

Supplement of

Developing a Bayesian network model for understanding river catchment resilience under future change scenarios

Kerr J. Adams et al.

Correspondence to: Kerr J. Adams (kerr.adams@hutton.ac.uk) and Miriam Glendell (miriam.glendell@hutton.ac.uk)

The copyright of individual parts of the supplement might differ from the article licence.

S1: River Eden waterbody sub-catchments

Figure S1: Eden catchment sub-catchment selected by stakeholders to be included in the Bayesian network model. *Acknowledgements:* Catchment boundary provided by National River Flow Archive. River network provided by the EU-Hydro River Network Database (Gallaun et al., 2019) Map created in ArcGISPro (Esri Inc, 2021).

S2: Participating stakeholders *Table S1: Stakeholder participant code and descriptions*

Stakeholder Code	Code Description	Wastewater (WW) Focus Group Participants	Land Management (LM) Focus Group Participants	Water Resource (WR) Focus Group Participants	Workshop 1 Participants	Workshop 2 Participants
WW	Stakeholders with knowledge of the wastewater system in the Eden catchment	WW1	EP1	WR1	WW1ª	WW1 ^a
LM	Stakeholders with knowledge of the land management system in the Eden catchment	WW2	CM1	WR2	WW2 ^a	WW2 ^a
WR	Stakeholders with knowledge of the water resource system in the Eden catchment		LM1		EP1ª	EP2 ^b
EP	Stakeholders with a knowledge of environmental protection (EP)		LM2		EP2 ^b	CM2 ^b
СМ	Stakeholders with a knowledge of catchment management (CM) and systems		LM3	WR3	CM1ª	LM7 ^b
a	Stakeholders who participated in focus groups		LM4		LM6 ^b	LM8 ^b
b	Stakeholders who didn't participate in focus groups		LM5		LM7 ^b WR4 ^b	WR4 ^b

S3: Model description, parameter values and visualisation *Table S2: Model description.*

Node Name Identifier	Equation	Supporting Information
Scenario i		Deterministic input node for range of plausible scenario pathways.
Precipitation Change j		Deterministic input node for executing BAU precipitation change, and precipitation change for extreme low (Q5) and high (Q95) precipitation change.
Climate Precipitation Choice CPC		Deterministic node that combines Precipitation Anomaly with the Simulation node to enable the selection of precipitation anomaly scenarios under the different diverse future pathway scenarios.
Precipitation Change Anomaly (%) PA	$PA = \beta_{ij}$	Equation node that selects the precipitation change anomaly distribution β for each future simulation <i>i</i> and precipitation change simulation <i>j</i> . Values for β are derived from the UK Climate Projection User Interface product Anomalies for probabilistic projections (25km) over UK, 1961-2100 (Lowe et al., 2018). Annual temporal averages are used for Annual state to represent the incremental predicted change. To represent shocks to the system, Q95 values for seasonal winter anomalies to represent an extreme high precipitation scenario (ExHP) and the summer Q5 anomaly values are applied for extreme low precipitation scenario (ExLP). The data is selected for the 1981-2010 baseline period, in grid cell 337500.00, 712500.00, during the time slice 2040-2069 (2050's) using all sampling methods.
Population Change PC		Deterministic node that sets acquires population equivalent change values for scenarios <i>i</i> . Values are derived from the Scottish Water Population Growth Model. The Growth Model provides Real and Raw estimations of Population Equivalents (PE) to the year 2030. For the Green Road scenario (GR), the lower Real PE estimate for 2030 remains consistent for 2050 to reflect as shared-socioeconomic pathway (SSP) narrative which suggests population growth will stagnate in urban areas and migration to more rural areas will increase. For the Business As Usual (BAU) the Real PE trend for 2030 is extrapolated to 2050. For the Fossil Fuelled Development scenario (FFD), the Raw PE value for 2030 is extrapolated to 2050 as RAW PE provides an upper estimate of population growth, particularly in urban areas, which is reflected in the SSP narrative for FFD. Narratives are derived from Pedde, et al., (2021).
Land Cover Change LCC	-	Deterministic variable that sets land cover change values for <i>i</i> . Current and project future value are derived from UKCEH land cover vector maps (Morton et al., 2020). Extrapolations of historical land cover change, interpretations from the SSP narratives (Pedde, at al., 2021) and catchment specific knowledge provided by stakeholders were used to create projections for different land cover areas. See S4 of the supplementary material for more information.
Dry Weather Flow (Ml/d) DWf	$DWf_{ik} = \beta_k + PC_{ik} \times \gamma_k$	Dry Weather Flow, <i>DWf</i> , at wastewater treatment works (WwTWs), <i>k</i> , in the catchment are influenced by changes in <i>PC</i> _{ik} . The distribution β represents a truncated distribution of the current <i>DWf</i> at WwTW, <i>k</i> , derived from effluent flow summary statistics provided by Scottish Water. We simulated effluent flows using the summary statistics to generate 365 data outputs, then calculated a Q80 value of the outputs, which was highlighted by stakeholders as the values used to derive asset dry weather flow values. We use the Q80 values as the mean and the standard deviations of the values to derive β_k . <i>PC</i> _{ik} is multiplied by γ_k which is the 1 PE value of 200 litres per day wastewater sewage flow contribution (Mara, 2006) which is converted to Ml/d and added to β_k .

Node Name Identifier	Equation	Supporting Information
		Resilient states threshold c is the DWf licence condition for k. Anything three times greater than the licence condition value is set as the threshold value for high risk (H) u. Thresholds for states low (L) and moderate (M) risk, b_l uniformised between c and u Ml/d. See Table S3 for values.
Daily Effluent Flow (Ml/d)		Effluent discharge Ef at WwTWs k are influenced by changes in PA_{ij} and PC_{ik} under different scenarios i
		To measure potential impacts on Ef_{ik} we derived the distribution β_k to represent the current Ef distribution for k , provided by Scottish Water. We multiply current Ef distributions with the % anomaly change in PA_{ij} which is assumed to lead to a change in run-off and infiltration which currently influence Ef .
	$Ef_{ik} = \beta_k \times PA_{ii} + PC_{ik} \times \gamma_k$	PC_{ik} is multiplied by the 1 PE value of 200 litres per day waste sewage flow γ_k and added to β_k to represent the influence of changes in PC_{ik} on Ef.
Ef		Discretisation of states is based on the >3 $DWf(3DWf)$ licence condition at setting for storm overflow detailed in the SEPA Supporting Guidance (WAT-SG- 13) document which is a standard threshold set for calculating the Flow to Full Treatment (FFT) limit for WwTWs. The FFT for values for each WwTW k is described as anything three times greater than DWF leads to the risk of the sewer overflow.
		The resilient threshold c is therefore set as three times the <i>DWf</i> at treatment works k . The high risk threshold u is set at six times the DWF. Thresholds for states low (L) and moderate (M) risk, b_1 are uniformised between c and u Ml/d. See Table S3 for values.
		Influent flow If is influence by PA_{ij} and PC_{ik} .
Daily Influent		We use an equation node representing the change in influent flow If based on the change in Ef using the value γ_k to represent the difference between If and Ef. The value γ_k is used due to the limited If data available in the catchment.
Flow (Ml/d) If	$If_{ik} = Ef_{ik} \times \gamma_k$	The only WwTW in the catchment with If data available was Cupar, where a reduction in flow volume after the treatment process was evident in the annual flow returns data from $2015 - 2019$ provided by Scottish Water when comparing influent and effluent flows. We calculated the difference between influent and effluent flows using annual flow returns data to derive γ_k which is applied to each WwTWs k.
		The If node is discretised using the same methods as Ef.
		The risk of spill events SE under different simulations i could occur due to changes in If_{ik} in waterbody sub catchments s.
Spill Event SP	$SE_{is} = IF_{eq}(If_{ik})$	Spills (SP_{is}) occur if the node If_{ik} exceeds its <i>c</i> resilience threshold. We use statement equations IF_{eq} to index the prior distributions of parent node If_{ik} based on their discretised state thresholds. Each prior state discrete threshold for If_{ik} resilient to high-risk, was assigned a value of zero, one, two or three based on the values of <i>c</i> , <i>u</i> , and <i>b</i> . For SP_{is} the sum of If_{ik} of prior If_{ik} values is as follows: $IF(If_{ik} \ge u, 3, IF(If_{ik} \ge b, 2, IF(If_{ik} \ge c, 1, 0))$. We set the resilience threshold <i>c</i> for SP_{is} as a value for one, as anything greater than the value of one would mean at least one treatment works <i>k</i> is likely to spill. The upper value <i>u</i> set as the maximum possible index value of all nodes (3 times the number of parent nodes). Threshold values for high and moderate risk, b_1 and b_2 are uniformised values between <i>c</i> and <i>u</i> .
		Change in Reactive Phosphorus (P) based on the change in PC_i and change in Ef_i .
W	$P_{ik} = (\beta_k \times (1 + 1 - PA_{ij}) + PC_{ik} \times \gamma_k) \times Ef_{ik}$	The current concentration of P is represented using the distribution β for each of the different WwTW k . Current effluent P concentration (mg/l) were provided by Scottish Water.
Wastewater Phosphorus Load (kg/d) P		PC_{ik} is multiplied by the calculated P concentration (mg/l) per PE γ , based on the current PE for WwTW k . The P concentration is multiplied by Ef to provide the daily effluent P load (kg/d).
Ĩ		The node is discretised using the current mean P load for each k as the resilient threshold, which is calculated by multiplying the current P concentration by the current Ef . Anything greater than the current P load is seen as an increased risk, as higher loads demonstrate poor outcomes for both the environment and wastewater system. The high risk (H) value u is calculated as 3 times the c. The values for L and M risk are then uniformised between c and u (kg/d). See Table S3 for values.
Bio Resource (m ³ /d) BR	$BR_{ik} = If_{ik} \times \gamma_k \times 1000$	Volumes of Bio resource BR (m ³ /d) is influenced by changes in <i>If</i> . Su et al. (2019). An increase in If_{ik} can lead to an increase in bio resource concentrations and accumulations.
		Sludge volumes (m ³) were provided for all wastewater treatment works in the catchment for 2019. The relationship between <i>If</i> and <i>BR</i> volume is derived by analysing the relationship between flows and sludge volumes at WwTW in the catchment to create an average <i>BR</i> _k volume (m ³ /d) per <i>If</i> _k (Ml/d) to provide a (m ³ /l/d) value for each <i>k</i> which is represented by γ_k . The γ_k value is multiplied by <i>If</i> _{ik} , then multiplied by 1000 to convert the value to (m ³ /d).

