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Abstract. The resilience of river catchments and the vital
socio-ecological services they provide are threatened by the
cumulative impacts of future climatic and socio-economic
change. Stakeholders who manage freshwaters require tools
for increasing their understanding of catchment system re-
silience when making strategic decisions. However, unrav-
elling causes, effects and interactions in complex catchment
systems is challenging, typically leading to different system
components being considered in isolation.

In this research, we tested a five-stage participatory
method for developing a Bayesian network (BN) model to
simulate the resilience of the Eden catchment in eastern Scot-
land to future pressures in a single transdisciplinary holistic
framework. The five-stage participatory method involved co-
developing a BN model structure by conceptually mapping
the catchment system and identifying plausible climatic and
socio-economic future scenarios to measure catchment sys-
tem resilience. Causal relationships between drivers of future
change and catchment system nodes were mapped to create
the BN model structure. Appropriate baseline data to define
and parameterise nodes that represent the catchment system
were identified with stakeholders.

The BN model measured the impact of diverse future
change scenarios to a 2050 time horizon. We applied con-
tinuous nodes within the hybrid equation-based BN model
to measure the uncertain impacts of both climatic and socio-
economic change. The BN model enabled interactions be-
tween future change factors and implications for the state of
five capitals (natural, social, manufactured, financial and in-

tellectual) in the system to be considered, providing stake-
holders with a holistic catchment-scale approach to measure
the resilience of multiple capitals and their associated re-
sources. We created a credible, salient and legitimate BN
model tool for understanding the cumulative impacts of both
climatic and socio-economic factors on catchment resilience
based on stakeholder evaluation. BN model outputs facili-
tated stakeholder recognition of future risks to their primary
sector of interest, alongside their interaction with other sec-
tors and the wider system. Participatory modelling meth-
ods improved the structure of the BN through collaborative
learning with stakeholders while providing stakeholders with
a strategic systems-thinking approach for considering river
basin catchment resilience

1 Introduction

Freshwaters are essential for human life through the provi-
sion of drinking water and food production, regulation of cli-
mate and benefits to culture and well-being. Due to the mul-
tiple ecosystem services provided, freshwaters have become
an exploited common resource, and human activity threat-
ens their ability to provide these vital services (Dodds et al.,
2013; Heathwaite, 2010; Vörösmarty et al., 2010). Driven by
both population and economic growth, the availability, qual-
ity and biodiversity of freshwaters are in decline, with pro-
jected changes in climate, land use, population demographics
and societal behaviour expected to accelerate negative trends
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(Boretti and Rosa, 2019; United Nations, 2015; Wada et al.,
2016). With the pressures freshwaters face, stakeholders in-
cluding governments, environmental protection agencies and
businesses must work together to ensure that freshwater re-
sources are resilient to the impacts of environmental change
and can continue to provide ecosystem services both now and
in the future.

Resilience was first introduced by Holling (1973) as the
ability of ecological systems to absorb disturbances and re-
tain their functions in the face of change. Adger (2000) later
defined social resilience as the ability of groups and com-
munities to cope with social, political and environmental
change. The crossover between social and ecological theo-
ries led to the theory of socio-ecological system resilience
(Cretney, 2014; Folke, 2006). Decision-makers must be able
to understand how a system shifts from one state to an-
other (Renaud et al., 2010) to inform resilient water man-
agement and allow freshwater systems to bounce back and
adapt to variability, uncertainty and transformation (Brown,
2015). At a catchment scale, stakeholders often have com-
peting demands for access to high-quality water for activities
such as food production and drinking water supply, leading
to complex interactions in socio-ecological systems. Differ-
ent water uses within a catchment can lead to compound-
ing negative impacts on freshwater resources (Pahl-Wostl,
2007). For example, in agriculture, the application of fer-
tilisers to grow food is a source of diffuse pollution, while
discharge from wastewater treatment systems leads to point
source pollution (Crossman et al., 2013). Water is shared be-
tween competing stakeholders and aquatic ecosystems that
also rely on clean water (Falkenmark, 2003). Hence, to en-
sure resilient water resources, an understanding of the com-
plexity of socio-ecological systems is required (Pahl-Wostl
et al., 2011; Plummer and Baird, 2021).

Consideration of potential future change scenarios adds
further complexity when considering the resilience of fresh-
water resources. Focussed on managing complexity and
changes which pose challenges for socio-ecological systems,
resilience is understood as the ability to cope with diverse
shocks and stressors due to climatic and socio-economic
change (Rodina, 2019). The extent of future impacts on water
systems is uncertain due to uncertainties in the scale of cli-
matic and socio-economic factors, including population and
land-use change (Holman et al., 2016). Harrison et al. (2016)
highlighted that climate impact assessments that did not con-
sider the complexities of socio-economic drivers and cross-
sectoral interactions could lead to over- or underestimations
of future impacts, highlighting the need for stakeholder par-
ticipation in the consideration of future change impacts.

Participatory modelling approaches improve understand-
ing of socio-ecological systems and environmental problems
(Gray et al., 2018). Stakeholder engagement is a key element
of participatory modelling, where the involvement of diverse
stakeholder groups provides valuable conceptual knowledge
of system components and their relationships (Hare, 2011).

Stakeholders as components of socio-ecological systems was
recognised by Walker et al. (2002), who proposed that stake-
holders should lead the development of conceptual system
modelling as a first step in analysing resilience.

In a review of participatory modelling methods, Voinov
and Bousquet (2010) presented Bayesian networks (BNs)
as a participatory modelling approach. BNs are probabilis-
tic graphical models that represent the causal probabilistic
relationships between a set of random variables (Barton et
al., 2012). A BN consists of two key components; a directed
acyclic graph which represents the dependencies between
nodes in a system and conditional probabilities which quan-
tify the strength of the dependences between nodes (Kaikko-
nen et al., 2021; Pearl, 1986). Nodes and their relationships
within a system are easily visualised, allowing the network
structure to be assessed, modified and discussed by experts
and stakeholders who know the system being represented by
the BN (Aguilera et al., 2011).

BNs can be used as a resilience analysis tool due to the
ability to enable the participation of stakeholders in the de-
velopment of conceptual system modelling and their appli-
cation to explore future pathways by analysing “what if?”
scenarios (Phan et al., 2019; Moe et al., 2019). The ability of
BNs to handle uncertainty and complexity had made them a
widely used approach in the field of water resource manage-
ment (Phan et al., 2016; Castelletti and Soncini-Sessa, 2007).
Moe et al. (2021) suggested that BNs can improve environ-
mental risk assessment, which is demonstrated by Wade et
al. (2021) who applied a BN model to measure the risks of
multiple stressors on water quality and quantity.

