/10.1016/j.jhydrol.2006.04.029, 2006.
Flörke, M., Schneider, C., and McDonald, R. I.: Water competition between cities and agriculture driven by climate change and urban growth, Nat. Sustain., 1, 51–58, https://doi.org/10.1038/s41893-017-0006-8, 2018.
Förstel, H. and Hützen, H.: Oxygen isotope ratios in German groundwater, Nature, 304, 614–616, https://doi.org/10.1038/304614a0, 1983.
Fu, X., Yang, X., and Sun, X.: Spatial and Diurnal Variations of Summer Hourly Rainfall Over Three Super City Clusters in Eastern China and Their Possible Link to the Urbanization, J. Geophys. Res.-Atmos., 124, 5445–5462, https://doi.org/10.1029/2019JD030474, 2019.
Gammons, C. H., Poulson, S. R., Pellicori, D. A., Reed, P. J., Roesler, A. J., and Petrescu, E. M.: The hydrogen and oxygen isotopic composition of precipitation, evaporated mine water, and river water in Montana, USA, J. Hydrol., 328, 319–330, https://doi.org/10.1016/j.jhydrol.2005.12.005, 2006.
Gessner, M. O., Hinkelmann, R., Nützmann, G., Jekel, M., Singer, G., Lewandowski, J., Nehls, T., and Barjenbruch, M.: Urban water interfaces, J. Hydrol., 514, 226–232, https://doi.org/10.1016/j.jhydrol.2014.04.021, 2014.
Gibson, J. J. and Edwards, T. W. D.: Regional water balance trends and evaporation‐transpiration partitioning from a stable isotope survey of lakes in northern Canada, Global Biogeochem. Cy., 16, 10-11–10-14, https://doi.org/10.1029/2001GB001839, 2002.
Gibson, J. J., Prepas, E. E., and McEachern, P.: Quantitative comparison of lake throughflow, residency, and catchment runoff using stable isotopes: modelling and results from a regional survey of Boreal lakes, J. Hydrol., 262, 128–144, https://doi.org/10.1016/S0022-1694(02)00022-7, 2002.
Gibson, J. J., Edwards, T. W. D., Birks, S. J., St Amour, N. A., Buhay, W. M., McEachern, P., Wolfe, B. B., and Peters, D. L.: Progress in isotope tracer hydrology in Canada, Hydrol. Process., 19, 303–327, https://doi.org/10.1002/hyp.5766, 2005.
Gillefalk, M., Tetzlaff, D., Hinkelmann, R., Kuhlemann, L.-M., Smith, A., Meier, F., Maneta, M. P., and Soulsby, C.: Quantifying the effects of urban green space on water partitioning and ages using an isotope-based ecohydrological model, Hydrol. Earth Syst. Sci., 25, 3635–3652, https://doi.org/10.5194/hess-25-3635-2021, 2021.
Giri, S. and Qiu, Z.: Understanding the relationship of land uses and water quality in Twenty First Century: A review, J. Environ. Manage., 173, 41–48, https://doi.org/10.1016/j.jenvman.2016.02.029, 2016.
Grimm, N. B., Faeth, S. H., Golubiewski, N. E., Redman, C. L., Wu, J., Bai, X., and Briggs, J. M.: Global Change and the Ecology of Cities, Science, 319, 756–760, https://doi.org/10.1126/science.1150195, 2008.
Guan, M., Sillanpää, N., and Koivusalo, H.: Storm runoff response to rainfall pattern, magnitude and urbanization in a developing urban catchment, Hydrol. Proc., 30, 543–557, https://doi.org/10.1002/hyp.10624, 2016.
Hamilton, S. K., Bunn, S. E., Thoms, M. C., and Marshall, J. C.: Persistence of aquatic refugia between flow pulses in a dryland river system(Cooper Creek, Australia), Limnol. Oceanogr., 50, 743–754, https://doi.org/10.4319/lo.2005.50.3.0743, 2005.
Han, S., Slater, L., Wilby, R. L., and Faulkner, D.: Contribution of urbanisation to non-stationary river flow in the UK, J. Hydrol., 613, 128417, https://doi.org/10.1016/j.jhydrol.2022.128417, 2022.
Jacobson, C. R.: Identification and quantification of the hydrological impacts of imperviousness in urban catchments: A review, J. Environ. Manage., 92, 1438–1448, https://doi.org/10.1016/j.jenvman.2011.01.018, 2011.
Liu, J., Shen, Z., and Chen, L.: Assessing how spatial variations of land use pattern affect water quality across a typical urbanized basin in Beijing, China, Landscape Urban Plan., 176, 51–63, https://doi.org/10.1016/j.landurbplan.2018.04.006, 2018.