Node Name Identifier	Equation	Supporting Information
		The BR_{ik} node is discretised by setting the resilient threshold <i>c</i> as the current volume of BR_k . The high risk threshold is set as three times the current <i>c</i> value. Thresholds for states low (L) and moderate (M) risk, b_l are uniformised between <i>c</i> and <i>u</i> m ³ /d. See Table S3 for values.
Total Phosphorus	$TPL_{is} = \sum P_{ik} + IF(If_{ik} \ge c, 1.05, 0)$	Equation node representing the relationship between overflow spills and P_{ik} loads. As the concentration of P is higher for untreated spill events, the P_{ik} load in the event the If exceeds the 3DWf threshold is added to the effluent P load to generate the Total Phosphorus Load (TPL) of WwTWs k in water body sub- catchment s.
TPL		The discretisation of the TPL_{is} sets the resilient <i>c</i> value as the current TPL for each water body sub catchment <i>s</i> was provided by Scottish Water, the high risk <i>u</i> value is set as three times the <i>c</i> value. The values for L and M risk are then uniformised between <i>c</i> and <i>u</i> (kg/d). See Table S3 for values.
Energy Demand Wastewater EDW	$EDW_{iks} = \sum IF_{eq}(BR_{ik})$	As energy demands within the wastewater system <i>EDW</i> were highlighted by stakeholders as a manufactured capital resource we measured the potential change in energy demand <i>EDW</i> under the influence of differing simulation <i>i</i> at wastewater treatment works <i>k</i> in waterbody sub catchment <i>s</i> . As the Bio Resource is the final node described by stakeholders in the wastewater system, which is a measure of both flows and accumulations of bio resource materials that require treatment and transportation, we assume any change in bio-resource volumes (m^3/day) under simulation <i>i</i> at wastewater treatment works <i>k BR_{ik}</i> leads to a change in <i>EDW_{ik}</i> . We measure ΔEDW_{ik} using IF statement equations IF_{eq} to index the prior distributions of parent node <i>BR_{ik}</i> based on their discretised state thresholds. Each prior state discrete threshold for <i>BR_{ik}</i> , resilient to high-risk, was assigned a value of zero, one, two or three based on the values of <i>c</i> , <i>u</i> , and <i>b</i> . For <i>EDW_{ik}</i> the <i>IF_{eq}</i> of prior <i>BR_{ik}</i> values is as follows: <i>IF</i> (<i>BR_{ik} ≥ b₂</i> , 3, <i>IF</i> (<i>BR_{ik} ≥ b₁</i> , 2, <i>IF</i> (<i>BR_{ik} ≥ c</i> , 1, 0). For the indexed node ΔEDW_{ik} the resilient threshold <i>c</i> is set at 25% of the total nodes included in the equation. The 25% value is selected as it ensures that for a capital resource to be resilient, the majority of parent nodes (at least 75%) must fall within a resilient index threshold value. The upper value <i>u</i> set as the maximum possible index value of all nodes (three times the number of parent nodes). Threshold values for high and moderate risk, <i>b₁</i> and <i>b₂</i> are uniformised values between <i>c</i> and <i>u</i> .
Chemical Demand Wastewater CDW	$CDW_{is} = IF_{eq}(TPL_{is})$	As chemical demands within the wastewater system CDW were highlighted by stakeholders as a manufactured capital resource we measured the potential change in chemical demand CDW under the influence of differing simulation <i>i</i> in waterbody sub catchment <i>s</i> . As there was no data available to measure the current chemical demands at wastewater treatment works we assume that a change in total P loads at under different simulation <i>i</i> in in waterbody sub catchment <i>s</i> . TPL _{is} leads to a change in CDW_{is} . We measure CDW_{is} using IF statement equations IF_{eq} to index the prior distributions of parent node TPL_{is} based on their discretised state thresholds. Each prior state discrete threshold for TPL_{is} , resilient to high-risk, was assigned a value of zero, one, two or three based on the values of <i>c</i> , <i>u</i> , and <i>b</i> . For EDW_{ik} the IF_{eq} of prior TPL_{is} values is as follows: $IF(TPL_{is} \ge b_2, 3, IF(TPL_{is} \ge b_1, 2, IF(TPL_{is} \ge c, 1, 0)$. For the indexed node ΔCDW_{ic} we applied the same discretisation method as EDW_{ic} .
Asset Compliance and Capability Wastewater ACW	$ACW_{is} = \sum IF_{eq}(DWF_{ik}, SP_{is})$	The compliance and capability of manufactured assets in the watewater system <i>ACW</i> was seen as an important manufactured capital resource due to the role of assets in providing wastewater services and meeting licence and environmental standards. Stakeholders highlighted that the influence of future simulations <i>i</i> could influence <i>ACW</i> in waterbody sub catchments <i>s</i> in the future. We measure the current and future ability of <i>ACW</i> _{is} , using nodes <i>DWF</i> _{ik} and <i>SP</i> _{is} to determine if assets exceed their DWF licence condition and if they are capable of handling extreme flow events. We calculate <i>ACW</i> _{is} using IF statement equations <i>IF</i> _{eq} to index the prior distributions of parent node <i>DWF</i> _{ik} and <i>SP</i> _{is} based on their discretised state thresholds. Each prior state discrete threshold for both <i>DWF</i> _{ik} and <i>SP</i> _{is} values, which we will denote as <i>a</i> is as follows: <i>IF</i> ($\alpha \ge b_2$, 3, <i>IF</i> ($\alpha \ge b_1$, 2, <i>IF</i> ($\alpha \ge c, 1, 0$). For the indexed node <i>ACW</i> _{is} we applied the same discretisation method as <i>EDW</i> _{ik} .
Land Cover (Ha) LC	$LC_{ivs} = A_{ivs}$	Equation node the represents land cover area <i>A</i> (Ha) for each simulation <i>i</i> were applied to land cover categories <i>v</i> in waterbody sub-catchments <i>s</i> . Changes in Land Cover was highlighted by stakeholders as a factor for future change that would influence future water and chemical demands which would influence water availability and quality. UKCEH land cover vector maps 1990, 2007 and 2019 (Morton et al., 2020) were used to analyse historic land cover change in the catchment. Extrapolations of land cover change, interpretations from both the SSP narratives and catchment specific knowledge provided by stakeholders were used to create projections for different land cover areas <i>A</i> for simulations <i>i</i> . Current conditions for land cover categories <i>v</i> are represented using the 2019 UKCEH land cover categories <i>v</i> in each sub-catchment <i>s</i> . The BAU narrative continues catchment land cover change then the previous 30 years. BAU trends include increased in arable, urban, woodland and semi-natural grasslands and coniferous land cover area decreases. The GR narrative assumes a more intensive move from improved grassland land cover to woodland and semi-natural grasslands. For GR assumes an increase in arable land due to the nature of the catchment being prime agricultural land. Urban land cover is reduced in the GR narrative as populations move to more rural areas of the catchment. The FFD narrative assumes a more intensive move ferm to arable and improved grassland land cover. In the FFD narrative to woodland and semi-natural grassland cover. In the FFD narrative to woodland and semi-nature due to population increases in urban areas of the catchment.

Node Name Identifier	Equation	Supporting Information
		States and their discretisation were set based on the land cover value for the different simulations <i>i</i> , for different land cover types v in waterbody sub catchments <i>s</i> .
Septic Tanks ST	$ST_{is} = T_{is}$	The number of septic tanks <i>T</i> for simulation <i>i</i> in waterbody sub-catchments <i>s</i> . Stakeholders identified that septic tanks influence water quality in the catchment. The current number if septic tanks T in water-body sub-catchment s was taken from the Eden Water Quality Strategic Study. The BAU narrative assumes that the number of septic tanks in the catchment will remain the same. A 20% increase in septic tanks is assumed for the GR narrative as more people move to rural areas. For the FFD narrative a 20% decrease in septic tank numbers T is assumed due to population intensification in urban areas. States and their discretisation were set based on the number of septic tanks for the different simulations <i>i</i> , in waterbody sub-catchments <i>s</i> .
Land Cover Phosphorus Applications(kg /d) PD	$PD_{ivs} = LC_{ivs} \times \gamma_{vs}$	The application demand of P, PD, to agricultural land (kg/d) under varying simulations <i>i</i> for land cover type <i>v</i> in water body sub-catchment <i>s</i> was highlighted as an important land management system component. The demand for P is influenced by the proportion of different land cover categories LC_{ivs} and their associated P demands per Ha, which is represented as a coefficient γ_{vs} for different land covers <i>v</i> in water body sub-catchments <i>s</i> . Current P (kg/d) loadings taken from a ADAS UK Ltd model of rural diffuse pollution provided by SEPA. P loadings per Ha of each land cover type <i>v</i> in water body sub-catchment <i>s</i> are calculated to quantify coefficients for γ_{vs} . The discretisation of PD_{ivs} sets the resilient <i>c</i> value as the current P loadings for each land cover type in each water body sub catchment <i>s</i> which, the high risk <i>u</i> value is set as two times the <i>c</i> value. Thresholds for states low (L) and moderate (M) risk, b_i are uniformised between <i>c</i> and <i>u</i> (kg/d).
Septic Tank Phosphorus (kg/day) STP	$STP_{is} = ST_{is} \times \gamma_{is}$	The volume of P from Septic Tanks, <i>STP</i> , (kg/d) under varying simulations <i>i</i> was highlighted as an important land management system node. Current P (kg/d) loadings from septic tanks are taken from a ADAS UK Ltd model of rural diffuse pollution provided by SEPA. P loadings per <i>ST</i> in water body sub-catchment <i>s</i> are calculated to quantify coefficients for γ_{vs} . <i>STP</i> _{is} is calculated by multiplying <i>ST</i> _{is} by γ_{is} . The discretisation of <i>STP</i> _{is} sets the resilient <i>c</i> value as the current P loadings for <i>STP</i> _{is} , the high risk <i>u</i> value is set as two times the <i>c</i> value. Thresholds for states low (L) and moderate (M) risk, <i>b</i> ₁ are uniformised between <i>c</i> and u (kg/d).
Diffuse Phosphorus (kg/d) DP	$DP_{ivs} = (PD_{ivs} + STP_{is}) \times PA_{ij}$	Stakeholders highlighted that the applications of sources PD_{ivs} (kg/d) are a diffuse source of surface water quality issues in the catchment. The volume of diffuse PD_{ivs} sources are likely to be influenced by changes in PA_{ij} , with increases in high intensity rainfall likely to increase the proportion of PD_{ivs} to surface waters (Heathwaite, et al., 2004), which is represented in the equation. The discretisation of PD_{ivs} sets the resilient c value as the current diffuse P loadings for in each water body sub catchment <i>s</i> which were provided by Scottish Water, the high risk u value is set as three times the c value. Thresholds for states low (L) and moderate (M) risk, b_i are uniformised between <i>c</i> and <i>u</i> (kg/d).
Irrigation Demand (ML/year) ID	$ID_{is} = \beta_s \times \Delta LC_{ivs} \times (1 + 1 - PA_{ij})$	Stakeholders highlighted irrigation demand, ID , in the catchment could be influenced by changes in land cover and climate. The node focuses on surface water abstractions as stakeholder's highlighted increases in ID could impact future surface water flows. Current ID in each waterbody sub catchment, s , is represented as a truncated normal distribution β_s , where mean and standard deviation values are quantified by analysing annual irrigation abstraction licence return data (MI/year) from 2008-2019 provided by SEPA. To quantify the potential change in ID_{is} the equation node multiplies the current ID β_s with the % change in LC_{ivs} , ΔLC_{ivs} , to represent the change in irrigation demand from the change in arable cover which is the main source of irrigation demand the catchment. β_s , is also multiplied by the inverse of PA_{ij} to represent the potential change in ID_{is} due to a reduction of PA_{ij} increasing demand and increases in PA_{ij} increasing demand. The discretisation of ID_{is} sets the resilient c value as 50% of the sum of all licence volumes (ML/year) in each waterbody sub catchment s . The high risk value u is set as the total licence volume (ML/day) in each waterbody sub catchment s . The values for L and M risk, b_{l} , are then uniformised between c and u (ML/day).
Groundwater Nitrate (mg/L) GN	$GN_{is} = \beta_s + (\Delta LC_{ivs} \times \gamma_{vs}) \times PA_{ij}$	Stakeholders highlighted that groundwater nitrate concentrations (mg/l), GN, was an important node in the catchment system due to its influences drinking water quality, particularly as the catchment falls within a Nitrate Vulnerable Zone (NVZ). The influence of land cover change and precipitation change were identified as important nodes that could influence drinking water groundwater sources in the future (Smart et al., 2011). Current GN concertation in water bodies sub catchments <i>s</i> which include drinking water boreholes are represented as a truncated normal distribution β_s , where mean and standard deviation values are quantified by analysing groundwater nitrate samples (mg/l) from 2008-2019 provided by SEPA. To quantify the potential change in GN_s the equation node adds the a change in GN concentration to β_s by multiplying the sum of change in ΔLC_{tvs} (Ha) with N loadings per Ha of each land cover type v in water body sub-catchment <i>s</i> calculated to quantify coefficients for γ_{vs} . β_s , is also multiplied by PA_{ij} to represent the potential change in GN_s due to an increase of PA_{ij} increasing Nitrate leaching rates to groundwater, particularly during higher intensity rainfall events. The discretisation of GN_s sets the resilient <i>c</i> value as 50% of the mean threshold values indicative of risks to the quality of water being abstracted, or intended to be abstracted, for human consumption (mg/l) (Scottish Government, 2015). The high risk value <i>u</i> is set as the mean threshold values of 37.5 mg/l. The values for L and M risk, b_l , are then uniformised between <i>c</i> and <i>u</i> (mg/l).
Energy Demand Land Management EDLM	$EDLM_{is} = IF_{eq}(ID_{is})$	As energy demands within the land management system <i>EDLM</i> were highlighted by stakeholders as a manufactured capital resource we measured the potential change in energy demand <i>EDLM</i> under the influence of differing simulation <i>i</i> in waterbody sub catchment <i>s</i> . Stakeholder identified the irrigation activities as a key source of energy use in the land management system. As there was no data available to measure current energy use from irrigation abstraction, we use the node ID_{is} as a measure of the potential direction of change in $EDLM_{is}$. We calculate $EDLM_{is}$ using IF statement equations IF_{eq} to index the prior distributions of parent node ID_{is} based on their discretised state thresholds. Each prior state discrete threshold for ID_{is} , resilient to high-risk, was assigned a value of zero, one, two or three based on the values of <i>c</i> , <i>u</i> , and <i>b</i> . For $\Delta EDLM_{is}$ the IF_{eq} of prior ID_{is} values is as follows: $IF(ID_{is} \ge b_2, 3, IF(ID_{is} \ge b_1, 2, IF(ID_{is} \ge c, 1, 0))$.