Common applications of BN models use discrete variables
(Aguilera et al., 2011) involving the division of continuous
variables into many distinct states (Mayfield et al., 2020).
Discrete BN models face the limitations of discretisation,
including a reduction of statistical accuracy and loss of in-
formation (Chen and Pollino, 2012; Xue et al., 2017). Hy-
brid BNs include both discrete and continuous variables to
overcome discretisation limitations and make the best use of
available environmental data (Aguilera et al., 2013); how-
ever, their application in environmental risk assessment is
scarce (Moe et al., 2021). Knowledge gaps related to the
application of BN models highlighted by Moe et al. (2021)
include consideration of cumulative stressors in risk assess-
ment models (Landis, 2021) and the integration of ecological
and socio-economic aspects.

Addressing the knowledge gaps described, we tested the
ability of a BN model to enable stakeholders to engage with
complexity and uncertainty associated with (1) holistic un-
derstanding of complex catchment systems and the relation-
ships between natural and social factors and (2) simulat-
ing the cumulative impacts of uncertain future climatic and
socio-economic change in a single framework, using partici-
patory BN methods.
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2 Methods

2.1 Study area: Eden catchment

Our research focused on the river Eden catchment in east-
ern Scotland, in collaboration with the Scottish Environment
Protection Agency (SEPA) – Scotland’s environmental regu-
lator – and Scottish Water – a statutory corporation that pro-
vides water and sewerage services across Scotland. The river
Eden catchment was identified as an appropriate case study
due to deteriorating water quality trends which are attributed
to the influence of both diffuse and point source pollution
from multiple sectors within the catchment.

The Eden catchment (320 km2) is situated in the Fife re-
gion in eastern Scotland (Fig. 1). The river Eden originates in
the Ochil Hills to the east of the catchment, flowing through
predominantly arable agricultural land (51 %; Morton et al.,
2020), much of which is high-quality agricultural land on fer-
tile soils (Environmental Change Network, 2021; Macgregor
and Warren, 2016). The river Eden then flows east through
the urban settlement of Cupar. A further eight tributary water
bodies can be found in the catchment.

SEPA continues to monitor the ecological status of wa-
ter bodies in the catchment as part of the European Union
(EU) Water Framework Directive (WFD) obligation to pro-
duce River Basin Management Plans (RBMPs). Despite the
UK’s exit from the EU, the WFD legislation remains in place
in Scotland. In 2019, the upper stretch of river Eden was clas-
sified as being in poor ecological status and the lower stretch
of the river Eden stretch was classified as being in moderate
ecological status.

Waterbody reactive phosphorus (RP) concentration is a
key parameter that contributes to the poor and moderate
classifications. The high RP concentrations are caused by
wastewater discharges from Scottish Water wastewater treat-
ment work assets (Fig. 1.), diffuse pollution sources from
agriculture, private septic tanks and in-stream phosphorus re-
lease from sediments during low flows.

Previous modelling and monitoring carried out in the Eden
catchment provide an understanding of the current ecologi-
cal status of the catchment. The need for a complementary
future-focussed, systems-thinking tool to address the water
quality and water resource issues in the catchment was identi-
fied by SEPA and Scottish Water. The tool would be required
to support the trial of a new decision-making method called
One Planet Choices1, co-developed by SEPA and Scottish
Water, in the Eden catchment (SEPA, 2020). The Eden catch-
ment was selected due to the current complexity of both wa-
ter quality and quantity issues, with the added complexity of
multiple contributing sectors.

1A visual description of the One Planet Choices approach
can be found by following this link https://vimeo.com/804313679/
1139d31b45 (last access: 1 May 2023).

The One Planet Choices pilot project aims to deliver a
future-focussed, systems-based approach to decision-making
to help identify solutions that are resilient to future chal-
lenges. The method aims to take account of interdependen-
cies between both natural and human systems to achieve
good ecological status and also deliver wider benefits
through the identification of both innovative and collabo-
rative management solutions. One Planet Choices takes ac-
count of a range of capitals, including natural, social, man-
ufactured, financial and intellectual. Specific resources are
considered for each capital. For example, strength of com-
munity relationships for social capital, energy and chemical
demands for manufactured capital, and monetary costs and
benefits for financial capital.

To inform innovative and collaborative management solu-
tions, an understanding of the extent to which water qual-
ity and quantity issues will change in the future and the ex-
tent to which different sectors will contribute to catchment
issues now and in the future is required. Our methods in-
volved stakeholder participation in the mapping of the socio-
ecological system and important relationships that currently
contribute to the water-related issues in the catchment. We
developed plausible climatic and socio-economic future sce-
nario pathways to measure catchment system resilience.

2.2 BN model construction

To construct a BN model to meet the needs of the One Planet
Choices framework, we developed a five-stage participatory
approach (adapted from Pollino and Henderson, 2010) (de-
scribed in detail in Sect. 2.2.1 to 2.2.5 and shown in Fig. 2a).
Based on the ladder of participation outlined by Basco-
Carrera et al. (2017) we identified two stakeholder groups
to be involved in the research. As direct research users, One
Planet Choices method developers from SEPA and Scottish
Water, who participated in co-design and decision-making
throughout the research, are referred to as the “project team”.
The second group of stakeholders, with direct knowledge of
the socio-ecological system in the Eden catchment, are re-
ferred to as “catchment stakeholders” who participated at
various levels from discussion and consultation.

2.2.1 Stage 1: discuss model aim and objectives

To understand knowledge needs and confirm the appropri-
ateness of a BN model approach, we held six initial engage-
ment meetings with the project team (Fig. 2., panel A). Stake-
holder needs were defined within the model aim: to measure
the resilience of the catchment system to the impact of fu-
ture shocks and changes and their influence on key capital
resources.

Objectives identified to achieve the model aim were to:
(1) ensure systems thinking by mapping the socio-ecological
interactions in the catchment; (2) measure the impacts of
continuing current practices and trends into the future, called
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Figure 1. The river Eden catchment, Fife, Scotland. Land cover data provided by Morton et al. (2020). Acknowledgements: catchment
boundary provided by the National River Flow Archive. River network provided by the EU-Hydro River Network database (Gallaun et al.,
2019). Map created in ArcGIS Pro (Esri Inc., 2021).

the future Business As Usual (BAU), shocks of extreme
events and diverse pathways for future climatic and socio-
economic change to a 2050 time horizon; (3) use a holistic
capitals approach to measure the current and future health of
the catchment; and (4) identify specific aspects of the catch-
ment system that are least resilient to the impacts of future
change.

Further discussions involved setting model boundaries
(Jakeman et al., 2006). A previous rapid assessment by Scot-
tish Water and SEPA using the One Planet Choices method
and water quality source apportionment modelling in GIS
identified the need to focus the work on the following five
waterbody sub-catchments: lower Eden (6200), upper Eden
(6201), Ceres Burn (6202), Foodieash Burn (6205) and Fer-
nie Burn (6206) (see Sect. S1, Fig. S1 of the Supplement
for a visual representation). Each waterbody sub-catchment
is either not meeting good ecological status currently or is at
risk of not achieving good status in the future.

