Articles | Volume 27, issue 11
https://doi.org/10.5194/hess-27-2205-2023
https://doi.org/10.5194/hess-27-2205-2023
Research article
 | 
14 Jun 2023
Research article |  | 14 Jun 2023

Developing a Bayesian network model for understanding river catchment resilience under future change scenarios

Kerr J. Adams, Christopher A. J. Macleod, Marc J. Metzger, Nicola Melville, Rachel C. Helliwell, Jim Pritchard, and Miriam Glendell

Related authors

Probabilistic modelling of the inherent field-level pesticide pollution risk in a small drinking water catchment using spatial Bayesian belief networks
Mads Troldborg, Zisis Gagkas, Andy Vinten, Allan Lilly, and Miriam Glendell
Hydrol. Earth Syst. Sci., 26, 1261–1293, https://doi.org/10.5194/hess-26-1261-2022,https://doi.org/10.5194/hess-26-1261-2022, 2022
Short summary
Assessing branched tetraether lipids as tracers of soil organic carbon transport through the Carminowe Creek catchment (southwest England)
Jingjing Guo, Miriam Glendell, Jeroen Meersmans, Frédérique Kirkels, Jack J. Middelburg, and Francien Peterse
Biogeosciences, 17, 3183–3201, https://doi.org/10.5194/bg-17-3183-2020,https://doi.org/10.5194/bg-17-3183-2020, 2020
Short summary
Benchmarking the predictive capability of hydrological models for river flow and flood peak predictions across over 1000 catchments in Great Britain
Rosanna A. Lane, Gemma Coxon, Jim E. Freer, Thorsten Wagener, Penny J. Johnes, John P. Bloomfield, Sheila Greene, Christopher J. A. Macleod, and Sim M. Reaney
Hydrol. Earth Syst. Sci., 23, 4011–4032, https://doi.org/10.5194/hess-23-4011-2019,https://doi.org/10.5194/hess-23-4011-2019, 2019
Short summary
Supporting better decisions across the nexus of water, energy and food through earth observation data: case of the Zambezi basin
Fortune Faith Gomo, Christopher Macleod, John Rowan, Jagadeesh Yeluripati, and Kairsty Topp
Proc. IAHS, 376, 15–23, https://doi.org/10.5194/piahs-376-15-2018,https://doi.org/10.5194/piahs-376-15-2018, 2018
Prediction of storm transfers and annual loads with data-based mechanistic models using high-frequency data
Mary C. Ockenden, Wlodek Tych, Keith J. Beven, Adrian L. Collins, Robert Evans, Peter D. Falloon, Kirsty J. Forber, Kevin M. Hiscock, Michael J. Hollaway, Ron Kahana, Christopher J. A. Macleod, Martha L. Villamizar, Catherine Wearing, Paul J. A. Withers, Jian G. Zhou, Clare McW. H. Benskin, Sean Burke, Richard J. Cooper, Jim E. Freer, and Philip M. Haygarth
Hydrol. Earth Syst. Sci., 21, 6425–6444, https://doi.org/10.5194/hess-21-6425-2017,https://doi.org/10.5194/hess-21-6425-2017, 2017
Short summary

Related subject area

Subject: Water Resources Management | Techniques and Approaches: Modelling approaches
The H2Ours game to explore water use, resources and sustainability: connecting issues in two landscapes in Indonesia
Lisa Tanika, Rika Ratna Sari, Arief Lukman Hakim, Meine van Noordwijk, Marielos Peña-Claros, Beria Leimona, Edi Purwanto, and Erika N. Speelman
Hydrol. Earth Syst. Sci., 28, 3807–3835, https://doi.org/10.5194/hess-28-3807-2024,https://doi.org/10.5194/hess-28-3807-2024, 2024
Short summary
Drainage assessment of irrigation districts: on the precision and accuracy of four parsimonious models
Pierre Laluet, Luis Olivera-Guerra, Víctor Altés, Vincent Rivalland, Alexis Jeantet, Julien Tournebize, Omar Cenobio-Cruz, Anaïs Barella-Ortiz, Pere Quintana-Seguí, Josep Maria Villar, and Olivier Merlin
Hydrol. Earth Syst. Sci., 28, 3695–3716, https://doi.org/10.5194/hess-28-3695-2024,https://doi.org/10.5194/hess-28-3695-2024, 2024
Short summary
Impact of reservoir evaporation on future water availability in north-eastern Brazil: a multi-scenario assessment
Gláuber Pontes Rodrigues, Arlena Brosinsky, Ítalo Sampaio Rodrigues, George Leite Mamede, and José Carlos de Araújo
Hydrol. Earth Syst. Sci., 28, 3243–3260, https://doi.org/10.5194/hess-28-3243-2024,https://doi.org/10.5194/hess-28-3243-2024, 2024
Short summary
How economically and environmentally viable are multiple dams in the upper Cauvery Basin, India? A hydro-economic analysis using a landscape-based hydrological model
Anjana Ekka, Yong Jiang, Saket Pande, and Pieter van der Zaag
Hydrol. Earth Syst. Sci., 28, 3219–3241, https://doi.org/10.5194/hess-28-3219-2024,https://doi.org/10.5194/hess-28-3219-2024, 2024
Short summary
Leveraging a novel hybrid ensemble and optimal interpolation approach for enhanced streamflow and flood prediction
Mohamad El Gharamti, Arezoo Rafieeinasab, and James L. McCreight
Hydrol. Earth Syst. Sci., 28, 3133–3159, https://doi.org/10.5194/hess-28-3133-2024,https://doi.org/10.5194/hess-28-3133-2024, 2024
Short summary

Cited articles

Adams, K. J., Metzger, M. J., Macleod, C. J. A., Helliwell, R. C., and Pohle, I.: Understanding knowledge needs for Scotland to become a resilient Hydro Nation: Water stakeholder perspectives, Environ. Sci. Policy, 136, 157–166, https://doi.org/10.1016/j.envsci.2022.06.006, 2022. 
Adger, W. N.: Social and ecological resilience: are they related?, Prog. Hum. Geog., 24, 347–364, 2000. 
Aguilera, P. A., Fernández, A., Fernández, R., Rumí, R., and Salmerón, A.: Bayesian networks in environmental modelling, Environ. Modell. Softw., 26, 1376–1388, https://doi.org/10.1016/j.envsoft.2011.06.004, 2011. 
Aguilera, P. A., Fernández, A., Ropero, R. F., and Molina, L.: Groundwater quality assessment using data clustering based on hybrid Bayesian networks, Stoch. Env. Res. Risk A., 27, 435–447, https://doi.org/10.1007/s00477-012-0676-8, 2013. 
Alcamo, J.: Chapter Six The SAS Approach: Combining Qualitative and Quantitative Knowledge in Environmental Scenarios, in: Developments in Integrated Environmental Assessment, edited by: Alcamo, J., Elsevier, 123–150, https://doi.org/10.1016/S1574-101X(08)00406-7, 2008. 
Download
Short summary
We applied participatory methods to create a hybrid equation-based Bayesian network (BN) model to increase stakeholder understanding of catchment-scale resilience to the impacts of both climatic and socio-economic stressors to a 2050 time horizon. Our holistic systems-thinking approach enabled stakeholders to gain new perspectives on how future scenarios may influence their specific sectors and how their sector impacted other sectors and environmental conditions within the catchment system.