Node Name Identifier	Equation	Supporting Information
		For the indexed node $EDLM_{is}$ the resilient threshold <i>c</i> is set at 25% of the total nodes included in the equation. The 25% value is selected as it ensures that for a capital resource to be resilient, the majority of parent nodes (at least 75%) must fall within a resilient index threshold value. The upper value <i>u</i> set as the maximum possible index value of all nodes (3 times the number of parent nodes). Threshold values for high and moderate risk, b_1 and b_2 are uniformised values between <i>c</i> and <i>u</i> .
Chemical Demand Land Management CDLM	$CDLM_{is} = IF_{eq}(PD_{ivs})$	As chemical demands within the land management system <i>CDLM</i> were highlighted by stakeholders as a manufactured capital resource we measured the potential change in chemical demand <i>CDLM</i> under the influence of differing simulation <i>i</i> in waterbody sub catchment <i>s</i> . Stakeholder identified the phosphorus applications as a key source of chemical use in the land management system. As there was no data available to measure current chemical use from P applications for land cover types <i>v</i> , we use the node PD_{ivs} for land cover types arable and pasture as a measure of the potential direction of change in <i>CDLM</i> _{is} . We calculate <i>EDLM</i> _{is} suing IF statement equations IF_{eq} to index the prior distributions of parent node PD_{ivs} based on their discretised state thresholds. Each prior state discrete threshold for PD_{ivs} resilient to high-risk, was assigned a value of zero, one, two or three based on the values of <i>c</i> , <i>u</i> , and <i>b</i> . For <i>CDLM</i> _{is} the sum of $\sum_{is}^{b} IF_{eq}$ of prior PD_{ivs} values for land cover types arable and pasture is as follows: $IF(PD_{ivs} \ge b_2, 3, IF(PD_{ivs} \ge b_1, 2, IF(PD_{ivs} \ge c, 1, 0))$. For the indexed node $CDLM_{is}$ the resilient threshold <i>c</i> is set at 25% of the total nodes included in the equation. The 25% value is selected as it ensures that for a capital resource to be resilient, the majority of parent nodes (at least 75%) must fall within a resilient index threshold value. The upper value <i>u</i> set as the maximum possible index value of all nodes (3 times the number of parent nodes). Threshold values for high and moderate risk, b_i and b_2 are uniformised values between <i>c</i> and <i>u</i> .
Public Commercial Demand PCD	-	Deterministic node used to enable varying values for public commercial water resource demand. Stakeholders highlight that the demand for water resource by commercial business could change in the catchment under the varying future pathway simulations <i>i</i> . The water utility business, Scottish Water will have to account for potential changes in commercial demand.
Leakage L		Deterministic node used to enable varying values for leakage in from assets as part of the water resource delivery system. Stakeholders highlight that leakage rates could change in the future due to aging assets and the influence of high intensity rainfall under the varying future pathway simulations <i>i</i> . The water utility business, Scottish Water will have to account for potential changes in leakage rates.
Water Resource Abstraction Demand (Ml/d) WA	$WA_{it} = (\beta_t + (PC_{it} \times \gamma)) \times PCD_{it} \times L_{it}$	Stakeholders highlighted that the demand for drinking water and water resource services WA is likely to change in the future due to changes in population served in the catchment PC , the demand by commercial business PCD and leakage from assets L . The current demand for water resources (ML/day) β_t is derived by analysing annual abstraction data for all Scottish Water boreholes in the catchment from 2014-2018 provided by SEPA and Scottish Water. The change in PC under simulation <i>i</i> for the entire catchment <i>t</i> is multiplied by the coefficient γ which represents the normal consumption rate of 165 l/d per person per day identified by Scottish Water to represent the influence of PC on WA for the entire catchment <i>t</i> . The β_t distribution is also multiplied by a $^{\circ}$ change in PCD_{it} and L_{it} . As there is limited data to represent changes in PCD_{it} and L_{it} , therefore $^{\circ}$ change values for different simulations <i>i</i> are used to represent a direction of change associated with interpretations of SSP narratives. A $^{\circ}$ reduction in demand and leakage is assumed for the GR simulation due to the associated increased efficient use of water described in the narrative. For the BAU and FFD narrative a $^{\circ}$ increase values are assumed, with a greater $^{\circ}$ increase value for the FFD simulation. The resilient threshold value <i>c</i> is set at 75 $^{\circ}$ of the nominal borehole capacity (Ml/day) of all boreholes in the catchment and the high risk threshold values <i>u</i> is set at 95 $^{\circ}$ of the nominal borehole capacity. The values for L and M risk, b_i , are then uniformised between <i>c</i> and <i>u</i> (ML/day).
Water Resource Supply Capacity (MI/day) SC	$SC_{it} = \beta_a \times AC_{it} \times IF(GN_{is} \ge u, 0, 1)$	Stakeholder identified that the supply capacity (Ml/day) of water resources was a significant component of the catchment system, which could be influenced by groundwater nitrate concentrations GN_{is} (mg/) and changes in the age and condition of assets <i>AC</i> under simulation <i>i</i> . The current borehole capacity β_a (ML/day) is derived by analysing abstraction rate data for all Scottish Water boreholes <i>a</i> in the catchment from 2012-2019 provided by Scottish Water. The β_a is multiplied by AC_{it} to account for the potential impact of future asset conditions. As there was limited data on the conditions of water resource assets in the catchment, a % change value was assigned for AC_{it} . All simulations GR, BAU and FFD assumed a % reduction in capacity due to changes in AC_{it} based on the assumption that as assets age their efficiency decreases. The FFD had a greater % decrease than BAU and BAU has a greater % decrease than GR. Stakeholder highlighted that future GN_{is} concentrations in groundwater was a potential risk as high concentrations would lead to safe drinking water standards being exceeded. An IF statement is used to represent that IF GN_{is} exceeds its high risk value <i>u</i> of 37.5 mg/l then a zero value should be returned as safe drinking water standard would be exceeded. The resilient threshold value c is set at 75% of the nominal borehole capacity (Ml/day) of all boreholes in the catchment and the high risk threshold values u is set at 95% of the nominal borehole capacity. The values for L and M risk, b ₁ , are then uniformised between <i>c</i> and <i>u</i> (ML/day).
Resilience of Eden Supply (Ml/day) RS	$RS_{it} = SC_{it} + \beta_{ooc} - WA_{it}$	Stakeholders highlight that calculation of future supply and demand would provide the best measure of the resilience of the water resource system supply (Ml/day) RS in simulations <i>i</i> across catchment <i>t</i> . The supply volume is measured by calculating the difference between the supply capacity SC_{it} and the abstraction demand WA_{it} . Stakeholders identified that supply capacity in <i>t</i> is supplemented by a supply source out with the catchment. The volume of water supplied from out of the catchment <i>RSOC</i> is represented by β_{ooc} . A truncated distribution for β_{ooc} was derived using demand for water resources (ML/day)

Node Name Identifier	Equation	Supporting Information
		analysing annual abstraction data for the <i>RSOC</i> source from 2014-2018 provided by SEPA and Scottish Water. We use the demand data as a proxy for the supply capacity and is added to SC_{it} . The resilient threshold value c is set at as a positive value where $SC_{it} > WA_{it}$ (Ml/day) and the high risk threshold value u is set at zero where a negative value would suggest $WA_{it} > SC_{it}$ which would lead to a deficit in supply volumes.
Resilience of Outside of Catchment Supply (Ml/day) RSOC	$RSOC_{it} = SC_{it} - WA_{it}$	Stakeholders highlighted that the abstracted water in the catchment is supplied to populations outside of the catchment boundary <i>RSOC</i> . The supply volume is measured by calculating the difference between the supply capacity SC_{it} and the abstraction demand WA_{it} . The outside of catchment supply is not supplemented by any other source and is dependent on the supply from within the Eden catchment. We include $RSOC_{it}$ as a node to measure if there is enough supply capacity SC_{it} (ML/day) to supply populations both inside and outside of the catchment. The resilient threshold value <i>c</i> is set at as a positive value where $SC_{it} > WA_{it}$ (ML/day) and the high risk threshold value <i>u</i> is set at zero where a negative value would suggest $WA_{it} > SC_{it}$ which would lead to a deficit in supply volumes.
Energy Demand Water Resources EDWR	$EDWR_{it} = IF_{eq}(WA_{it})$	As energy demands within the water resource system $EDWR$ were highlighted by stakeholders as a manufactured capital resource we measured the potential change in energy demand $EDWR$ under the influence of differing simulation <i>i</i> across the catchment <i>t</i> . Stakeholder identified the abstraction of drinking water as a key source of energy use in the water resource system. As there was no data available to measure current energy use from drinking water abstraction, we use the node WA_{it} as a measure of the potential direction of change in $EDWR_{it}$. We calculate $EDWR_{it}$ using IF statement equations IF_{eq} to index the prior distributions of parent node WA_{it} based on its discretised state thresholds. Each prior state discrete threshold for WA_{it} , resilient to high-risk, was assigned a value of zero, one, two or three based on the values of <i>c</i> , <i>u</i> , and <i>b</i> . For $EDWR_{it}$ the IF_{eq} of prior WA_{it} values is as follows: $IF(WA_{it} \ge b_2, 3, IF(WA_{it} \ge b_1, 2, IF(WA_{it} \ge c, 1, 0)$. For the indexed node $EDWR_{it}$ the resilient threshold <i>c</i> is set at 25% of the total nodes included in the equation. The 25% value is selected as it ensures that for a capital resource to be resilient, the majority of parent nodes (at least 75%) must fall within a resilient index threshold value. The upper value <i>u</i> set as the maximum possible index value of all nodes (3 times the number of parent nodes). Threshold values for high and moderate risk, b_i and b_2 are uniformised values between <i>c</i> and <i>u</i> .
Chemical Demand Water Resources CDWR	$CDWR_{it} = IF_{eq}(WA_{it})$	As chemical demands within the water resource system $EDWR$ were highlighted by stakeholders as a manufactured capital resource we measured the potential change in chemical demand $CDWR$ under the influence of differing simulation <i>i</i> across the catchment <i>t</i> . Stakeholder identified the treatment of abstracted drinking water as a key source of chemical use in the water resource system. As there was no data available to measure current chemical use from drinking water abstraction, we use the node WA_{it} as a measure of the potential direction of change in $CDWR_{it}$. We calculate $CDWR_{it}$ using IF statement equations IF_{eq} to index the prior distributions of parent node WA_{it} based on its discretised state thresholds. Each prior state discrete threshold for WA_{it} , resilient to high-risk, was assigned a value of zero, one, two or three based on the values of <i>c</i> , <i>u</i> , <i>and b</i> . For $CDWR_{it}$ the IF_{eq} of prior WA_{it} values is as follows: $IF(WA_{it} \ge b_2, 3, IF(WA_{it} \ge b_1, 2, IF(WA_{it} \ge c, 1, 0)$. For the indexed node $\Delta CDWR_{it}$ we applied the same discretisation method as $EDWR_{it}$.
Asset Capability Water Resources ACWR	$ACWR_{it} = \sum IF_{eq}(RS_{it}, RSOC_{it})$	The capability of manufactured assets ACWR to supply water resource to populations both within and out with the catchment t was identified by stakeholders as a key manufactured capital of the water resource system. Stakeholders highlighted that the influence of future simulations i could influence $ACWR_{it}$ in the future. As there was no specific data available to measure current asset capability to supply water resource, we use the nodes RS_{it} and $RSOC_{it}$ as a measure of the current and potential direction of change in $ACWR_{it}$. We calculate $ACWR_{it}$ using IF statement equations IF_{eq} to index the prior distributions of parent node RS_{it} and $RSOC_{it}$ based on their discretised state thresholds. Each prior state discrete threshold for both RS_{it} and $RSOC_{it}$ values, which we will denote as α is as follows: $IF(\alpha \ge u, 3, IF(\alpha \ge b, 2, IF(\alpha \ge c, 1, 0)$. For the indexed node $ACWR_{it}$ we applied the same discretisation method as $EDWR_{it}$.