Reactive phosphorus (RP) was identified as the specific
parameter to reflect water quality. Wastewater, land manage-
ment and water resource systems were identified as critical
for influencing RP concentrations in the catchment based

on previous scoping and dependency mapping exercises dur-
ing the mentioned rapid assessment. Catchment stakehold-
ers with a knowledge of each of the three critical systems
(wastewater, water resource and land management) within
both SEPA and Scottish Water were selected to participate
in model co-construction.

To give an overall measure of the resilience of the catch-
ment system, the project team required the model to take a
holistic approach to investigate current and future impacts on
five key capitals and their associated capital resources. Capi-
tals identified by the project team included natural capital and
resources related to the quality and quantity of air, water and
land. Social capital including the relationships and impacts
on local communities. Manufactured capital, specifically the
conditions of assets and changes in the use of energy and
chemicals. Financial capital, including changes in costs and
incomes associated with resource use, asset conditions and
changes in environmental conditions. Intellectual capital, fo-
cussing on the potential changes in the reputation of sectors
within the catchment.

Model section headings (Fig. 3) were agreed upon with the
project team at the outset to clarify the modelling purpose
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Figure 2. Model section headings used to ensure a linear cause-and-effect Bayesian network model structure during participatory methods.

with different stakeholder groups and ensure that the elicited
cause-and-effect relationships were linear.

2.2.2 Stage 2: construct a conceptual catchment system
model

We conducted a series of focus groups (Fig. 2., panel B) to
construct the BN model with stakeholders who had knowl-
edge of the three critical systems: wastewater, water resource
and land management. A total of 12 stakeholders participated
in the focus groups, who were each given a specific identi-
fier code based on their knowledge of the catchment system.
Codes and critical system associations for all participants can
be found in Sect. S2, Table S1.

A five-step process (Fig. 2c) was used to construct the BN
model with the focus groups. The aims of both the model
building and model boundaries were explained to participat-
ing stakeholders as a first step. The second step identified
appropriate nodes under each boundary heading using the
GeNIe modeller (version 2.4.4601.0) (BayesFusion, 2017).
Political, economic, social, technological, environmental and
legal headings taken from the PESTEL analysis framework
(Yüksel, 2012) provided a basis for supporting node selec-
tion under the “future change” heading. The “influence on the
catchment system” heading was used to support stakeholders
in the identification of important nodes that define the sys-
tem and the potential “consequences of change” that could
occur due to the influence of future impacts. Identification of
“capital resources” within the catchment was determined by
the pre-defined five key capitals – natural, social, manufac-
tured, financial and intellectual – and the important system-
specific nodes identified by stakeholders. The key “capitals”
were used to summarise the outputs of the model.

In the third step, stakeholders mapped the causal relation-
ships between nodes identified under each heading, repre-
senting the direction of cause and effect relationships (Bor-

suk et al., 2004). In step four, a variable log was used to
define each node and the metrics in which they should be
measured. The variable log was also used in step five to
record the data that stakeholders believed would be relevant
for model parameterisation. Data for model parameterisa-
tion were collected in collaboration with both stakeholders
from the project team and those who participated in the fo-
cus groups. During the collection of data, catchment-specific
information, such as the specific wastewater treatment works
and their locations, were also identified. Data, metrics and
catchment-specific information provided by stakeholders for
each model variable informed the spatio-temporal resolution
of the model.

A model description is presented in Sect. S3, Table S2,
which describes all nodes included in the BN model, model
equations, discretisation, data used for model parameterisa-
tion, justification for node inclusion and all decisions made
during model construction and parameterisation. The sup-
porting parameter values for each node in the model are also
provided in Sect. S3, Table S3.

2.2.3 Stage 3: parameterise the model

We developed a hybrid BN model based on the modelling
aim and the data available. Hybrid BN models include both
discrete and continuous nodes, where the relationships be-
tween continuous nodes can be represented as equations
(Marcot and Penman, 2019). Discrete nodes adopt a set of
states which describe different conditions, and continuous
nodes adopt a finite number of values presented as statisti-
cal distributions (BayesFusion, 2017). Our model contained
417 nodes, 623 arcs and 23 sub-models. Despite not be-
ing a spatial model, there are some geographical consider-
ations included to represent five sub-catchments. Across the
five sub-catchments the model included 10 wastewater as-
sets, two public water drinking assets, four land-cover types,
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Figure 3. Five-stage participatory approach used to create the Bayesian network model (a). Stakeholder engagement activities involved in
each stage of model construction (b). Five-step process used during stakeholder focus groups (c).

four crop types and septic tanks. Dividing the model into sub-
catchments resulted in repetition of nodes and arcs.

Discrete choice nodes were used to represent and simu-
late different future pathway scenarios. The model incorpo-
rates Representative Concentration Pathways (RCPs) as the
basis for measuring changes in climatic factors, using the UK
Met Office (United Kingdom) Climate Projections 18 (Lowe
et al., 2018). The RCPs were coupled with Shared Socio-
economic Pathways (SSPs) to simulate socio-economic fac-
tors of change. We used the latest SSP narratives for the UK
produced by Pedde et al. (2021) to frame the direction of
change for the socio-economic factors such as population and
land cover. We coupled three RCPs and SSPs for inclusion in
the model as a deterministic choice node to allow for a range
of scenarios; RCP2.6 was coupled with the Green Road nar-
rative, RCP6 was coupled with the Middle of the Road nar-
rative and RCP8.5 was coupled with the Fossil-Fuelled De-
velopment narrative. We defined the coupled scenarios using
the SSPs narrative names (O’Neill et al., 2017), except for the
Middle of the Road narrative which was defined as the future
Business As Usual (BAU) pathway, based on interpretations
made by the stakeholder project team.

Under the model boundary heading “future change”, pre-
cipitation change, land-cover change and population change
nodes were identified by stakeholders. We used equation-
based nodes to quantify the extent of future change and create
a relationship with the discrete choice nodes that represent
the three different pathway scenarios – Green Road, Busi-
ness As Usual and Fossil-Fuelled Development – allowing
model users to perform varying scenarios of the BN model.

Catchment-specific precipitation anomalies for probabilis-
tic projections from the UK Climate Projections User Inter-
face were used to quantify future precipitation change for
each of the RCPs represented in the model (Sect. S4, Ta-
ble S4). We used the mean annual precipitation rate anomaly
to represent precipitation change for annual scenarios. To
represent shocks to the system, we used extreme exceedance
percentile values for seasonal summer (Q5 exceedance) and
winter precipitation (Q95 exceedance) anomalies.