Ma, H., Zhu, G., Zhang, Y., Sang, L., Wan, Q., Zhang, Z., Xu, Y., and Qiu, D.: Ion migration process and influencing factors in inland river basin of arid area in China: a case study of Shiyang River Basin, Environ. Sci. Pollut. R., 28, 56305–56318, https://doi.org/10.1007/s11356-021-14484-3, 2021.
Ma, J., Pan, F., Chen, L., Edmunds, W. M., Ding, Z., He, J., Zhou, K., and Huang, T.: Isotopic and geochemical evidence of recharge sources and water quality in the Quaternary aquifer beneath Jinchang city, NW China, Appl. Geochem., 25, 996–1007, https://doi.org/10.1016/j.apgeochem.2010.04.006, 2010.
Ma, X., Li, N., Yang, H., and Li, Y.: Exploring the relationship between urbanization and water environment based on coupling analysis in Nanjing, East China, Environ. Sci. Pollut. R., 29, 4654–4667, https://doi.org/10.1007/s11356-021-15161-1, 2022.
Maavara, T., Chen, Q., Van Meter, K., Brown, L. E., Zhang, J., Ni, J., and Zarfl, C.: River dam impacts on biogeochemical cycling, Nat. Rev. Earth. Environ., 1, 103–116, https://doi.org/10.1038/s43017-019-0019-0, 2020.
Małoszewski, P., Rauert, W., Stichler, W., and Herrmann, A.: Application of flow models in an alpine catchment area using tritium and deuterium data, J. Hydrol., 66, 319–330, https://doi.org/10.1016/0022-1694(83)90193-2, 1983.
Martin, K. L., Hwang, T., Vose, J. M., Coulston, J. W., Wear, D. N., Miles, B., and Band, L. E.: basin impacts of climate and land use changes depend on magnitude and land use context, Ecohydrology, 10, e1870, https://doi.org/10.1002/eco.1870, 2017.
McDonough, L. K., Santos, I. R., Andersen, M. S., O'Carroll, D. M., Rutlidge, H., Meredith, K., Oudone, P., Bridgeman, J., Gooddy, D. C., Sorensen, J. P. R., Lapworth, D. J., MacDonald, A. M., Ward, J., and Baker, A.: Changes in global groundwater organic carbon driven by climate change and urbanization, Nat. Commun., 11, 1279, https://doi.org/10.1038/s41467-020-14946-1, 2020.
McGlynn, B., McDonnell, J., Stewart, M., and Seibert, J.: On the relationships between catchment scale and streamwater mean residence time, Hydrol. Process., 17, 175–181, https://doi.org/10.1002/hyp.5085, 2003.
McGuire, K. J., McDonnell, J. J., Weiler, M., Kendall, C., McGlynn, B. L., Welker, J. M., and Seibert, J.: The role of topography on catchment‐scale water residence time, Water Resour. Res., 41, 2004WR003657, https://doi.org/10.1029/2004WR003657, 2005.
Murgulet, D., Murgulet, V., Spalt, N., Douglas, A., and Hay, R. G.: Impact of hydrological alterations on river-groundwater exchange and water quality in a semi-arid area: Nueces River, Texas, Sci. Total Environ., 572, 595–607, https://doi.org/10.1016/j.scitotenv.2016.07.198, 2016.
Négrel, P., Petelet-Giraud, E., and Millot, R.: Tracing water cycle in regulated basin using stable δ18O–δ2H isotopes: The Ebro river basin (Spain), Chem. Geol., 422, 71–81, https://doi.org/10.1016/j.chemgeo.2015.12.009, 2016.
Nolan, T. M., Reynolds, L. J., Sala-Comorera, L., Martin, N. A., Stephens, J. H., O'Hare, G. M. P., O'Sullivan, J. J., and Meijer, W. G.: Land use as a critical determinant of faecal and antimicrobial resistance gene pollution in riverine systems, Sci. Total Environ., 871, 162052, https://doi.org/10.1016/j.scitotenv.2023.162052, 2023.
Oudin, L., Salavati, B., Furusho-Percot, C., Ribstein, P., and Saadi, M.: Hydrological impacts of urbanization at the catchment scale, J. Hydrol., 559, 774–786, https://doi.org/10.1016/j.jhydrol.2018.02.064, 2018.
Peñas, F. J. and Barquín, J.: Assessment of large-scale patterns of hydrological alteration caused by dams, J. Hydrol., 572, 706–718, https://doi.org/10.1016/j.jhydrol.2019.03.056, 2019.