Node Name Identifier	Equation	Supporting Information
Customer Complaints CuC	$CuC_{it} = \sum IF_{eq}(RS_{it}, RSOC_{it})$	The potential complaints of customers CuC due to interruptions of water resource both within and out with the catchment <i>t</i> was identified by stakeholders as a key social and intellectual capital risk associated with the water resource system. Stakeholders highlighted that the influence of future simulations <i>i</i> could influence CuC_{it} in the future. As there was no specific data available to measure current CuC_{it} , we use the nodes RS_{it} and $RSOC_{it}$ as a measure of the current and potential direction of change in CuC_{it} , assuming that if there is no interruption to supply, there will be no complaints and if there is an interruption to supply then there is the potential for complaints. We calculate CuC_{it} using IF statement equations IF_{eq} to index the prior distributions of parent node RS_{it} and $RSOC_{it}$ as assigned a value of zero, one, two or three based on the values of <i>c</i> , <i>u</i> , and <i>b</i> . For CuC_{it} the sum of IF_{eq} of prior RS_{it} and $RSOC_{it}$ values, which we will denote as α is as follows: $IF(\alpha \ge b_2, 3, IF(\alpha \ge b_1, 2, IF(\alpha \ge c, 1, 0))$. For the indexed node CuC_{it} we applied the same discretisation method as $EDWR_{it}$.
Crop Cover (Ha) CC	$CC_{izt} = A_{izt}$	Stakeholders highlighted that food production was an important component of the catchment, as it is predominantly covered in arable land. Stakeholders highlighted The area <i>A</i> of different crop types <i>z</i> grown in the catchment <i>CC</i> could vary under different simulations <i>i</i> across the catchment <i>t</i> . The current A_{izt} by calculating the average current % proportion of crop cover <i>z</i> in the catchment based upon analysis of the UKCEH Land Cover® Plus: Crops © 2016-2020 UKCEH. © RSAC. © Crown Copyright 2007, Licence number 100017572. We then convert the % proportion to a Ha proportion using the LC_{ivs} area for arable land cover category for each simulation <i>i</i> . States and their discretisation were set based on the land cover value for the different simulations <i>i</i> , for different crop cover types <i>z</i>
Crop Yields (t/Ha) CY	$CY_{ijzt} = \beta_{ijzt}$	Crop yields <i>CY</i> (<i>t</i> /ha) could for crop type <i>z</i> differ under future change simulations <i>i</i> and precipitation change <i>j</i> across the catchment <i>t</i> . To measure current CY for crop types <i>z</i> we analysed crop yield data from 2010-2019 available from the Scottish Agriculture Tables from the Economic Report 2020 to produce a truncated normal distribution β_{ijzt} . For future simulation types <i>i</i> and precipitation change <i>j</i> we applied a range of crop yield values taken from The Farm Management Handbook 2020/21 produced by SAC Consulting. Low yield range values are applied to extreme precipitation change simulations from the Farm Management Handbook. For all simulations an increase in yield (<i>t</i> /ha) is applied for each simulation based on UK SSP narratives, with FFD simulation applying the highest yield increase and GR having the lowest yield increase. The resilient threshold value <i>c</i> is set at as the current mean yield (<i>t</i> /ha). The values for L and M risk, b ₁ , are then uniformised between <i>c</i> and <i>u</i> (<i>t</i> /ha).
Crop Price (£/t) CP	$CP_{izt} = \beta_{izt}$	Crop Prices $CP(\pounds/t)$ for crop type z could differ under future change simulations <i>i</i> across the catchment <i>t</i> . To measure current CP for crop types z we analysed crop price data from 2010-2019 available from Scottish Agriculture Tables from the Economic Report 2020 to produce a truncated normal distribution β_{izt} . Future CP_{izt} value assumptions β_{izt} follow an increase in price based on SSP narratives, where FFD assumes the greatest increase (15%), BAU (10%) and GR (5%) to give an estimation of direction of change. The resilient threshold value c is set at as the current mean price (£/t) for crop types z. The high risk threshold u is set at 50% of the c value (£/t). The values for L and M risk are then uniformised between c and u (£/t).
Fertiliser Costs (£/ha) FCost	$FCost_{izt} = \beta_{izt}$	Fertiliser Costs $FCost$ (£/ha) for crop type z could differ under future change simulations i across the catchment t. To measure current FCost for crop types z we analysed literature parameters of Fertiliser costs 2016-2020 available from The Farm Management Handbooks produced by SAC Consulting to produce a truncated normal distribution β_{izt} . Future $FCost_{izt}$ β_{izt} value assumptions are based on SSP narratives and the input from stakeholders in regard to concerns regarding future P supplies. The GR simulation assumes a decrease on costs (10%), BAU assumes an increase in costs (10%) and FFD assumes a higher increase (50%). The resilient threshold value c is set at as the current mean cost (£/ha) for crop types z. The high risk threshold u is set as double the c value (£/ha). The values for L and M risk, b ₁ , are then uniformised between c and u (£/ha).
Total Crop Margin (£M) TCM	$TCM_{ijt} = \sum_{z} (A_{izt} \times CY_{ijzt} \times CP_{izt}) - (FCost_{izt} \times A_{izt})$	The total crop margin <i>TCM</i> (£M) was identified as a key representation of food production in the catchment. To calculate the sum of TCM under simulation <i>i</i> for precipitation simulation <i>j</i> for all crop types <i>z</i> for the entire catchment <i>t</i> by multiplying the area <i>A</i> (ha) of each crop type <i>z</i> with the total yield <i>CY</i> (t/Ha) for each crop type <i>z</i> , to give the total tonnage of each crop type <i>z</i> which is then multiplied by the price <i>CP</i> (£/t) of each crop type <i>z</i> to give the total output (£M). The cost of fertiliser <i>FCost</i> (£/ha) for each crop type <i>z</i> multiplied by <i>A</i> for crop type <i>z</i> which is subtracted from the total output (£M). We acknowledge that there are other node and fixed costs which influence the margins of <i>z</i> however, there was limited data available to consider these costs. We therefore only consider the nodes we can measure to provide a strategic consideration of how margins, based on the nodes included, will differ between current and future simulations. To measure <i>TCM</i> _{ijt} the equation calculates the sum of income minus costs for all crop type <i>z</i> . The resilient threshold value <i>c</i> is set at as the current mean cost (£/ha) for crop types <i>z</i> . The high risk threshold <i>u</i> is set at 50% of the <i>c</i> value (£/ha). The values for L and M risk are then uniformised between <i>c</i> and <i>u</i> (£/ha).
Surface Water Flows (Ml/day) SWF	$SWF_{is} = \beta_s \times PA_{ij} - \frac{ID_{is}}{\gamma}$	Stakeholders identified surface water flows SWF (ML/day) as a significant natural capital resource in the catchment, which could be influence by future climatic change PA_{ij} and demands for irrigation ID_{is} . Current flows (ML/day) for each waterbody sub catchment <i>s</i> is represented by a customised distribution β_s which was derived by analysing river discharge data 2010-2019 for available waterbodies <i>s</i> provided by SEPA. The distribution of β_s is multiplied by the potential

Node Name Identifier	Equation	Supporting Information
		anomaly change in PA_{ij} . Simulated changes in ID_{is} - which is converted from Ml/yr to ML/day using γ – is subtracted from SWF_{is} . As there can be high risk of low flows (H1) and high flows (H2), two high risk threshold values u_1, u_2 are derived by taking the Q5 and Q95 (ML/day) values from the analysed river discharge data for waterbodies <i>s</i> . The resilient threshold value <i>c</i> set as the median value of the river discharge data. The values for L and M are uniformised between <i>c</i> and both u_1 and u_2 (ML/day).
Surface Water Quality (µg/l) SWQ	$EQ_{1}. SWQ_{is} = \frac{TPL_{is} + DP_{ivs}}{SWF_{is}} \times \gamma$ $EQ_{2}. SWQ_{is} = \beta_{s} \times \Delta TPL_{is} \times \Delta DP_{ivs}$	 The quality of surface water <i>SWQ</i> was a current issue in the catchment, particularly in regard to P concentrations (µg/l) due to the influence of effluent loads <i>TPL_{is}</i> (kg/day) and diffuse loads <i>DP_{ivs}</i> (kg/day), as highlighted by stakeholders. Surface water flows <i>SWF_{is}</i> (ML/day) were also identified as influencing P concentrations, with higher flows diluting concentrations and low flows having the opposite effect on P concentrations. To simulate both current and future influence of <i>TPL_{is}</i>. <i>DP_{ivs}</i> and <i>SWF_{is}</i> on <i>SWQ_{is}</i> EQ₁ where <i>SWF_{is}</i> data was available, applying the unit conversion coefficient <i>γ</i>. Where <i>SWF_{is}</i> wasn't available we use EQ₂, which derives a customised distribution β_s for current RP concentrations using random water quality sampling data 2010-2019 provided by SEPA at the end of waterbodies <i>s</i>. The influence of future <i>TPL_{is}</i> and <i>DP_{ivs}</i> on <i>SWQ_{is}</i> by the % change in Δ<i>TPL_{is}</i> and Δ<i>DP_{ivs}</i> as a measure of the direction of change in RP concentrations. For both EQ₁ and EQ₂ the resilient <i>c</i> threshold value is set as the good/moderate Water Framework Directive (WFD) status threshold (µg/l) determined by SEPA for each waterbody <i>s</i>. The high risk value threshold <i>u</i> is set as the poor/bad WFD status threshold. The L and M risk threshold value <i>b₁</i> is set as the moderate/poor WFD status threshold.
Soil Erosion SE	$SE_{is} = \beta_s \times PA_{ij}$	Stakeholders highlighted that soil in the catchment is important for supporting and protecting the natural environment and food production. Currently, soil is at risk to the impacts of intense and prolonged rainfall events. The potential future change in extreme rainfall events was seen as an influencing factor on future soil erosion SE_{is} . To measure the current risk of soil erosion we analysed maps of the risk of soil erosion by water produced by Lilly & Baggaley (2018) using ArcGIS pro for each waterbody sub-catchment <i>s</i> to produce point raster data for mineral soil risk class. The soil risk maps give each raster point one of nine of the risk classification values which are divided evenly between low, moderate and high. We assigned each risk classification with a value of between zero and eight. Values of risk classification were analysed in each waterbody sub-catchment <i>s</i> to produce a truncated distribution β_s of current risk of soil erosion by water. To estimate the potential impact of changes in rainfall on SE_{is} , we multiply β_s by PA_{ij} . The resilient <i>c</i> threshold value is set at the lowest risk classification value and the high risk threshold values <i>u</i> is set using the first high risk classification value. The M risk value b_1 is set using the first moderate risk classification value.
Surface Water Flow SWFC	$SWFC_{it} = \sum_{s} IF_{eq}(SWF_{is})$	As surface water flow SWF_{is} was highlighted by stakeholders as a key natural capital resource. We measured the overall state of SWF in the catchment <i>t</i> under simulations <i>i</i> . We calculate the overall capital resource state values using IF statement equations to index the prior distributions of parent nodes SWF_{is} based in their discretised state thresholds. Each prior state discrete threshold, resilient to high-risk, was assigned a value of zero, one, two or three based on the values of c, u ₁ , u ₂ , b ₁ , b ₂ , b ₃ . For $SWFC_i$ the sum $\sum_{s}^{i} IF_{eq}$ of prior SWF_{is} values is as follows: $IF(SWF_{is} \le u_1, 3, IF(SWF_{is} \le b_1, 2, IF(SWF_{is} \le c, 1, IF(SWF_{is} \ge u_2, 3, IF(SWF_{is} \ge b_3, 2, IF(SWF_{is} \ge b_2, 1, 0)).$ For the indexed capital resource to be resilient, the majority of parent nodes (at least 75%) must fall within a resilient index threshold value. The upper value <i>u</i> set as the maximum possible index value of all nodes (3 times the number of parent nodes). Threshold values for high and moderate risk, b_1 and b_2 are uniformised values between <i>c</i> and <i>u</i> . The discretisation method is consistent for all capital resources and their capitals.
Surface Water Quality SWQC	$SWQC_{it} = \sum_{s} IF_{eq}(SWQ_{is})$	As surface water quality SWQ_{is} was highlighted by stakeholders as a key natural capital resource we measured the overall state of SWQ in the catchment t under simulations i. We calculate the overall capital resource state values using IF statement equations index the prior distributions of parent nodes SWQ_{is} based on their discretised state thresholds. Each prior state discrete threshold for SWQ_{is} , resilient to high-risk, was assigned a value of zero, one, two or three based on the values of c, u, and b. For $SWQC_{it}$ the sum $\sum_{s}^{i} IF_{eq}$ of prior SWQ_{is} values is as follows: $IF(SWQ_{is} \ge b_2, 3, IF(SWQ_{is} \ge b_1, 2, IF(SWQ_{is} \ge c, 1, 0))$. We apply the same discretisation methods described for all capital resources as described for the node $SWFC$.
Flood Risk FR	$FR_{is} = \sum IF_{eq}(SWF_{is})$	As stakeholders highlighted the risk of flooding as a potential impacts due to the influence of future change on SWF_{is} , we measure flood risk under differing simulations <i>i</i> in waterbody sub catchment <i>s</i> values FR_{is} using IF statement equations to index the prior distributions of parent nodes SWF_{is} based on their discrete thresholds. Each prior state discrete threshold, resilient to high-risk, was assigned a value of zero, one, two or three based on the values of, u_2 , b_2 , b_3 only as lower flows would not influence flood risk. For FR_{is} the sum IF_{eq} of prior SWF_{is} values is as follows: $IF(SWF_{is} \ge u_2, 3, IF(SWF_{is} \ge b_3, 2, IF(SWF_{is} \ge b_2, 2, 0).$ We apply the same discretisation methods described for all capital resources as described for the node $SWFC$.