Population projection data provided by an internal Scottish
Water Growth model until 2030 were used to quantify likely
future population change. The data provided included both
the raw and real population equivalents (PEs), which repre-
sent the populations that are served by water assets in the
catchment. Real PE projections are based on local authority
strategic and local development plans. Raw PE projections
use likely future population projections supplied by the Na-

tional Registers of Scotland. Real PE projections are conser-
vative in comparison to raw PE projections. The raw and real
PE projections were extrapolated until 2050, using different
considerations of how population growth might change until
2050 based on the SSP narratives and input from stakehold-
ers with knowledge of conditions in the catchment. Projected
PE change values until 2050 for the differing scenarios in
comparison to the average PE 2016–2019 at locations within
the Eden catchment are provided in Sect. S4 (Table S5 and
Fig. S3).

Land cover change projections until 2050 were quantified
using UKCEH land cover vector maps 1990, 2007 and 2015–
2019 (Morton et al., 2020) in ArcGIS Pro (version 2.58.0)
(Esri Inc., 2021) to analyse current and historic land cover
change in the catchment. We applied a story and simulation
approach (Alcamo, 2008; Rounsevell and Metzger, 2010) to
change the percentage cover of each land cover type in each
of the five waterbody sub-catchments. Percentage changes
were based on the analysis of land cover trends from 1990–
2019, the different SSP narratives and the local knowledge
of stakeholders to ensure the total possible land cover for the
catchment could not be exceeded and the changes in land
cover types were realistic. The percentage cover was con-
verted to hectares (Ha) for each land cover type in each of the
waterbody sub-catchments (Sect. S4, Figs. S4–S8). Projected
land cover change values in comparison to 2019 land cover
for the entire catchment are provided in Sect. S4 Fig. S9.
Section S4 includes a detailed description of how land cover
values were derived.

A combination of monitoring data, processed-based model
outputs and literature were used to represent baseline con-
ditions of system states. Where supporting continuous data
were available, we fitted truncated normal prior distributions
by calculating the mean and standard deviation from avail-
able values. Truncated normal distributions were fitted to
avoid negative values, where appropriate. Secondly, where
longer data records were available, we used a built-in Ge-
NIe function to fit a custom prior distribution (histogram)
to time-series data. Where available data were limited to a
single deterministic value and statistical moments could not
be calculated, we applied scenario modelling using the di-
verse coupled future pathways as a best available method for
representing uncertainty. Equations linked the chain of cause
(parent) and effect (child) relationships from future change
nodes to catchment system nodes, to capital resource nodes
and, finally, to capital output nodes. The model was updated
using the default GeNIe software hybrid forward sampling
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algorithm. The algorithm computes 10 000 samples from the
prior probability distributions of parentless nodes, which it
then used to generate samples in child nodes of the prior par-
ent node distribution(s), generating probability distributions.
Summary statistics (mean, standard deviation, minimum and
maximum) were derived from the probability distributions
for each node, which were compared for different current and
future pathway scenarios.

Continuous nodes were discretised into four states, re-
silient, low risk, moderate and high risk, based on the expert
knowledge of stakeholders. A manual discretisation method
(Beuzen et al., 2018) was used for nodes where state thresh-
old values were defined by stakeholders and documented
(e.g. asset and environmental licences). Where defined val-
ues were not available, we used a combination of manual and
unsupervised equal interval discretisation methods (Aguilera
et al., 2011; Beuzen et al., 2018; Chen and Pollino, 2012).
Manual methods set the resilient-state threshold value based
on current conditions and an upper limit value as an unlikely
value to exceed, in most cases, an infinity value. The “uni-
formize” function in GeNIe allowed for equal widths for
low-, moderate- and high-risk-state threshold values. We pre-
sented a dual representation of continuous nodes using a dis-
cretised child node to support the communication of the re-
sults using both summary statistics (median and standard de-
viation) available in continuous outputs and the probability
of model outputs falling into agreed risk classes available in
discrete variables

For all capital and many capital resource nodes identified,
either no defined metric or supporting data were available.
To measure the resilience of capital and capital resource val-
ues, we designed a novel approach using nested IF statement
equations whereby each discretised state in a parent node,
from resilient to high risk, was assigned a value of zero,
one, two or three, and the scores for each child node were
summed. For example, if a parent node was within a resilient-
state threshold, a value of zero was assigned. As multiple par-
ent nodes were associated with capital and capital resource
variables, the sum of the IF statement was used to deter-
mine their overall state. The IF statement indexing method
follows the “one out, all out” approach applied to the eval-
uation of Good Ecological Status in the EU Water Frame-
work Directive, as described in Carvalho et al. (2019). The
one out, all out approach adopts the precautionary principle
to prevent masking of undesirable outcomes when averaging
scores and provides an easy and transparent way of measur-
ing overall variable states. Discretising and indexing contin-
uous nodes represent the probability of the states for capitals
and their associated resource nodes, which can be compared
across different future scenarios. A detailed example of the
IF statement indexing method is provided in Sect. S5.

2.2.4 Stage 4: evaluate the model

The BN model structure was validated using expert opin-
ion (Marcot et al., 2006) during the engagement focus group
sessions (Fig. 2, panel B) with stakeholders from SEPA
and Scottish Water. We then presented the BN model to
additional stakeholders during two workshops for valida-
tion (Fig. 2, panel C). These additional stakeholders were
chosen to represent the views of other sectors and provide
catchment-specific knowledge and expertise. A total of 10
stakeholders participated across the two workshops, six of
whom did not participate in the focus groups (see Sect. S2,
Table S1 for additional codes and associations). The first
workshop included eight attendees and the second included
seven attendees. We used the credibility, salience and legiti-
macy evaluation criteria (Falconi and Palmer, 2017) to mea-
sure the success of the participatory approach at each stage
of the BN model construction.

Model performance was evaluated using a goodness-of-fit
method (Aguilera et al., 2011) using 52 bi-monthly observed
RP concentrations in micrograms per litre (µg L−1) collected
in sub-catchment 6200 collected between 2017–2019. We fit-
ted a histogram using the custom function tool in GeNIe to
create an “observed phosphorus concentration (µg/l) 6200”
variable, which was both parentless and childless. We eval-
uated sub-catchment 6200, as this is the catchment outlet
for all sub-catchments. Computing the Current model sce-
nario, we compared the median, standard deviation and dis-
cretised class probabilities – informed by the WFD classifi-
cation boundaries for the sub-catchment – for both the mod-
elled RP concentrations and observed RP variables to evalu-
ate model goodness of fit.

A bias (%) method (Eq. 1) applied by Glendell et
al. (2022), with a departure of±50 % from observations con-
sidered behavioural, was used to further evaluate model per-
formance as

% bias=
Xsim−Xobs

Xobs
, (1)

where Xsim is the modelled RP concentration (µg L−1), and
Xobs is the observed RP concentration (µg L−1).

