Articles | Volume 27, issue 13
https://doi.org/10.5194/hess-27-2535-2023
https://doi.org/10.5194/hess-27-2535-2023
Research article
 | 
11 Jul 2023
Research article |  | 11 Jul 2023

Energy efficiency in transient surface runoff and sediment fluxes on hillslopes – a concept to quantify the effectiveness of extreme events

Samuel Schroers, Ulrike Scherer, and Erwin Zehe

Related authors

Morphological controls on surface runoff: an interpretation of steady-state energy patterns, maximum power states and dissipation regimes within a thermodynamic framework
Samuel Schroers, Olivier Eiff, Axel Kleidon, Ulrike Scherer, Jan Wienhöfer, and Erwin Zehe
Hydrol. Earth Syst. Sci., 26, 3125–3150, https://doi.org/10.5194/hess-26-3125-2022,https://doi.org/10.5194/hess-26-3125-2022, 2022
Short summary
Hortonian Overland Flow, Hillslope Morphology and Stream Power I: Spatial Energy Distributions and Steady-state Power Maxima
Samuel Schroers, Olivier Eiff, Axel Kleidon, Jan Wienhöfer, and Erwin Zehe
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-79,https://doi.org/10.5194/hess-2021-79, 2021
Manuscript not accepted for further review
Short summary

Related subject area

Subject: Hillslope hydrology | Techniques and Approaches: Theory development
Morphological controls on surface runoff: an interpretation of steady-state energy patterns, maximum power states and dissipation regimes within a thermodynamic framework
Samuel Schroers, Olivier Eiff, Axel Kleidon, Ulrike Scherer, Jan Wienhöfer, and Erwin Zehe
Hydrol. Earth Syst. Sci., 26, 3125–3150, https://doi.org/10.5194/hess-26-3125-2022,https://doi.org/10.5194/hess-26-3125-2022, 2022
Short summary
Soil moisture: variable in space but redundant in time
Mirko Mälicke, Sibylle K. Hassler, Theresa Blume, Markus Weiler, and Erwin Zehe
Hydrol. Earth Syst. Sci., 24, 2633–2653, https://doi.org/10.5194/hess-24-2633-2020,https://doi.org/10.5194/hess-24-2633-2020, 2020
Short summary
A history of the concept of time of concentration
Keith J. Beven
Hydrol. Earth Syst. Sci., 24, 2655–2670, https://doi.org/10.5194/hess-24-2655-2020,https://doi.org/10.5194/hess-24-2655-2020, 2020
Short summary
Are dissolved organic carbon concentrations in riparian groundwater linked to hydrological pathways in the boreal forest?
Stefan W. Ploum, Hjalmar Laudon, Andrés Peralta-Tapia, and Lenka Kuglerová
Hydrol. Earth Syst. Sci., 24, 1709–1720, https://doi.org/10.5194/hess-24-1709-2020,https://doi.org/10.5194/hess-24-1709-2020, 2020
Short summary
The influence of diurnal snowmelt and transpiration on hillslope throughflow and stream response
Brett Woelber, Marco P. Maneta, Joel Harper, Kelsey G. Jencso, W. Payton Gardner, Andrew C. Wilcox, and Ignacio López-Moreno
Hydrol. Earth Syst. Sci., 22, 4295–4310, https://doi.org/10.5194/hess-22-4295-2018,https://doi.org/10.5194/hess-22-4295-2018, 2018
Short summary

Cited articles

Bagnold, R. A.: An approach to the sediment transport problem from general physics, US. geol. Surv. Prof. Paper 422-I, US Geological Survey, https://pubs.usgs.gov/pp/0422i/report.pdf (last access 15 June 2022), 1966. 
Berkowitz, B. and Zehe, E.: Surface water and groundwater: unifying conceptualization and quantification of the two “water worlds”, Hydrol. Earth Syst. Sci., 24, 1831–1858, https://doi.org/10.5194/hess-24-1831-2020, 2020. 
Beven, K. J.: The effect of ordering on the geomorphic effectiveness of hydrologic events, Intl. Assoc. Hydrol. Sci. Pub., 132, 510–526, 1981. 
Beven, K. J.: Equifinality and uncertainty in geomorphological modelling, in: The Scientific Nature of Geomorphology, edited by: Rhoads, B. L. and Thorn, C. E., Wiley, Chichester, ISBN 0-471-96811-0, 1996. 
Blatter, A. S., Liebert, J., Preuss, P. A., Szabadics, J., and Ihringer, J.: Information system “BW_Abfluss”: regionalisation of flood, mean and low flow parameters, Adv. Geosci., 11, 57–61, https://doi.org/10.5194/adgeo-11-57-2007, 2007. 
Download
Short summary
The hydrological cycle shapes our landscape. With an accelerating change of the world's climate and hydrological dynamics, concepts of evolution of natural systems become more important. In this study, we elaborated a thermodynamic framework for runoff and sediment transport and show from model results as well as from measurements during extreme events that the developed concept is useful for understanding the evolution of the system's mass, energy, and entropy fluxes.