Node Name Identifier	Equation	Supporting Information
Soil S	$S_{it} = \sum_{s} IF_{eq}(SE_{is})$	As soil was highlighted as a key natural capital resource, we use the same equation as $SWQC_{it}$ provide a measure of the state of soils under the influence future simulations <i>i</i> for the overall conditions in the catchment <i>t</i> . We apply the same discretisation methods described for all capital resources as described for the node $SWFC_{it}$.
Air Quality AQ	$AQ_{it} = \sum_{st}^{AQ_{it}} IF_{eq}(EDW_{is}EDLM_{is}EDWR_{it})$	Air quality AQ was identified as a key natural capital resource, summarised by stakeholders as a reflection of the amount of emissions produced in the catchment t. Stakeholders highlighted that the influence of future simulations i could influence AQ_{it} in the future. As there was no specific data available to measure current AQ_{it} , we use the nodes EDW_{is} , $EDLM_{is}$ and $EDWR_{it}$ as to measure of the potential direction of change in AQ_{it} as stakeholder identified the relationship between energy demand and emissions. We calculate AQ_{it} using IF statement equations IF_{eq} to index the prior distributions of parent node EDW_{is} , $EDLM_{is}$ and $EDWR_{it}$ based on their discretised state thresholds. Each prior state discrete threshold for EDW_{is} , $EDLM_{is}$ and $EDWR_{it}$, resilient to high-risk, was assigned a value of zero, one, two or three based on the values of c, u, and b. For AQ_{it} the sum of IF_{eq} of prior EDW_{is} , $EDLM_{is}$ and $EDWR_{it}$ values, which we will denote as α is as follows: : $IF(\alpha \ge b_2, 3, IF(\alpha \ge b_1, 2, IF(\alpha \ge c, 1, 0))$. For the indexed node AQ_{it} we applied the same discretisation method as $SWFC$.
Groundwater Quality GWQ	$GWQ_{it} = \sum_{s} IF_{eq}(GN_{is})$	Air quality GWQ was identified as a key natural capital resource, summarised by stakeholders as a reflection of the amount of emissions produced. Stakeholders highlighted that the influence of future simulations <i>i</i> could influence GWQ in the catchment $t GWQ_{it}$ in the future. As stakeholders specifically highlight GN_{is} as the specific compound of interest when discussing GWQ . The proportions of the catchment are also designated as a Nitrate Vulnerable Zone (NVZ). To measure of the current conditions and potential direction of change we use GN_{is} as an indicator of GWQ_{it} . We calculate GWQ_{it} using IF statement equations IF_{eq} to index the prior distributions of parent node GN_{is} based on their discretised state thresholds. Each prior state discrete threshold for GN_{is} , resilient to high-risk, was assigned a value of zero, one, two or three based on the values of c, u, and b. For GWQ_{it} apply a IF_{eq} of prior GN_{is} values, as follows: $IF(GN_{is} \ge b_2, 3, IF(GN_{is} \ge b_1, 2, IF(GN_{is} \ge c, 1, 0)$. For the indexed node GWQ_{it} we applied the same discretisation method as $SWFC$.
Energy Demand Change SW SWED	$SWED_{it} = \sum_{st} IF_{eq}(EDW_{is}, EDWR_{it})$	The change in energy demand, specifically for Scottish Water assets, was identified as a key manufactured capital resource <i>SWED</i> . Stakeholders required an overall understanding of the change in energy demand under simulations <i>i</i> for all Scottish Water related systems in the catchment <i>t</i> , <i>SWED_{it}</i> . Differentiating the energy demand across different sectors in the catchment would allow for the extent of the influence on each sector to be measured. We used the nodes EDW_{is} and $EDWR_{it}$ to measure of the potential direction of change in $SWED_{it}$. We calculate $SWED_{it}$ using IF statement equations IF_{eq} to index the prior distributions of parent node EDW_{is} and $EDWR_{it}$ based on their discretised state thresholds. Each prior state discrete threshold for EDW_{is} and $EDWR_{it}$, resilient to high-risk, was assigned a value of zero, one, two or three based on the values of c, u, and b. For $SWED_{it}$ the sum of IF_{eq} of prior EDW_{is} and $EDWR_{it}$ values, which we will denote as <i>a</i> is as follows: $IF(\alpha \ge b_1, 2, IF(\alpha \ge c, 1, 0)$. For the indexed node $SWED_{it}$ we applied the same discretisation method as $SWFC$.
Chemical Demand Change SW SWCD	$SWCD_{it} = \sum_{st} IF_{eq}(CDW_{is}, CDWR_{it})$	The change in chemical demand, specifically for Scottish Water related systems, was identified as a key manufactured capital resource <i>SWCD</i> . Stakeholders required an overall understanding of the change in chemical demand under simulations <i>i</i> for all Scottish Water related systems in the catchment <i>t</i> , <i>SWCD</i> _{<i>it</i>} . Differentiating the chemical demand across different sectors in the catchment would allow for the extent of the influence on each sector to be measured. We used the nodes <i>CDW</i> _{<i>is</i>} and <i>CDWR</i> _{<i>it</i>} to measure of the potential direction of change in <i>SWCD</i> _{<i>it</i>} We calculate <i>SWCD</i> _{<i>it</i>} using IF statement equations <i>IF</i> _{<i>eq</i>} to index the prior distributions of parent node <i>CDW</i> _{<i>is</i>} and <i>CDWR</i> _{<i>it</i>} based on their discretised state thresholds. Each prior state discrete threshold for <i>CDW</i> _{<i>is</i>} and <i>CDWR</i> _{<i>it</i>} , resilient to high-risk, was assigned a value of zero, one, two or three based on the values of c, u, and b. For <i>SWCD</i> _{<i>it</i>} the sum of <i>IF</i> _{<i>eq</i>} of prior <i>CDW</i> _{<i>is</i>} and <i>CDWR</i> _{<i>it</i>} values, which we will denote as <i>a</i> is as follows: <i>IF</i> ($\alpha \ge b_1$, 2, <i>IF</i> ($\alpha \ge c$, 1, 0). For the indexed node <i>SWCD</i> _{<i>it</i>} we applied the same discretisation method as <i>SWFC</i> .
Asset Compliance & Capability ACC	$ACC_{it} = \sum_{st} IF_{eq}(ACW_{is}, ACWR_{it})$	Stakeholders required an overall understanding of the change in asset compliance and capability under simulations <i>i</i> for related Scottish Water related systems in the catchment <i>t</i> , ACC_{it} . We used the nodes ACW_{is} and $ACWR_{it}$ to measure of the potential direction of change in ACc_{it} We calculate ACC_{it} using IF statement equations IF_{eq} to index the prior distributions of parent node ACW_{is} and $ACWR_{it}$ based on their discretised state thresholds. Each prior state discrete threshold for CDW_{is} and $CDWR_{it}$, resilient to high-risk, was assigned a value of zero, one, two or three based on the values of c, u, and b. For ACC_{it} the sum of IF_{eq} of prior ACW_{is} and $ACWR_{it}$ values, which we will denote as α is as follows: $IF(\alpha \ge b_2, 3, IF(\alpha \ge b_1, 2, IF(\alpha \ge c, 1, 0))$. For the indexed node ACC_{it} we applied the same discretisation method as $SWFC$.
Energy Demand Change LM LMED	$LMED_{it} = \sum_{s} IF_{eq}(EDLM_{is})$	The change in energy demand, specifically for the land management system, was identified as a key manufactured capital resource <i>LMED</i> . Stakeholders required an overall understanding of the change in energy demand under simulations <i>i</i> for all land management systems in the catchment <i>t</i> , <i>SWED</i> _{<i>it</i>} . Differentiating the energy demand across different sectors in the catchment would allow for the extent of the influence on each sector to be measured. We used the node <i>EDLM</i> _{<i>is</i>} to measure of the potential direction of change in <i>LMED</i> _{<i>it</i>} We calculate <i>LMED</i> _{<i>it</i>} using IF statement equations <i>IF</i> _{<i>eq</i>} to index the prior distributions of parent node <i>EDLM</i> _{<i>is</i>} based on their discretised state thresholds. Each prior state discrete threshold for <i>EDLM</i> _{<i>is</i>} , resilient to high-risk, was assigned a value of zero, one, two or three based on the values of c, u, and b. For <i>LMED</i> _{<i>it</i>} the sum of <i>IF</i> _{<i>eq</i>} of prior <i>EDLM</i> _{<i>is</i>} values, which we will denote as <i>a</i> is as follows: <i>IF</i> (<i>EDLM</i> _{<i>is</i>} ≥ <i>b</i> ₂ , 3, <i>IF</i> (<i>EDLM</i> _{<i>is</i>} ≥ <i>b</i> ₁ , 2, <i>IF</i> (<i>EDLM</i> _{<i>is</i>} ≥ <i>c</i> , 1, 0). For the indexed node <i>LMED</i> _{<i>it</i>} we applied the same discretisation method as <i>SWFC</i> .

Node Name Identifier	Equation	Supporting Information
Chemical Demand Change LM LMCD	$LMCD_{it} = \sum_{s} IF_{eq}(CDLM_{is})$	The change in energy demand, specifically for the land management system, was identified as a key manufactured capital resource <i>LMED</i> . Stakeholders required an overall understanding of the change in energy demand under simulations <i>i</i> for all land management systems in the catchment <i>t</i> , <i>SWED</i> _{<i>it</i>} . Differentiating the energy demand across different sectors in the catchment would allow for the extent of the influence on each sector to be measured. We used the node <i>EDLM</i> _{<i>is</i>} to measure of the potential direction of change in <i>LMED</i> _{<i>it</i>} We calculate <i>LMED</i> _{<i>it</i>} using IF statement equations <i>IF</i> _{<i>eq</i>} to index the prior distributions of parent node <i>EDLM</i> _{<i>is</i>} based on their discretised state thresholds. Each prior state discrete threshold for <i>EDLM</i> _{<i>is</i>} , resilient to high-risk, was assigned a value of zero, one, two or three based on the values of c, u, and b. For <i>LMED</i> _{<i>it</i>} the sum of <i>IF</i> _{<i>eq</i>} of prior <i>EDLM</i> _{<i>is</i>} values, which is as follows: <i>IF</i> (<i>EDLM</i> _{<i>is</i>} ≥ <i>b</i> ₂ , <i>3</i> , <i>IF</i> (<i>EDLM</i> _{<i>is</i>} ≥ <i>b</i> ₁ , <i>2</i> , <i>IF</i> (<i>EDLM</i> _{<i>is</i>} ≥ <i>c</i> , <i>1</i> , 0). For the indexed node <i>LMED</i> _{<i>it</i>} we applied the same discretision method as <i>SWFC</i> .
Community Relationship CRS	$CRS_{it} = \sum_{st}^{CRS_{it}} IF_{eq}(SP_{is}, FR_{is}, SWQ_{it}, AQ_{it}, CuC_{it})$	The relationship with local communities <i>CRS</i> in the catchment <i>t</i> was identified as a key social capital resource by stakeholders. Stakeholders highlight that the influence of simulations <i>i</i> for could influence <i>CRS_{it}</i> in the future. As there is no specific measure for community relationship, stakeholders highlight that the current and future conditions of nodes $SP_{is}, FR_{is}, SWQ_{it}, AQ_{it}$ and CuC_{it} could influence CRS_{it} . We calculate CRS_{it} using IF statement equations IF_{eq} to index the prior distributions of parent nodes $SP_{is}, FR_{is}, SWQ_{it}, AQ_{it}$ and CuC_{it} based on their discretised state thresholds. Each prior state discrete threshold for $SP_{is}, FR_{is}, SWQ_{it}, AQ_{it}$ and $fucC_{it}$ based on their discretised state thresholds. Each prior state discrete threshold for $SP_{is}, FR_{is}, SWQ_{it}, AQ_{it}$ and cuC_{it} based on their discretised on the values of c, u, and b. For CRS_{it} the sum of IF_{eq} of prior CRS_{it} values, which we will denote as <i>a</i> is as follows: $IF(\alpha \ge b_2, 3, IF(\alpha \ge c, 1, 0)$. For the indexed node CRS_{it} we applied the same discretisation method as $SWFC$.
Water Treatment & Supply Costs WTS	$WTS_{it} = \sum IF_{eq}(SWED_{it}, SWCD_{it}, ACC_{it})$	Changes in costs associated with the treatment and supply of water resources WTS in the catchment t was identified as a key financial capital resource by stakeholders. Stakeholders highlight that the influence of simulations i for could influence WTS_{it} in the future. Stakeholders identified that future conditions of nodes $SWED_{it}$, $SWCD_{it}$ and ACC_{it} could influence WTS_{it} . We calculate WTS_{it} using IF statement equations I_{eq} to index the prior distributions of parent nodes $SWED_{it}$, $SWCD_{it}$ and ACC_{it} based on their discretised state thresholds. Each prior state discrete threshold for $SWED_{it}$, $SWCD_{it}$ and ACC_{it} , resilient to high-risk, was assigned a value of zero, one, two or three based on the values of c, u, and b. For WTS_{it} the sum of IF_{eq} of prior $SWED_{it}$, $SWCD_{it}$ and ACC_{it} values, which we will denote as α is as follows: $IF(\alpha \ge u, 3)$, $IF(\alpha \ge b, 2, IF(\alpha \ge c, 1, 0)$. For the indexed node ACC_{it} we applied the same discretisation method as $SWFC$.
Food Production FPF	$FPF_{it} = \sum IF_{eq}(TCM_{ijt}, LMED_{it}, LMCD_{it},)$	Changes in income and costs associated with food production <i>FPF</i> in the catchment <i>t</i> was identified as a key financial capital resource by stakeholders. Stakeholders highlight that the influence of simulations <i>i</i> for could influence FPF_{it} in the future. Stakeholders identified that current and future conditions of nodes TCM_{ijt} , $LMED_{it}$ and $LMCD_{it}$ could influence FPF_{it} . We calculate FPF_{it} using IF statement equations IF_{eq} to index the prior distributions of parent nodes TCM_{ijt} , $LMED_{it}$ and $LMCD_{it}$ based on their discretised state thresholds. Each prior state discrete threshold for TCM_{ijt} , $LMED_{it}$ and $LMCD_{it}$, resilient to high- risk, was assigned a value of zero, one, two or three based on the values of c, u, and b. For FPF_{it} the sum of IF_{eq} of prior TCM_{ijt} , $LMED_{it}$ and $LMCD_{it}$ values, which we will denote as α is as follows: $IF(\alpha \ge b_2, 3, IF(\alpha \ge c, 1, 0)$. For the indexed node FPF_{it} we applied the same discretisation method as $SWFC$
Reputation R	$R_{it} = \sum_{st} IF_{eq}(SP_{is}, FR_{is}, CuC_{it})$	The reputation of sectors R in in the catchment t was identified as a key intellectual capital resource by stakeholders. Stakeholders highlighted that the influence of simulations i for could influence R_{it} in the future. As there was no specific measure of reputation, we used the nodes identified by stakeholders that they believe influence reputation. Stakeholders identified SP_{is} , FR_{is} and CuC_{it} could influence R_{it} . We calculate R_{it} using IF statement equations IF_{eq} to index the prior distributions of parent nodes SP_{is} , FR_{is} and CuC_{it} based on their discretised state thresholds. Each prior state discrete threshold for SP_{is} , FR_{is} and CuC_{it} , resilient to high-risk, was assigned a value of zero, one, two or three based on the values of c, u, and b. For R_{it} the sum of IF_{eq} of prior SP_{is} , FR_{is} and CuC_{it} , values, which we will denote as α is as follows: $IF(\alpha \ge b_2, 3, IF(\alpha \ge c, 1, 0)$. For the indexed node R_{it} we applied the same discretisation method as $SWFC$
Natural Capital NC	$NC_{it} = \sum IF_{eq}(SWQC_{it}, SWFC_{it}, AQ_{it}, S_{it}, GWQ)$	The overall measure of natural capital NC in in the catchment t was required by stakeholders. Stakeholders highlighted that the influence of simulations i for could influence NC_{it} in the future. As there was no specific measure of natural capital, we used the natural capital resource nodes identified by stakeholders to measure both the current and future condition of natural capital NC_{it} . Stakeholders identified $SWQC_{it}, SWFC_{it}, AQ_{it}, S_{it}$ and GWQ_{it} as capital resources for NC_{it} . We calculate NC_{it} using IF statement equations IF_{eq} to index the prior distributions of parent nodes $SWQC_{it}, SWFC_{it}, AQ_{it}, S_{it}$ and GWQ_{it} based on their discretised state thresholds. Each prior state discrete threshold for $SWQC_{it}, SWFC_{it}, AQ_{it}, S_{it}$ and GWQ_{it} based on their discretised on the values of c, u, and b. For NC_{it} the sum of IF_{eq} of prior $SWQC_{it}, SWFC_{it}, AQ_{it}, S_{it}$ and GWQ_{it} values, which we will denote as α is as follows: $IF(\alpha \ge b_1, 2, IF(\alpha \ge b_1, 2, IF(\alpha \ge c_1, 0))$. For the indexed node NC_{it} we applied the same discretisation method as $SWFC$
Social Capital SC	$SC_{it} = IF_{eq}(CRS_{it})$	The overall measure of social capital SC in in the catchment t was required by stakeholders. Stakeholders highlighted that the influence of simulations i for could influence SC_{it} in the future. As there was no specific measure of social capital, we used the social capital resource node CRS_{it} identified by stakeholders to measure both the current and future condition of social capital SC_{it} . We calculate SC_{it} using IF statement equations IF_{eq} to index the prior distributions of parent node CRS_{it} based on their discretised state thresholds. Each prior state discrete threshold for CRS_{it} , resilient to high-risk, was assigned a value of zero, one, two or three based on the values of c, u, and b. For SC_{it} the IF_{eq} of prior CRS_{it} values is as follows: $IF(CRS_{it} \ge b_2, 3, IF(CRS_{it} \ge b_1, 2, IF(CRS_{it} \ge c, 1, 0))$. The overall discretised output for SC_{it} will be equal to CRS_{it} , however, we retain both nodes to ensure model structure continuity. For the indexed node SC_{it} we applied the same discretisation method as $SWFC$.