A one-at-a-time parameter sensitivity analysis was con-
ducted to determine which input variables contributed the
greatest variability to model outputs (Wöhler et al., 2020;
Hamby, 1995). We used the target variable RP concentrations
(µg L−1) at the 6200 catchment outlet to determine the sen-
sitivity of the model to diffuse pollution phosphorus loads
and point source wastewater phosphorus loads. The sensitiv-
ity analysis compared the median RP concentration (µg L−1)
for the current scenario against the ±20 % difference for dif-
fuse arable, pasture and septic tank P sources and wastewater
P sources while holding other input values constant.
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2.2.5 Stage 5: test model scenarios

We tested model scenarios by presenting scenario outputs
during the second workshop. After presenting model outputs
during the series of workshops, the iterative cycle returns to
the first stage of discussing the model aim and objectives.
A seventh meeting (Fig. 2, panel A) was conducted by the
project team to provide a final evaluation of the BN model
based on the aims and objectives set out at the beginning of
the participatory approach.

3 Results

3.1 Model structure

Focus groups (Fig. 2, panel B) and workshops (Fig. 2, panel
C) provided the opportunity for stakeholders from wider sec-
tors to build and evaluate the graphical BN model structure.
An initial conceptual model structure was presented as a sys-
tem diagram of the key nodes included in the BN model
(Fig. 4), with arrows representing cause-and-effect relation-
ships between nodes. Stakeholder feedback on the represen-
tativeness of the model structure of the Eden catchment is
also presented in Fig. 4. A detailed visualisation of the model
is provided in Sect. S3, Fig. S2.

Despite the majority of stakeholders describing the BN
model structure as “mostly representative” of the Eden catch-
ment system, other participants were less convinced. To in-
crease consensus, the wider group of stakeholders were taken
through stages 1–4 of the participatory approach to discuss
what the BN model should aim to achieve and how the model
structure could be improved.

Stakeholders highlighted that consideration of the food
production system and its resilience to the impacts of future
change was excluded from the model, as mentioned by LM6:

Ultimately we’ve also got to remember the posi-
tives of what land managers are doing for the rural
countryside and what they bring and the benefits to
the countryside, and ultimately they are producing
food for a nation. (LM6)

To improve representation, nodes such as crop cover,
yields, fertiliser costs and farm margins were added to the
model structure. The impacts of future climatic change, such
as increased drought and fertiliser price shocks – due to po-
tential future shortages in rock phosphate – were established
as factors that could impact the food production system in
the catchment.

Phosphate fertiliser is going to be a decreasing
resource because there are only 50–100 years of
phosphorus rock reserve left in the world. (EP1)

The model structure was adapted and presented back to
the wider stakeholder group during a second workshop. Up-

dating the model structure was seen to improve model repre-
sentation of the Eden catchment system and the influence of
future change, as seen in the stakeholder feedback from the
second workshop (Fig. 4). Participants highlighted that the
model structure helped them to conceptualise the impacts fu-
ture change might bring to their sector and the catchment.

It is a good way of understanding [the catchment
system] and maybe farmers do need to think out-
side to box a bit more and think of the impact it
[agriculture] is having. (LM6)

I think it’s also . . . a first chance that many of us on
the call are really having our eyes open to what the
next 30 years might look like in terms of political,
social and climate changes. (WW1)

3.2 Catchment resilience – capital outputs

After improving the model structure, scenarios were carried
out to measure the impact of future change on the catchment
system. Model outputs provided an overview of the condi-
tions of the five key capitals represented within the catchment
system. Capital outputs for four diverse scenarios – Current
conditions, Business As Usual to 2050, Green Road extreme
low precipitation (GR ExLP) to 2050 and Fossil-Fuelled De-
velopment extreme high precipitation (FFD ExHP) to 2050 –
are presented (Fig. 5).

We found that under current conditions, all capitals were
mainly within a low-risk state. Results can be interpreted as
follows: for natural capital, 51 % of the 10 000 BN model
scenarios were within a low-risk state, 49 % were within a
moderate-risk state and 0 % were within resilient or high-risk
states.

In the future BAU scenario – which assumes annual pre-
cipitation change rates associated with RCP 6 and a contin-
uation of current trends in population and land cover change
until 2050 – risk to natural capital shifts from low to mod-
erate risk, 64 % of simulations were within a moderate-risk
state. Social, manufactured, financial and intellectual capi-
tals remained predominantly within low-risk states; however,
there was an increase in observations within moderate risk
compared to current conditions.

In the GR ExLP scenario – which assumes the Q5 value for
summer precipitation anomaly projections associated with
RCP 2.6, lower population growth and a reduction in pasture
land cover – we observed an increase towards resilience in all
capitals. For intellectual capital, the majority of samples were
within a resilient state (75 %). For natural and financial capi-
tal, there was a shift from moderate to low risk, compared to
current conditions. An increase in observations within a re-
silient state was evident for social and manufactured capitals
compared to current conditions.

In the FFD ExHP scenario – which assumed the 95 % ex-
ceedance value for winter precipitation anomaly projections
associated with RCP 8.5, population growth increased urban-
isation and a shift from natural to agricultural land cover – an
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Figure 4. Conceptual Bayesian network model structure and feedback on model representativeness of the Eden catchment before (a), and
the updated model structure (b) with stakeholder feedback from workshop 1 (c) and workshop 2 (d).
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Figure 5. Probability of resilient high-risk states for each capital under diverse future pathway scenarios.

increase in risk was observed for all capitals. The risk to nat-
ural capital shifted predominantly to moderate risk (98 %),
with a small proportion of observations within a high-risk
state (1 %). Social, manufactured, financial and intellectual
capitals all shifted from low to moderate-risk states com-
pared to current conditions.

3.3 Catchment resilience – capital resource outputs

The cause-and-effect structure of the BN model enabled the
investigation of catchment resilience beyond the overview of
capital states. Further investigation of catchment resilience is
achieved using a manual sensitivity analysis to identify par-
ent nodes with the greatest influence on overall capital states.
Using the example of natural capital, Fig. 6 presents a visual-
isation of the state of all natural capital resource nodes. Out-
puts are presented for the four diverse scenarios of current
and future conditions in the catchment.

Under current conditions, surface water quality, surface
water flows and air quality were all most likely to be within
a low-risk state. Outputs highlighted that 85 % of soil qual-
ity observations were within a moderate risk. Groundwater
quality is 100 % resilient across all four scenarios.

In the future BAU scenario until 2050, the majority of ob-
servations for surface water quality, surface water flows and
air quality remained within a low-risk state; however, there
was a shift from low to moderate-risk states compared to cur-

rent conditions. An increase in high-risk observations (23 %)
was evident for soil quality, which remained predominately
within a moderate-risk state.