Peng, T.-R., Huang, C.-C., Wang, C.-H., Liu, T.-K., Lu, W.-C., and Chen, K.-Y.: Using oxygen, hydrogen, and tritium isotopes to assess pond water's contribution to groundwater and local precipitation in the pediment tableland areas of northwestern Taiwan, J. Hydrol., 450–451, 105–116, https://doi.org/10.1016/j.jhydrol.2012.05.021, 2012.
Pickett, S. T. A., Cadenasso, M. L., Grove, J. M., Boone, C. G., Groffman, P. M., Irwin, E., Kaushal, S. S., Marshall, V., McGrath, B. P., Nilon, C. H., Pouyat, R. V., Szlavecz, K., Troy, A., and Warren, P.: Urban ecological systems: Scientific foundations and a decade of progress, J. Environ. Manage., 92, 331–362, https://doi.org/10.1016/j.jenvman.2010.08.022, 2011.
Qian, H., Dou, Y., Li, X. J., Yang, B. C., and Zhao, Z. H.: Changes of δ18O and δD along Dousitu River and its indication of river water evaporation, Hydrogeol. Eng. Geol., 34, 107–112, https://doi.org/10.3969/j.issn.1000-3665.2007.01.024, 2007.
Ren, L., Cui, E., and Sun, H.: Temporal and spatial variations in the relationship between urbanization and water quality, Environ. Sci. Pollut. R., 21, 13646–13655, https://doi.org/10.1007/s11356-014-3242-8, 2014.
Rodgers, P., Soulsby, C., Waldron, S., and Tetzlaff, D.: Using stable isotope tracers to assess hydrological flow paths, residence times and landscape influences in a nested mesoscale catchment, Hydrol. Earth Syst. Sci., 9, 139–155, https://doi.org/10.5194/hess-9-139-2005, 2005.
Salvadore, E., Bronders, J., and Batelaan, O.: Hydrological modelling of urbanized catchments: A review and future directions, J. Hydrol., 529, 62–81, https://doi.org/10.1016/j.jhydrol.2015.06.028, 2015.
Sang, L., Zhu, G., Xu, Y., Sun, Z., Zhang, Z., and Tong, H.: Effects of Agricultural Large-And Medium-Sized Reservoirs on Hydrologic Processes in the Arid Shiyang River Basin, Northwest China, Water Resour. Res., 59, e2022WR033519, https://doi.org/10.1029/2022WR033519, 2023.
Shastri, H., Paul, S., Ghosh, S., and Karmakar, S.: Impacts of urbanization on Indian summer monsoon rainfall extremes, J. Geophys. Res.-Atmos., 120, 496–516, https://doi.org/10.1002/2014JD022061, 2015.
Skrzypek, G., Mydłowski, A., Dogramaci, S., Hedley, P., Gibson, J. J., and Grierson, P. F.: Estimation of evaporative loss based on the stable isotope composition of water using Hydrocalculator, J. Hydrol., 523, 781–789, https://doi.org/10.1016/j.jhydrol.2015.02.010, 2015.
Sun, G. and Lockaby, B. G.: Water Quantity and Quality at the Urban-Rural Interface, in: Urban-Rural Interfaces, edited by: Laband, D. N., Lockaby, B. G., and Zipperer, W. C., American Society of Agronomy, Soil Science Society of America, Crop Science Society of America, Inc., Madison, WI, USA, 29–48, https://doi.org/10.2136/2012.urban-rural.c3, 2012.
Sun, G., Caldwell, P. V., and McNulty, S. G.: Modelling the potential role of forest thinning in maintaining water supplies under a changing climate across the conterminous United States: Response of Water Yield to Forest Thinning and Climate Change, Hydrol. Process., 29, 5016–5030, https://doi.org/10.1002/hyp.10469, 2015.
Sun, Z., Zhu, G., Zhang, Z., Xu, Y., Yong, L., Wan, Q., Ma, H., Sang, L., and Liu, Y.: Identifying river water evaporation loss of inland river basin based on evaporation enrichment model, Hydrol. Process., 35, e14093, https://doi.org/10.1002/hyp.14093, 2021.
UN-Habitat: World cities report 2020: the value of sustainable urbanization, UN-Habitat, Nairobi, Kenya, 377 pp., 2020.
United Nations Department of Economic and Social Affairs: World Urbanization Prospects 2018: Highlights, United Nations, https://doi.org/10.18356/6255ead2-en, 2019.