Node Name Identifier	Equation	Supporting Information
Manufactured Capital MC	$MC_{it} = \sum IF_{eq}(SWED_{it}, SWCD_{it}, LMED_{it}, LMC)$	The overall measure of manufactured capital <i>MC</i> in in the catchment <i>t</i> was required by stakeholders. Stakeholders highlighted that the influence of simulations <i>i</i> for could influence MC_{it} in the future. As there was no specific measure of manufactured capital, we used the manufactured capital resource nodes identified by stakeholders to measure both the current and future condition of manufactured capital MC_{it} . Stakeholders identified $SWED_{it}$, $SWCD_{it}$, $LMED_{it}$, $LMED_{$
Financial Capital FC	$FC_{it} = \sum IF_{eq}(WTS_{it}, FPF_{it})$	The overall measure financial capital <i>FC</i> in in the catchment <i>t</i> was required by stakeholders. Stakeholders highlighted that the influence of simulations <i>i</i> for could influence FC_{it} in the future. As there was no specific measure of financial capital, we used the financial capital resource nodes identified by stakeholders to measure both the current and future condition of financial capital FC_{it} . Stakeholders identified WTS_{it} and FPF_{it} as financial capital resources for FC_{it} . We calculate FC_{it} using IF statement equations IF_{eq} to index the prior distributions of parent nodes WTS_{it} and FPF_{it} based on their discretised state thresholds. Each prior state discrete threshold for WTS_{it} and FPF_{it} , resilient to high-risk, was assigned a value of zero, one, two or three based on the values of c, u, and b. For FC_{it} the sum of IF_{eq} of prior WTS_{it} and FPF_{it} values, which we will denote as α is as follows: $IF(\alpha \ge b_2, 3, IF(\alpha \ge c, 1, 0)$. For the indexed node FC_{it} we applied the same discretisation method as $SWFC$.
Intellectual Capital IC	$IC_{it} = IF_{eq}(R_{it})$	The overall measure of intellectual capital SC in in the catchment t was required by stakeholders. Stakeholders highlighted that the influence of simulations i for could influence IC_{it} in the future. As there was no specific measure of intellectual capital, we used the intellectual capital resource node R_{it} identified by stakeholders to measure both the current and future condition of intellectual capital IC_{it} . We calculate IC_{it} using IF statement equations IF_{eq} to index the prior distributions of parent node R_{it} based on their discretised state thresholds. Each prior state discrete threshold for R_{it} , resilient to high-risk, was assigned a value of zero, one, two or three based on the values of c, u, and b. For IC_{it} the IF_{eq} of prior R_{it} values is as follows: $IF(R_{it} \ge b_2, 3, IF(R_{it} \ge b_1, 2, IF(R_{it} \ge c, 1, 0)$. The overall discretised output for IC_{it} will be equal to R_{it} , we retain both nodes to ensure model structure continuity. For the indexed node IC_{it} we applied the same discretisation method as $SWFC$.

Table S3: Node parameter values.

Node							Parameter	Values							Parameter Data Source		Discretis	ation	
	i	i	k	sla	11	-		β^{I}		21		PO	C/A/T			c	b.	ha	11
	l	J	ĸ	<i>s/u</i>	V	2	М	SD	Trunc	Y	GR	BAU	FFD	Current		C	01	02	и
Precipitation Change Anomaly (%)	GR	ExLR					0.74	0.03							UK Climate	States are and ar	e discretised e available i	based on <i>j</i> in SMTabl	values e 1.
	GR	BAU					1.044	0.05							Interface product				
	GR	ExHIR					1.36	0.06							Anomalies for				
	BAU	ExLR					0.72	0.04							nrobabilistic				
	BAU	BAU					1.048	0.05							projections (25km)				
	BAU	ExHIR					1.4	0.05							over UK, 1961-2100				
	FFD	ExLR					0.67	0.04							for β .				
	FFD	BAU					1.056	0.06							,				
	FFD	ExHIR					1.49	0.07									r	1	
			Cupar	6200			1.39	0.4	0	0.002	1408	2816	5554	0	Static provided by	3.2	6.4		9.6
			Springfield	6200			0.89	0.13	0	0.002	6	12	668	0	Scottish Water. We	1.17	2.34		3.51
			Freuchie	6200			0.26	0.07	0	0.002	-176	-352	-387	0	simulated effluent	0.28	0.56		0.84
			Dairsie	6200			0.09	0.01	0	0.002	37	74	178	0	flows using effluent	0.1	0.2		0.3
			Strathmiglo	6201			0.56	0.08	0	0.002	-153	-306	-367	0	statistics to generate	0.28	0.56		0.84
			Bowhouse	6201			1.53	0.24	0	0.002	-178	-356	1116	0	OSO value of the	1.94	3.89		5.83
Dry Weather			Ceres	6202			0.25	0.03	0	0.002	-170	-340	-374	0	outputs to derive β	0.27	0.54		0.81
Flow (Ml/day)			Pitscottie	6202			0.03	0.005	0	0.002	-15	-30	-36	0	outputs to derive p.	0.04	0.08		0.12
			Letham	6206			0.06	0.009	0	0.002	-27	-54	-65	0	SMTable 2 for y. PC Values for GR, BAU and FFD are derived from Scottish Water Growth Model outputs.	0.07	0.14		0.21
			Cupar	6200			2.27	1.14	0	0.002	1408	2816	5554	0	Static data provided	9.6	14.4		19.2
			Springfield	6200			1.14	0.29	0	0.002	6	12	668	0	by Scottish Water.	3.51	5.27		7.02
			Freuchie	6200			0.66	0.18	0	0.002	-176	-352	-387	0	Strategic Study. We	0.84	1.26		1.68
			Dairsie	6200			0.13	0.07	0	0.002	37	74	178	0	used survey samples	0.3	0.45		0.6
Daily Effluent			Strathmiglo	6201			0.81	0.42	0	0.002	-153	-306	-367	0	where available and	0.84	1.26		1.68
Flow (Ml/day)			Bowhouse	6201			2.16	1.02	0	0.002	-178	-356	1116	0	SAGIS outputs in	5.83	8.73		11.64
			Ceres	6202			0.35	0.175	0	0.002	-170	-340	-374	0	absent survey	0.81	1.22		1.62
			Pitscottie	6202			0.05	0.025	0	0.002	-15	-30	-36	0	statistics for p.	0.12	0.18		0.24
			Letham	6206			0.117	0.04	0	0.002	-27	-54	-65	0	SMTable 2 for γ .	0.21	0.32		0.42
Daily Influent Flow (Ml/day)																Daily In same dis	fluent Flow scretisation a Flow	nodes follo is Daily Ef	ow the fluent
Spill Event				6200												1	4.67	8.33	12

¹ M represents the mean value, SD represents the standard deviation and Trunc represents the truncated values for the distribution which is typically zero to prevent values being non-negative.

Node							Parameter	Values							Parameter Data		Discretisa	ation	
				,				β^{I}				P	C/A/T		Source		1	,	
	1	J	k	s/a	v	Z	М	SD	Trunc	γ	GR	BAU	FFD	Current		с	<i>b</i> 1	<i>b</i> ₂	и
				6201												0.5	2.33	4.17	6
				6202												0.5	2.33	4.17	6
				6206												0.25	1.17	2.08	3
			Cupar	6200			2.6	1.6	0	0.0002	1408	2816	5554	0		5.4	10.8		16.2
			Springfield	6200			3.7	1.6	0	0.0004	6	12	668	0	Static data values for	5.96	11.92		17.88
			Freuchie	6200			4.42	2.59	0	0.0032	-176	-352	-387	0	the current effluent P	2.46	4.92		7.38
Phosphorus			Dairsie	6200			2.7	1.8	0	0.0002	37	74	178	0	concentration (mg/l) β	0.34	0.68		1.02
Load (kg/d)			Strathmiglo	6201			2.1	1.3	0	0.0014	-153	-306	-36/	0	provided by Scottish	1.54	3.08		4.62
			Garaa	6201			2.8	1.4	0	0.0003	-1/8	-330	274	0	water.	5.94	11.88		17.82
			Ditegettie	6202			2.3	1.5	0	0.0010	-1/0	-540	-5/4	0	SMTable 1 for v.	0.8	0.28		2.4
			Letham	6202			4.2	2.5	0	0.0191	-13	-30	-30	0		0.19	0.38		0.37
			Lethalli	0200			2.3	1.4	0	0.0002	-27	-34	-03	0		0.24	0.40		0.72
			Cupar	6200						0.003					derived using sludge volumes (m ³)	6.7	13.4		20.1
			Springfield	6200						0.0091					provided for all	10.33	20.66		30.99
D'. D			Freuchie	6200						0.0014					wastewater treatment	0.94	1.88		2.82
Bio Resource			Dairsie	6200						0.0053					works in the	0.8	1.38		2.07
(m/day)			Strathmiglo	6201						0.0004					catchment for 2019,	0.43	0.86		1.29
			Bowhouse	6201						0.0009					see SMTable 2 for	1.98	3.96		5.94
			Ceres	6202						0.0026					details om how γ was	0.95	1.9		2.85
			Pitscottie	6202						0.011					derived.	0.58	1.16		1.74
			Letham	6206						0.0032						0.4	0.8		1.2
Total				6200												21.5	43		64.5
Phosphorus				6201												7.8	15.6		23.4
Load (kg/day)				6202											-	1.04	2.08		3.12
				6206												0.24	0.48		0.72
Energy				6200												1	4.62	8.33	12
Demand				6201												0.5	2.33	4.17	6
Wastewater				6202											-	0.5	2.55	4.17	2
				6200												0.23	1.17	2.08	3
Chemical				6200											-	0.25	1.17	2.08	3
Demand				6202											-	0.25	1.17	2.08	3
Wastewater				6206												0.25	1.17	2.08	3
Asset				6200												1.25	5.83	10.42	15
Compliance	-			6201					1							0.75	3.5	6.25	9
and Capability				6202												0.75	3.5	6.25	9
Wastewater				6205												0.5	2.33	4.17	6
				6200	Arable						3589	3729	3833	3485					
				6200	Pasture						442	531	885	885	Static data values				
				6200	Urban						546	642	728	520	derived using UKCEH				
				6201	Arable						2834	2944	3081	2751	and cover vector				
Land Cover	<u> </u>			6201	Dactura			1.	<u> </u>	<u> </u>	551	027	1101	1102	2019) and story and				
(Ha)				(201	r asture						174	122	270	103	simulation method				
				6201	Urban						174	132	270	193	using SSPs to	<i>a</i>			
				6202	Arable						2573	2673	2773	2499	determine A.	States are	discretised b	based on A	values
1				6202	Pasture						1061	1388	1715	1633		and ar	e available i	n SM Table	e I.