An improvement towards resilience was evident for sur-
face water quality, surface water flows and air quality nodes
in the GR ExLP scenario until 2050. Soil quality remained
mainly within a moderate-risk state, despite a shift from
moderate- to low-risk observations in comparison to current
conditions.

Increasing risk was evident in the FFD ExHP scenario for
surface water quality, surface water flows, air quality and
soil quality. Surface water quality, surface water flows and
air quality shifted from predominantly low to moderate risk
in comparison to current conditions. High-risk observations
were evident in both surface water quality (12 %) and surface
water flows (13 %). Soil quality conditions shifted to 89 % of
observations within a high-risk state

3.4 Sub-catchment system resilience

Capital (Fig. 5) and capital resource (Fig. 6) outputs are rep-
resentative of the entire catchment condition. A deeper in-
vestigation of catchment resilience was achieved through in-
vestigation at the sub-catchment scale. A visual representa-
tion of surface water quality – specifically for RP concen-
trations (µg L−1) at the sub-catchment scale – is presented
in Fig. 7 using probabilities (%) for discrete resilience/risk
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Figure 6. Probability of resilient high-risk states for each capital resource under diverse future pathway scenarios.

states under both current and diverse future scenarios. Me-
dian RP concentrations (µg L−1) derived from continuous
model outputs are also presented for each of the different
sub-catchments for the different future scenarios in Fig. 7.

Simulating current conditions (Fig. 7a), low risk was the
most probable state for RP concentrations in waterbody sub-
catchments 6200 (median RP: 157.63 (µg L−1), 41 % low
risk), 6201 (median RP: 146.32 (µg L−1), 46 % low risk) and
6205 (median RP: 101.04 (µg L−1), 52 % low risk). Mod-
elled RP concentrations in waterbody sub-catchments 6202
and 6206 were predominately within a resilient state.

As the discretisation of surface water quality at the sub-
catchment scale is determined by the WFD high to poor eco-
logical status thresholds for RP, discrete outputs can also
be interpreted as follows: in waterbody sub-catchment 6200,
the majority of the 10 000 simulations for RP concentrations
(µg L−1) were within a low-risk state (41 %) or moderate
WFD ecological status boundary (78–191 µg L−1).

In the future BAU scenario (Fig. 7b), surface water quality
deteriorated in waterbody sub-catchment 6200, with moder-
ate risk being the most probable state (42 %) compared to
current conditions, with an increase in median RP concentra-
tions to 168.30 µg L−1. Despite staying mainly within a low-
risk state, a shift towards moderate risk in both waterbod-
ies and increased median RP concentrations were observed
in sub-catchments 6201 and 6205. In waterbodies 6202 and

6206, the probability of resilience increased, which was evi-
dent in decreased in median RP concentrations in both sub-
catchments.

Increased risk was evident for waterbody sub-catchments
6200 and 6201 in the GR ExLP until 2050 (Fig. 7c). There
was equal probability of low and moderate risk (40 %) in
waterbody sub-catchment 6200. Using a precautionary ap-
proach, the waterbody is represented as moderate risk. Wa-
terbody sub-catchment 6201 remained predominantly within
a low-risk state (44 %); however, median RP concentrations
(152.32 µg L−1) increased compared to current conditions.
Improvement towards resilience was evident in waterbody
sub-catchment 6205 compared to current conditions, de-
spite a low risk being the most probable state (48 %). Wa-
terbody sub-catchments 6202 and 6206 remained predomi-
nantly within a resilient state.

In the FFD ExHP scenario (Fig. 7d), waterbody sub-
catchments 6200 and 6201 both shifted from low to mainly
moderate-risk states (46 % and 52 %, respectively) compared
to current conditions. Waterbody sub-catchment 6205 re-
mained predominantly within a low-risk state (56 %), while
waterbody sub-catchments 6202 and 6206 remained predom-
inantly resilient. Increases in median RP concentrations in
all waterbodies demonstrated an increase in risk compared
to current conditions.
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Figure 7. Probability of resilient high-risk states and median reactive phosphorus concentrations in micrograms per litre in each waterbody
sub-catchment under the (a) Current conditions scenario, (b) future Business as Usual scenario to 2050, (c) future Business as Usual scenario
to 2050, (c) Green Road extreme low precipitation scenario to 2050 and (d) Fossil-Fuelled Development extreme high precipitation scenario
to 2050. Acknowledgements: catchment boundary provided by the National River Flow Archive. River network provided by the EU-Hydro
River Network database (Gallaun et al., 2019). Map created in ArcGIS Pro (Esri Inc., 2021).
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Continuous outputs determined median RP loads (kg d−1)
from wastewater effluent and diffuse (arable, pasture, urban
and septic tanks) sources at each waterbody sub-catchment
(see Sect. S6, Figs. S10–S13). Using the example of water-
body sub-catchment 6200, median RP loads for both cur-
rent and diverse future pathway scenarios are presented in
Fig. 8. Currently, diffuse sources contributed the majority of
RP (27.11 kg d−1) in waterbody sub-catchment 6200, com-
pared to wastewater effluent sources (23.26 kg d−1). The to-
tal RP load was 50.37 kg d−1.

Source proportions shifted under the future scenarios with
wastewater effluent sources being the main contributor in the
future BAU and FFD ExHP scenarios. Total median RP loads
(kg d−1) increased in the future BAU (54.80 kg d−1) and FFD
ExHP (88.22 kg d−1) scenarios compared to current condi-
tions. In the GR ExLP scenario, a reduction in total median
RP loads (38.08 kg d−1) was evident, and diffuse sources re-
mained the main source of RP (19.50 kg d−1).

The model structure enabled further investigation of RP
sources. Using the example of wastewater effluent loads
in waterbody sub-catchment 6200, Fig. 9 presents median
RP loads (kg d−1) at Cupar wastewater treatment works
(WwTWs) in sub-catchment 6200 for the current and fu-
ture scenarios. Currently, Cupar WwTW contributed a me-
dian RP load of 5.51 kg d−1. An increase in median RP loads
was evident in the future BAU (8.93 kg d−1) and FFD ExHP
(16.35 kg d−1) scenarios compared to current conditions. In
the GR ExLP scenario, RP loads decreased (5.36 kg d−1)
compared to current conditions.

3.5 Model evaluation

We evaluated the model performance by comparing the mod-
elled current RP concentrations (µg L−1) with a simula-
tion of observed RP concentrations (µg L−1) at the catch-
ment outlet in waterbody sub-catchment 6200 (Table 1).
The model underestimated the median RP concentration
(157.63 µg L−1) at the catchment outlet compared to the ob-
served simulated median RP concentration (168.82 µg L−1).
A greater standard deviation was observed in the model sim-
ulation (361.7 µg L−1) compared to the observed simulation
(109.3 µg L−1).