Vitvar, T., Aggarwal, P. K., and Herczeg, A. L.: Global network is launched to monitor isotopes in rivers, Eos T. Am. Geophys. Un., 88, 325–326, https://doi.org/10.1029/2007EO330001, 2007.
Vystavna, Y., Harjung, A., Monteiro, L. R., Matiatos, I., and Wassenaar, L. I.: Stable isotopes in global lakes integrate catchment and climatic controls on evaporation, Nat. Commun., 12, 7224, https://doi.org/10.1038/s41467-021-27569-x, 2021.
Wang, B., Zhang, H., Liang, X., Li, X., and Wang, F.: Cumulative effects of cascade dams on river water cycle: Evidence from hydrogen and oxygen isotopes, J. Hydrol., 568, 604–610, https://doi.org/10.1016/j.jhydrol.2018.11.016, 2019.
Wei, W., Shi, P., Zhou, J., Feng, H., Wang, X., and Wang, X.: Environmental suitability evaluation for human settlements in an arid inland river basin: A case study of the Shiyang River Basin, J. Geogr. Sci., 23, 331–343, https://doi.org/10.1007/s11442-013-1013-y, 2013.
Westra, S., Fowler, H. J., Evans, J. P., Alexander, L. V., Berg, P., Johnson, F., Kendon, E. J., Lenderink, G., and Roberts, N. M.: Future changes to the intensity and frequency of short-duration extreme rainfal, Rev. Geophys., 52, 522–555, https://doi.org/10.1002/2014RG000464, 2014.
Wilson, C. and Weng, Q.: Assessing river Water Quality and Its Relation with Urban Land Cover Changes in the Lake Calumet Area, Greater Chicago, Environ. Manage., 45, 1096–1111, https://doi.org/10.1007/s00267-010-9482-6, 2010.
Wing, O. E. J., Bates, P. D., Smith, A. M., Sampson, C. C., Johnson, K. A., Fargione, J., and Morefield, P.: Estimates of present and future flood risk in the conterminous United States, Environ. Res. Lett., 13, 034023, https://doi.org/10.1088/1748-9326/aaac65, 2018.
Yang, L., Ni, G., Tian, F., and Niyogi, D.: Urbanization Exacerbated Rainfall Over European Suburbs Under a Warming Climate, Geophys. Res. Lett., 48, e2021GL095987, https://doi.org/10.1029/2021GL095987, 2021.
Yang, S. L., Zhang, J., and Xu, X. J.: Influence of the Three Gorges Dam on downstream delivery of sediment and its environmental implications, Yangtze River, Geophys. Res. Lett., 34, L10401, https://doi.org/10.1029/2007GL029472, 2007.
Yu, D., Shi, P., Liu, Y., and Xun, B.: Detecting land use-water quality relationships from the viewpoint of ecological restoration in an urban area, Ecol. Eng., 53, 205–216, https://doi.org/10.1016/j.ecoleng.2012.12.045, 2013.
Zhang, W., Wan, Q., Zhu, G., and Xu, Y.: Distribution of soil organic carbon and carbon sequestration potential of different geomorphic units in Shiyang river basin, China, Environ. Geochem. Hlth., 45, 4071–4086, https://doi.org/10.1007/s10653-022-01472-w, 2023.
Zhu, G.: Stable water isotope monitoring network of different water bodies in Shiyang River Basin, a typical arid river in China, Mendeley Data [data set], https://doi.org/10.17632/vhm44t74sy.1, 2022.
Zhu, G., Guo, H., Qin, D., Pan, H., Zhang, Y., Jia, W., and Ma, X.: Contribution of recycled moisture to precipitation in the monsoon marginal zone: Estimate based on stable isotope data, J. Hydrol., 569, 423–435, https://doi.org/10.1016/j.jhydrol.2018.12.014, 2019.
Zhu, G., Sang, L., Zhang, Z., Sun, Z., Ma, H., Liu, Y., Zhao, K., Wang, L., and Guo, H.: Impact of landscape dams on river water cycle in urban and peri-urban areas in the Shiyang River Basin: Evidence obtained from hydrogen and oxygen isotopes, J. Hydrol., 602, 126779, https://doi.org/10.1016/j.jhydrol.2021.126779, 2021.
Short summary
In semi-arid regions, the problem of water shortages is becoming more and more serious with the acceleration of urbanization. Based on isotope data and hydrometeorological data, we analysed the impact of urbanization on the water cycle of the basin. The results showed that urbanization sped up the process of rainfall runoff. The MRT got shorter from upstream to downstream, and the landscape dams that were built during urbanization made the river evaporate even more.
In semi-arid regions, the problem of water shortages is becoming more and more serious with the...