Node							Parameter	Values							Parameter Data		Discretisa	tion	
								₿ ¹				P	C/A/T		Source				
	i	j	k	s/a	v	Z	М	SD	Trunc	γ	GR	BAU	FFD	Current		с	b_1	b_2	и
				6205	Arable						1007	1027	1057	997					
				6205	Pasture						94	140	168	187					
				6205	Urban						116	119	124	111					
				6206	Arable						2433	2528	2669	2362	-				
				6206	Decture						1025	1340	1703	1576	-				
				6206	I asture						1025	1340	1705	1570					
				6200	UIUali						136	113		113	Static data provided	-			
				6200							73	61	49	61	by Scottish Water for				
				6202							56	47	38	47	the number (No) of	a			
Septic Tanks				6205							24	14	8	14	Septic Tanks. See	States are	discretised b	ased on <i>J</i>	4 values
(10 01)															SMTable2 for trends	and a		1 5111 1 401	c I.
				6206							74	62	50	62	in GR, BAU and FFD				
-				(200	4 11					0.0027					values.	10.77	10.16		25.54
				6200	Arable					0.003/					Static data values	12.//	19.16		25.54
				6200	Irbon					0.0004					Values for γ taken	0.2	8.55		0.6
				0200	Septic					0.00037					from ADAS	0.3	0.45		0.0
				6200	Tank					0.073					PSYCHIC	8.3	12.45		16.6
				6201	Arable					0.00042					(Phosphorus and Sediment Vield	1.5	2.25		3
				6201	Pasture					0.0008					Characterisation In	0.83	1.25		1.66
				6201	Septic					0.015					Catchments) model by	0.02	1.4		1.96
				0201	Tank					0.015					Davison et al. (2008)	0.95	1.4		1.80
				6202	Arable					0.0011					in each waterbody	2.8	4.2		5.6
Diffuse				6202	Pasture					0.0014					sub-catchment that	2.23	3.35		4.46
Phosphorus				6202	Septic Tank					0.018					uses land use data (AgCensus) to	0.83	1.25		1.66
(kg/uay/lia)				6205	Arable					0.0005					estimate loads derived	0.52	0.78		1.04
				6205	Pasture					0.00017					from Arable and	0.03	0.045		0.06
				6205	Urban					0.00007					Livestock land cover	0.01	0.015		0.02
				6205	Septic Tank					0.015					a Source	0.21	0.32		0.42
				6206	Arable					0.00001					Apportionment GIS model. Using land	0.034	0.056		0.078
				6206	Pasture					0.00001					cover of arable land in each sub-catchment	0.017	0.026		0.034
				6206	Septic					0.0008					the kg/ha/day load is calculated.	0.05	0.08		0.1
				(200	Tank											07	26		5.4
Total Diffuse				6200												27	36		54
Phosphorus				6201											-	2.9	4.55		3.8
(kg/day/ha)				6202												0.77	0.70		11.00
				6205												0.77	0.15		0.2
				0200	Arable					0.001					Continuous values for	0.1	0.15		0.2
					Urban	1				0.0001					β and γ derived using				
Groundwater				6200	Septic		3.41	0.29		0.00001					groundwater nitrate	18.75	28.13		37.5
Nitrate (mg/l)					Tank					0.00006					samples (mg/l) from				
				6201	Arable Urban		4.07	0.2		0.0013					2008-2019 provided by SEPA for two	18.75	28.13		37.5

Node							Parameter	Values							Parameter Data		Discretisa	tion	
							1	RI				Dr	7/A/T		Source				
	i	j	k	s/a	v	Ζ	М	p SD	Trunc	γ	GR	BAU	FFD	Current		с	b_{I}	b_2	и
					Septic			55			on	Dire		current	catchment monitoring				
					Tank					0.00007					locations.				
				6200			93	82	0						Values for β derived	625	937.5		1250
Irrigation				6201			44	57	0						using annual irrigation	542	813		1084
Demand				6202			55	75	0						abstraction licence	193.5	290.3		387
(ML/year)				(20)			21	16	0						return data (MI/year)	06.5	144.0		102
				6206			21	10	0						provided by SEPA	96.5	144.8		195
_				6200											provided by billin	0.25	1.17	2.08	3
Energy				6201												0.25	1.17	2.08	3
Demand Land				6202												0.25	1.17	2.08	3
wanagement				6206												0.25	1.17	2.08	3
				6200												0.5	2.33	4.17	6
Chemical				6201												0.5	2.33	4.17	6
Demand Land				6202												0.5	2.33	4.17	6
Management				6205												0.5	2.33	4.17	6
				6206												0.5	2.33	4.17	6
	GR									0.95					Static values y are				
Public	BAU									1.05					used for node PCD _{it}	As the not	le is determir	nistic in th	e model
Domend	FFD									1.1					in the equation for	the	ere is no disc	retisation.	
Demand	Current									1					SMTable 2).				
	GR									0.95					Static values y are				
Leakage	BAU									1					used for node L_{it} in	As the noc	le is determir	istic in th	e model
5	FFD									1.05					the equation for node	the	ere is no disc	retisation.	
	Current									1					WA (see SM1 able 2).				
															values for p derived				
															abstraction data for all				
															Scottish Water				
															boreholes in the				
Water Pesource															catchment from 2014-				
Abstraction										0.00016					2018 provided by				
Demand							7.71	0.58		5	743	1,486	6,339	0	SEPA and Scottish	7.5	8.5		9.5
(Ml/day)															water. The coefficient				
															y which represents the				
															rate of 165 l/d per				
															person per day				
															identified by Scottish				
															Water				
	GR									0.98					Static values y are				
Asset	BAU									0.98					used for node AC_{it} in	As the noc	le is determin	nistic in th	e model
Conditions	FFD									0.95					the equation for node	the	ere is no disc	retisation.	
	Current									1					SU (see SM Table 2).	5	2		1
Water Resource				a ₁				Custor	1						Custom values for β	3	5		1
Supply															abstraction rate data				
Capacity				a ₂				Custor	1						for all Scottish Water	5	3		1
1 5															boreholes a in the				

Node]	Parameter	Values							Parameter Data Source		Discretis	ation	
	i	i	k	s/a	v	7		β^{I}	1	v		PO	C/A/T	T		c	h	h ₂	11
	•	J	ň	5/4			М	SD	Trune	7	GR	BAU	FFD	Current	aatahmant from 2012		01	02	
															2019 provided by Scottish Water				
Resilience of Eden Supply (Ml/day)							0.97	0.12	0						The β values represent β_{ooc} used in the RS node equation are derived from the 2014-2018 abstraction data provided by SEPA and Scottish Water (see SMTable 2).	0.5	0.25		0
Resilience of Out of Catchment Supply (MI/day)																0.5	0.25		0
Energy Demand Water Resources																0.25	1.17	2.08	3
Chemical Demand Water Resources																0.25	1.17	2.08	3
Asset Capability Water Resources																0.5	2.33	4.17	6
Customer Complaints Water Resources						-										0.5	2.33	4.17	6
						Wheat					5595	5758	5866	5432	Static values for A we				
Crop Cover						Barley					6/00	1269	1203	6505	Cover® Plus: Crops ©	States are	discretised b	ased on cu	urrent A
(Ha)						Oilseed					412	423	/31	300	2016-2020 maps and		values fo	or z.	
		DAU				Ma					412	423	431	399	SSP narratives.		1	1	
Crop Yield	BAU	BAU				Wheat	8.62 9.03	0.94	0						For β values we use a				i i
(t/Ha)	FFD	BAU				Wheat	10	0.94	0						combination of crop				i i
	Current	BAU				Wheat	8.21	0.94	0						2019 available from	8.1	6.1		4.1
	All	ExLR/E xHIR				Wheat	6	0.94	0						the Scottish Agriculture Tables				
	GR	BAU				Barley	6.33	0.48	0						from the Economic				1
	BAU	BAU				Barley	6.63	0.48	0						Report 2020 and crop				i i
	FFD	BAU				Barley	7.5	0.48	0						from The Farm	6.03	4.52		3.02
	All	ExLR/E				Barley	6.03	0.48	0						Management				
	CP	XHIR DAII				Pototo	26.21	1.0	0						produced by SAC				
	BAU	BAU				Potato	38	1.9	0						Consulting.	42.2	31.65		21.1

Node						1	Parameter	Values							Parameter Data		Discretisa	ition	
				,				β^{I}				PO	C/A/T		Source				
	1	J	k	s/a	v	Z	М	SD	Trunc	γ	GR	BAU	FFD	Current		с	<i>b</i> 1	<i>b</i> ₂	и
	FFD	BAU				Potato	39.78	1.9	0										1
	Current	BAU				Potato	34.8	1.9	0										1
	All	ExLR/E xHIR				Potato	30	1.9	0										1
	GR	BAU				Oilseed	3.91	0.44	0										
	BAU	BAU				Oilseed	4.1	0.44	0										
	FFD	BAU				Oilseed	5	0.44	0							2.72	2 70		1.00
	Current	BAU				Oilseed	3.72	0.44	0							3.72	2.79		1.86
	All	ExLR/E xHIR				Oilseed	3	0.44	0										
	GR					Wheat	152.9 9	23.14	0										
	BAU					Wheat	160.2 7	23.14	0							145.7	109.2		72.9
	FFD					Wheat	167.5 6	23.14	0										
	Current					Wheat	145.7	23.14	0										1
	GR					Barley	146.2 7	28.4	0										
	BAU					Barley	153.2 3	28.4	0						For β values we used	139.3	104.5		69.7
	FFD					Barley	160.1 2	28.4	0						crop price data from 2010-2019 available				
Crop Price (£/t)	Current					Barley	139.3	28.4	0						from Scottish				1
	GR					Potato	174.1	23.5	0						Agriculture Tables				
	BAU					Potato	182.3 8	23.5	0						from the Economic Report 2020	165.8	124.4		82.0
	FFD					Potato	190.6 7	23.5	0							105.8	124.4		02.9
	Current					Potato	165.8	23.5	0										1
	GR					Oilseed	322.8 2	40.4	0										
	BAU					Oilseed	339.2 4	40.4	0							308.4	231.3		154.2
	FFD					Oilseed	354.6 6	40.4	0										
	Current					Oilseed	308.4	40.4	0										
	GR					Wheat	161.1	23.75	0										
	BAU					Wheat	188.3 7	23.75	0						For β values we use	179.4	269.1		358.8
	FFD					Wheat	296	23.75	0						literature parameters				
Fertiliser Cost	Current					Wheat	179.4	23.75	0						of Fertiliser costs				
(£/ha)	GR					Barley	150.2 1	21.71	0						2016-2020 available from The Farm				
	BAU					Barley	175.2 5	21.71	0						Management Handbooks produced	166.9	250.4		333.8
	FFD					Barley	250.3 5	21.71	0						by SAC Consulting.				
	Current					Barley	166.9	21.71	0										1

Node							Parameter	arameter Values						Parameter Data Source		Discretisa	ation		
			,	,				β^{I}				P	C/A/T				,	1	
	ı	J	ĸ	s/a	v	Z	М	SD	Trunc	γ	GR	BAU	FFD	Current		с	<i>b</i> 1	b_2	и
	GR					Potato	177.8 4	21.27	0										
	BAU					Potato	207.5	21.27	0							197.6	296.4		395.2
	FFD					Potato	296.4	21.27	0										
	Current					Potato	197.6	21.27	0										
	GR					Oilseed	117.3 6	18.8	0										
	BAU					Oilseed	136.9 2	18.8	0							130.4	195.6		260.8
	FFD					Oilseed	195.6	18.8	0										
	Current					Oilseed	130.4	18.8	0										
Total Crop Margin (£M)																17	12.75		8.5
				6200				Custon	1		365				Custom values for β				
Surface Water Flows (Ml/day)				6201				Custom	1		365				derived from river discharge data 2010- 2019 provided by SEPA.		2		
				6200						1000					Custom values for β	78	191		1046
Surface Water				6201						1000					derived from water	67	170		996
Quality (ug/l)				6202				Custon	1						quality sampling data	75	186		1034
Quarrey (page 1)				6205				Custor	1						2010-2019 provided	72	197		1015
				6206				Custon	1						by SEPA.	71	178		1015
				6200			3.1	1.1	0						Values for β derived	1	3		5
				6201			3.6	1.14	0						from maps of the risk	1	3		5
Soil Erosion				6202			3.62	1.1	0						of soil erosion by	1	3		5
				6205			3.7	0.96	0						water produced by	1	3		5
				6206			3.93	1.45	0						(2018).	1	3		5
Surface Water Flow (Capital Resource)																0.5	2.33	4.17	6
Surface Water																			
Quality (Capital Resource)					-											1.25	5.83	10.42	15
Eland Diale				6200												0.25	1.17	2.08	3
FIOOD KISK				6201												0.25	1.17	2.08	3
Soil (Capital Resource)																1.25	5.83	10.42	15
Air Quality																1.25	5.83	10.42	15
Groundwater Quality																0.5	2.33	4.17	6
Energy Demand Change SW																1.25	5.83	10.42	15

 $^{^{2}}$ Surface water flows node is discretised using c, u₁, u₂, b₁, b₂ and b₃ values (see SMTable1). For sub catchment 6200, the values are as follows: u₁ = 98.5, b₁ = 172.75, c = 247, b₂ = 679.5, b₃ = 895.75, u₂ = 1112. For sub catchment 6201, the values are as follows: u₁ = 10.54, b₁ = 19.87, c = 29.2, b₂ = 63.64, b₃ = 98.67, u₂ = 133.41.