Based on the discrete output (Fig. 10), the model under-
estimated the RP concentration compared to the observed
simulation. The most probable state for RP concentrations
in the observed simulation was moderate risk (44 % prob-
ability) – or poor WFD status – compared to the modelled
scenario which estimated low risk – or moderate ecological
status – (41 % probability). The modelled RP concentrations
were more widely distributed, which is evident in a 2 % prob-
ability of high risk – or bad ecological status – compared with
0 % in the observed simulation.

When evaluating the goodness of fit using the bias (%)
correction (Table 2), 43 % of observations were within the
±50 % behavioural threshold, 31 % of simulated values were

above the 50 % acceptable threshold and 26 % were below
the 50 % acceptable threshold.

The results of the parameter sensitivity analysis are pre-
sented in Table 3. Changes in point source RP loads have a
greater influence on RP concentrations (µg L−1) compared
to diffuse sources in sub-catchment 6200 in the current sce-
nario. A 20 % increase in point source loads resulted in an
8.4 % increase in RP concentrations, while a 20 % reduction
resulted in an 8.1 % reduction in concentrations. Of the dif-
fuse sources, arable sources had the greatest influence on RP
concentration with a 20 % increase yielding a 4.9 % increase
in concentration, while a 20 % reduction resulted in a 6.5 %
reduction in concentrations.

4 Discussion

4.1 Participatory process for BN model construction

Düspohl (2012) highlighted the scarcity of literature evalu-
ating participatory BN modelling processes. To address this
gap, we evaluate the ability of our BN model to increase
stakeholder understanding of catchment system resilience to
the cumulative impacts of future change using the credibil-
ity, salience and legitimacy criteria set out by Falconi and
Palmer (2017) throughout our discussion.

The first stage of our participatory approach – discussing
model aims and objectives – helped understand the knowl-
edge gaps of the One Planet Choices project team, which was
critical when developing a credible modelling process. The
first knowledge gap identified by the project team required
the BN model to provide a systems-thinking approach that
mapped the complex socio-ecological interactions within the
Eden catchment. Creating and evaluating the conceptual BN
model structure in stages 2 and 4 of the participatory pro-
cess were important in ensuring the perspectives of stake-
holders across sectors were considered when mapping the
catchment system. Our findings presented in Fig. 4 provide
evidence that stakeholders viewed the BN model structure as
“mostly representative” of the Eden catchment system. We
believe achieving a “very representative” structure was lim-
ited by our inability to consider all human and non-human
systems in the catchment. The model was strategic in includ-
ing the critical wastewater, land management and water re-
source systems within five waterbody sub-catchments. We
applied an iterative approach to include the food production
system, based on the input of additional stakeholders to im-
prove the model representativeness of the model; however,
there were limitations on time and resources to consider all
catchment systems. Consulting the needs of the project team
as end users of the model helped reach agreement on the
model structure and justify that it was fit-for-purpose.

Using a BN model as an appropriate tool for map-
ping complex socio-ecological systems was validated by the
project team when evaluating the aim and objectives of the
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Figure 8. Median reactive phosphorus source loads (kg d−1) in waterbody sub-catchment 6200 for Current, future Business as Usual (BAU),
Green Road extreme low precipitation (GR ExLP) and Fossil-Fuelled Development extreme high precipitation (FFD ExHP) scenarios.

Table 1. Summary statistics of observed and modelled current reactive phosphorus concentrations (µg L−1) at the Eden catchment outlet
waterbody sub-catchment 6200.

Summary statistics Observed simulated Model-simulated
reactive phosphorus (µg L−1) reactive phosphorus (µg L−1)

6200 outlet 6200 outlet

Median (µg L−1) 168.82 157.63
Standard deviation 109.34 361.65

Figure 9. Median reactive phosphorus source loads (kg d−1) at
Cupar wastewater treatment works for Current, future Business as
Usual (BAU), Green Road extreme low precipitation (GR ExLP)
and Fossil-Fuelled Development extreme high precipitation (FFD
ExHP) scenarios.

Figure 10. Comparison between probabilities of observed and mod-
elled reactive phosphorus concentration in micrograms per litre at
Eden catchment outlet in waterbody sub-catchment 6200.

model at a final project meeting after testing model scenarios
in stage 5. Using the iterative five-stage process enabled the
aim and objectives of the model to be evaluated by the project
team, further ensuring the modelling approach was credi-
ble. To achieve legitimacy, participatory modelling should in-
clude a process of iteration that allows feedback from partic-
ipants. The flexibility of BN models allows the model struc-
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Table 2. Bias (%) of modelled vs. observed reactive phosphorus
concentrations (µg L−1) at the Eden catchment outlet waterbody
sub-catchment 6200.

Bias(%) Probability (%)

Under (−50 %) 26 %
Optimal 43 %
Over (+50 %) 31 %

ture to be updated in real time, which was effective during fo-
cus group sessions with sub-system stakeholders groups us-
ing the GeNIe software. Future regular updating of the model
structure and its assumptions should be considered to address
the issue of unforeseen future shocks, an example being an
abrupt geopolitical shock and its impacts on global food and
fertiliser prices.

When presenting the full model, as is in Sect. S3, Fig. S2,
it was difficult for stakeholders to follow and comment on
important variables and cause-and-effect relationships. We
therefore used simplified versions, such as in Fig. 4, to visu-
ally represent the model. The simplified models are more ef-
fective for eliciting stakeholder opinions on the model struc-
ture in a workshop setting, which were used to update the
model in GeNIe. Recording and analysing participant feed-
back during each workshop helped build a greater evidence
base that the BN model was effective in mapping the com-
plex socio-ecological catchment system. The example quote
by LM6 above demonstrates that the BN model helped par-
ticipants consider how their sector impacted the system and
the need to think beyond their own sector’s role within the
catchment system. Our findings support Voinov and Bous-
quet (2010), who considered BN models as a tool for under-
standing complex systems and facilitating knowledge shar-
ing.

4.2 Measuring catchment-scale resilience

In a review of BN applications in water resource manage-
ment, Phan et al. (2019) identified the majority of appli-
cations solely focussed on water quality management. Few
studies consider multiple concerns such as surface water
quality, surface water flows, groundwater quality, air qual-
ity and soil quality within one model structure. Our findings
presented in Figs. 5 and 6 demonstrate the ability to apply
a participatory BN model that measures the impacts of both
current and future conditions on multiple capitals and their
associated resources. Presenting the multiple capital outputs
addressed the knowledge needs of stakeholders in providing
a holistic catchment-scale approach.