Node							Parameter	Values							Parameter Data Source		Discretisa	ation	
			1	,				β^{I}				PC	C/A/T				1	1	
	1	J	ĸ	s/a	v	Z	М	SD	Trunc	γ	GR	BAU	FFD	Current		с	D1	<i>D</i> ₂	и
Chemical Demand Change SW					-					-						1.25	5.83	10.42	15
Asset Compliance & Capability (Capital Resource)																1.25	5.83	10.42	15
Energy Demand Change LM																1	4.67	8.33	12
Chemical Demand Change LM																1.25	5.83	10.42	15
Community Relationship																1.75	8.17	15.58	21
Water Treatment & Supply Costs																0.75	3.5	6.25	9
Food Production					-					-			-			0.75	3.5	6.25	9
Reputation																1.25	5.83	10.42	15
Natural Capital																1.25	5.83	10.42	15
Social Capital																0.25	1.17	2.08	3
Manufactured Capital																1.25	5.83	10.42	15
Financial Capital																1	2.67	4.33	6
Intellectual Capital																0.25	1.17	2.08	3

А

Figure S2: (A) Simplified visualisation of the Bayesian Network model, its variables and outputs for a hypothetical future Business As Usual (BAU) scenario (B) visualisation of how sub-catchments are considered using sub-models. Both models developed using GeNIe modeller (version 2.4.4601.0) (BayesFusion, 2017)

S4: Scenario Assumptions – Precipitation Change

Table S4: Precipitation rate anomaly (%) in the Eden catchment under multiple future simulations (Lowe, et al., 2018).

Population Change

TableS5: Average population equivalent at locations within the Eden catchment provided by Scottish Water data 2016-2019.

Location	Bowhouse	Ceres	Cupar	Dairsie	Foodieash	Freuchie	Letham	Pitscottie	Springfield	Strathmiglo
Current Population Equivalent	5731	1301	13712	424	38	1350	403	106	7650	1102

Figure S3: Projected change in population equivalent numbers for each simulation to 2050 in comparison to current population equivalents at locations within the Eden. Projections are derived from Scottish Water growth model. Acknowledgement: Figure created using Tableau Software LLC 2021 (version 2020.4.1)

Land Cover Change

We used the Shared Socioeconomic pathway scenarios developed by Pedde et al (2021) to use the trends of how land cover may change in the future using UK-SSP1 as the basis for the Green Road Scenario, UK-SSP2 for the Business as Usual Scenario and UK-SSP5 as the basis for the Fossil Fuelled Development Scenario.

In the Green Road scenario, there is a greater emphasis on protecting environmental areas, therefore an increase in woodland and wild grasslands is evident in the scenario. The Green Road Scenario considers a switch to a more vegetarian-based diet, resulting in the reduction of pasture land for meat production. In contrast, the Fossil-Fuelled Development scenario includes less consideration for environmental protection and maximises the amount of land in traditional economic-based land covers, such as pasture, to support a meat-based diet and conifer plantations. Using local interpretations from stakeholders, it was clear that arable farming was a key source of income in the catchment and an area of Scotland highly desirable for arable farming, therefore, the arable land cover was increased across all scenarios. For urban land cover, all scenarios considered an increase in population in Cupar, which is the largest town in the catchment, and the neighbouring Foodieash and Dairsie. Less urbanisation is considered in the Green Road scenario as living in rural areas is considered more desirable in comparison to the Fossil Fuelled Development scenario, which sees the greatest increase in urbanisation as the UK-SSP5 trends predict an increase in movement to eastern Scotland.

For the Business as Usual scenario, land cover trends from 1990 were used to determine the changes in land cover. Arable cover has been the predominant type since the 1990s and has been gradually increasing. Pasture land has the second largest coverage, but has been gradually declining. Trends since 2010 were used to inform the Business as Usual trajectory to 2050 and historic values from the 1990s were used to consider the upper limits of the different land cover types through time.

Understanding the historic land cover type helped inform the story and simulation approach to inform the boundaries of how the land cover could change in the future under each scenario. The total hectares in each sub-catchment per land cover type were calculated for current conditions (2019) (Morton et al., 2020). The percentage of each land cover type in each sub-catchment was then calculated and altered based on the different scenario narratives, local stakeholder knowledge and historical boundaries, before being converted back to hectares. The different land cover hectares across the different scenarios are presented in Figures S4-8. There are only subtle differences, particularly in arable land cover in the different scenarios, mainly due to the arable land cover nearly being maximised in the catchment currently.

Figure S4: Land cover type hectare (Ha) differences in waterbody sub-catchment 6200 for Business as Usual (BAU), Green Road (GR) and Fossil Fuelled Development (FFD) scenarios

Figure S5: Land cover type hectare (Ha) differences in waterbody sub-catchment 6201 for Business as Usual (BAU), Green Road (GR) and Fossil Fuelled Development (FFD) scenarios

Figure S6: Land cover type hectare (Ha) differences in waterbody sub-catchment 6202 for Business as Usual (BAU), Green Road (GR) and Fossil Fuelled Development (FFD) scenarios

Figure S7: Land cover type hectare (Ha) differences in waterbody sub-catchment 6205 for Business as Usual (BAU), Green Road (GR) and Fossil Fuelled Development (FFD) scenarios

Figure S8: Land cover type hectare (Ha) differences in waterbody sub-catchment 6206 for Business as Usual (BAU), Green Road (GR) and Fossil Fuelled Development (FFD) scenarios

Figure S9: Projected difference in land cover in hectares (Ha) in 2050 in the Eden catchment for each simulation in comparison to current land cover (Morton, et al., 2020). Acknowledgement: Figure created using Tableau Software LLC 2021 (version 2020.4.1)

S5: Capital indexing method

Capital & Capital Resource Discrete Indexing Method

Surface water quality example

Stakeholders wish to know the overall resilience of surface water quality in the catchment. For the multiple waterbodies in catchment the project team have define the measure for surface water quality to be the concentration if RP (μ g/l). Each waterbody has a distinct state boundaries to determine their state based on WFD directive status:

able S7: Discrete state boundary example for reactive phosphorus concentrations at each sub-catchment waterbody

	6200 – I	Discrete	6201- I	Discrete	6202 - I	Discrete	6205 - I	Discrete	6206 - I	Discrete
	R	Р	R	Р	R	Р	R	Р	R	Р
Waterbody	Concer	itration	Concer	ntration	Concen	itration	Concer	itration	Concer	ntration
	State Bo	oundary	State Bo	oundary	State Bo	oundary	State Bo	oundary	State Bo	oundary
	Values	$(\mu g/l)$	Values	(µg/l)	Values	$(\mu g/l)$	Values	(µg/l)	Values	s (µg/l)
State	From	То	From	То	From	То	From	То	From	То
Resilient	0	78	0	67	0	75	0	72	0	71
Low Risk	78	191	67	170	75	186	72	179	71	178
Moderate Risk	191	1048	170	996	186	1034	179	1015	178	1015
High Risk	1048	4184	996	3984	1034	3102	1015	4060	1015	4060

There is no measure of overall catchment surface water quality, therefore we index the resilience for surface water quality in each waterbody using IF statements, as explained for waterbody 6200 below:

Table S8: IF statement indexing values based on discrete boundary values for reactive phosphorus concentration in waterbody sub-catchment 6200

Waterbody	6200 – Discrete I State Boundar	RP Concentration y Values (µg/l)	IF Statement Value
State	From	То	
Resilient	0	78	0
Low Risk	78	191	1
Moderate Risk	191	1048	2
High Risk	1048	4184	3

The IF statement equation for 6200 would be:
IF 6200 RP > 78, 1, IF 6200 RP > 191, 2, IF 6200 RP >
1048, 3, ELSE, 0.

For overall surface water quality, we take the sum of all IF statements for each of the waterbodies included in the study and discretise the node surface water quality as:

Table S9: IF statement indexing values based on discrete boundary values for overall surface water quality

Capital Re	source Surface Wa	IF Statement Value	
State	From	То	
Resilient	0	1.25	0
Low Risk	1.25	5.83	1
Moderate Risk	5.83	10.42	2
High Risk	10.42	15	3

As there are five waterbody parent nodes for capital resource SWQ, the maximum sum of IF statements is 15.

The resilient threshold value is set at 25% of the total number of parent node nodes. 25% of 5 = 1.25.

Therefore, for a capital resource, or capital, to be considered resilient overall, 75% of the parent nodes must also be resilient.

Low and moderate risk upper threshold values are uniformised between 1.25 and 15.

An example simulation is demonstrated below:

Table S10: Sum if IF statement indexing example for overall surface water quality

RP simulation outputs	Index IF	Sum of IF	Capital resource surface water quality
at waterbodies	statement value	statement values	
RP in $6200 = 104 \ \mu g/l$ RP in $6201 = 190 \ \mu g/l$ RP in $6202 = 60 \ \mu g/l$ RP in $6205 = 97 \ \mu g/l$ RP in $6206 = 40 \ \mu g/l$	6200 = 1 6201 = 2 6202 = 0 6205 = 1 6206 = 0	4	Overall surface water quality is at low risk

Surface water quality is a parent node of natural capital, in the above example, surface water quality would carry an index IF statement value of 1 into the sum of IF statement equation with all other natural capital parent nodes.

S6: Supporting results

Figure S10: Median reactive phosphorus source loads (kg/day) in waterbody sub-catchment 6201 for Current, Business as Usual (BAU), Green Road Extreme Low Precipitation (GR EXLP) and Fossil Fuelled Development Extreme High Precipitation (FFD) scenarios.

Figure S11: Median reactive phosphorus source loads (kg/day) in waterbody sub-catchment 6202 for Current, Business as Usual (BAU), Green Road Extreme Low Precipitation (GR EXLP) and Fossil Fuelled Development Extreme High Precipitation (FFD) scenarios

Figure S12: Median reactive phosphorus source loads (kg/day) in waterbody sub-catchment 6205 for Current, Business as Usual (BAU), Green Road Extreme Low Precipitation (GR EXLP) and Fossil Fuelled Development Extreme High Precipitation (FFD) scenarios, please note only diffuse sources are present

Figure S13: Median reactive phosphorus source loads (kg/day) in waterbody sub-catchment 6206 for Current, Business as Usual (BAU), Green Road Extreme Low Precipitation (GR EXLP) and Fossil Fuelled Development Extreme High Precipitation (FFD) scenarios

S7: References

- BayesFusion, L. L. C.: GeNIe Modeler, User Manual. Available online: <u>https://support. bayesfusion.</u> <u>com/docs/</u> 2017.
- Davison, P. S., Withers, P. J., Lord, E. I., Betson, M. J., and Strömqvist, J.: PSYCHIC A processbased model of phosphorus and sediment mobilisation and delivery within agricultural catchments. Part 1: Model description and parameterisation, J. Hydrol., 350, 290–302, https://doi.org/10.1016/j.jhydrol.2007.10.036, 2008.
- Esri Inc.. ArcGIS Pro (version 2.58.0), Esri Inc. Available: <u>https://www.esri.com/en-us/arcgis/products/arcgis-pro/overview</u>, 2018.
- Gallaun, H., Dohr, K., Puhm, M., Stumpf, A. & Huge, J.: EU-Hydro River Net User Guide 1.3. Copernicus Land Monitoring Service Reference Data: EU-Hydro. European Environment Agency: Copernicus Land Monitoring Service, 2019.

Lilly, A. B., N.J.: Soil erosion risk map of Scotland (partial cover). In: James Hutton Institute, 2018.

Lowe, J. A., Bernie, D., Bett, P., Bricheno, L., Brown, S., Calvert, D., Clark, R., Eagle, K., Edwards, T. & Fosser, G. UKCP18 science overview report. Met Office Hadley Centre: Exeter, UK, 2018.

Mara, D. D. Natural wastewater treatment. CIWEM, England, 2006.

Morton, R. D., Marston, C. G., O'Neil, A. W. & Rowland, C. S.: Land Cover Map 2019 (land parcels, GB). NERC Environmental Information Data Centre, <u>https://doi.org/10.5285/44c23778-4a73-4a8f-875f-89b23b91ecf8, 2020</u>.

O'Neill, B. C., Kriegler, E., Ebi, K. L., Kemp-Benedict, E., Riahi, K., Rothman, D. S., Van Ruijven, B. J., Van Vuuren, D. P., Birkmann, J., Kok, K., Levy, M. and Solecki, W.: The roads ahead: Narratives for shared socioeconomic pathways describing world futures in the 21st century. Global Environmental Change, 42, 169-180, <u>https://doi.org/10.1016/j.gloenvcha.2015.01.004,</u> 2017.

Pedde, S., Harrison, P. A., Holman, I. P., Powney, G. D., Lofts, S., Schmucki, R., Gramberger, M., and Bullock, J. M.: Enriching the Shared Socioeconomic Pathways to co-create consistent multisector scenarios for the UK, Science of The Total Environment, 756, 143172, https://doi.org/10.1016/j.scitotenv.2020.143172, 2021.

Su, J., Wang, L., Zhang, Y. & Gu, Z.: A Numerical Study on Influent Flow Rate Variations in a Secondary Settling Tank. Processes, 7, <u>https://doi.org/10.3390/pr7120884</u>, 2019.