Measuring the cumulative impacts across diverse coupled
representative concentration and Shared Socio-economic
Pathways to a 2050 time horizon reduced the possibility of
over- or underestimation of future impacts on water environ-
ments (Holman et al., 2016), addressing a further stakeholder

knowledge need (Adams et al., 2022). Moe et al. (2019) is
an example where both climatic and socio-economic change
is considered for the time-horizon 2050–2070 using a dis-
crete BN model. We build on the application of BN mod-
els that investigate the impacts of future climatic and socio-
economic change by utilising continuous nodes within the
hybrid equation-based BN model structure to measure both
climatic and socio-economic stressors, which are rare in the
literature (Moe et al., 2021).

Transferring the data and stakeholder knowledge into the
hybrid equation-based structure was enabled by the ability
of BN models to integrate multiple sources of data (Pham et
al., 2021). The capacity of BN models to include continuous
nodes is seen as a limitation (Uusitalo, 2007; Sperotto et al.,
2017); however, we find the opposite to be true in our study.
Despite limited monitoring data available in the Eden catch-
ment, our BN model was able to simulate distributions to
quantify nodes using summary statistics from other process-
based model outputs. For example, only mean and standard
deviation values were available for wastewater flow nodes,
equation nodes enabled distributions to be created, providing
10 000 simulated outputs which could be discretised based
on flow license information to represent risk. The variable
log (Sect. S3, Table S2) was used as a platform to record
decisions made and data collected during focus groups and
workshops, increasing model salience. Ensuring stakehold-
ers were involved in the process of data identification built
end-user trust and increased model credibility.

Investigating the influence of cumulative future change
impacts on specific areas of the catchment system assisted
stakeholders to engage with the complexity of understanding
socio-ecological systems and the impacts of diverse future
pathways. Typical methods for identifying nodes that have
the greatest influence on model outputs include causal prob-
abilistic inference (Hobbs, 1997; Tang et al., 2016) and sen-
sitivity analysis (Troldborg et al., 2022). Achieving typical
methods requires discretisation of continuous nodes in the
hybrid BN model network, which leads to imprecision (Bor-
suk et al., 2012) and loss of information (Barton et al., 2008;
Ames et al., 2005). Instead, we devised a manual sensitiv-
ity analysis for investigating specific model nodes that had
the greatest influence on catchment system resilience, with-
out the need to trigger network discretisation. Our manual
approach involved dual representation of continuous nodes,
presenting both probability function outputs and creating a
discretised child node.

Manual backward investigation of the model created sto-
rylines from the capital outputs to specific sub-catchment
nodes, an example being our presented results from Figs. 5
to 9. In our experience, we found the combination of both
continuous and discrete model outputs to be more meaning-
ful to stakeholders during project meetings and workshops.
The ability to discretise surface water quality nodes within
each sub-catchment based on specific WFD ecological status
threshold values provided users with an improved represen-
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Table 3. Sensitivity analysis of selected diffuse and point source input variables and their influence on reactive phosphorus concentrations in
sub-catchment 6200.

Variable

Diffuse arable Diffuse pasture Diffuse septic Wastewater
phosphorus phosphorus tank phosphorus phosphorus

sources sources sources sources

Scenario Current median reactive phosphorus
concentration (µg L−1)

157.63

+20%
Source load increase
median reactive phosphorus concentra-
tion (µg L−1)

165.82 160.04 163.41 172.21

Change (%) 4.9 1.5 3.5 8.4

−20 %
Source load reduction median reactive
phosphorus concentration (µg L−1)

148.15 154.39 153.49 145.94

Change (%) −6.5 −2.1 −2.7 −8.1

tation of both current and future uncertainty. Transparency
in the selection of discretisation methods and discretisation
boundary values is important, as the discretisation of contin-
uous nodes leads to loss of information. To achieve trans-
parency, we applied both manual and unsupervised equal in-
tervals where appropriate to discretise nodes in the BN model
(Sect. S3, Table S3). For decision-makers faced with the is-
sues of system complexity and uncertainty, generating useful
information that effectively communicates scientific outputs
is a challenge (Liu et al., 2008; Callahan et al., 1999). Dis-
cretised outputs of continuous nodes provided stakeholders
with a way of quantifying both the resilience of the catch-
ment system and the uncertainty in the modelled outputs.

Continuous outputs quantified the impacts of future
change on sub-catchment-specific nodes. For example, the
ability to quantify RP concentrations (µg L−1) at each sub-
catchment waterbody helped stakeholders conceptualise the
extent to which water quality in the catchment could be im-
pacted in the future under diverse pathway scenarios. Inves-
tigations of future scenarios highlighted that in the future
BAU scenario (Fig. 7b) median RP concentrations (µg L−1)
increased compared to current conditions in sub-catchments
6200, 6201 and 6205 and decreased in sub-catchments 6202
and 6206. Figure 8 for sub-catchment 6200 (and Figs. S10–
S13) shows increases in total RP loads (kg d−1) in sub-
catchments 6200, 6201 and 6205, while the total RP loads
in sub-catchment 6202 and 6206 decreased, particularly for
wastewater sources. The changes in total RP can be seen
in the source apportionment between wastewater and dif-
fuse sources, as well as the trends in climate, population
and land cover change. Wastewater sources increase in sub-
catchments where the population is projected to increase,

while diffuse sources are expected to increase in all sub-
catchments.

In the Green Road and Fossil-Fuelled Development ex-
treme precipitation scenarios, the influence of precipitation
change and catchment processes are evident. Total RP loads
(kg d−1) are reduced in all sub-catchments in the GR ExLP
scenario due to reductions in diffuse runoff. The lower like-
lihood of wastewater spills contributing untreated effluent to
wastewater source loads are also reduced in the GR ExLP
scenario. RP concentrations (µg L−1) were greater in the GR
ExLP scenario compared to the current scenarios in sub-
catchments 6200 and 6201, despite the reductions in total RP
loads in both sub-catchments (Figs. 8 and S10–S13). We be-
lieve these concentration increases are due to the reduction in
river flow volumes in the extreme low precipitation rate sce-
nario, meaning that regulating diluting functions are absent
and RP concentrations increase. We are unable to investigate
the influence of flows in the sub-catchments where RP con-
centrations decreased compared to current conditions (6202,
6205 and 6206), as observed river flow volume data were not
available for all sub-catchments (see Table S2 for more in-
formation on how surface water quality is measured absence
of river flow volume data).

In the FFD ExHP scenario, increases in RP concentrations
(µg L−1) compared to current conditions are evident in all
sub-catchment waterbodies, which is attributed to increases
in total RP loads (kg d−1). Increased precipitation rates in-
crease diffuse runoff, wastewater effluent flows and the like-
lihood of effluent spills. For sub-catchments 6200 and 6201,
despite increases in river flow volumes from increased pre-
cipitation, RP source loads into the waterbodies were greater
than the dilution capacity.
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Despite 46 % of the bias (%) observations falling within
the ±50 % acceptable model performance (Table 2), re-
sults from the goodness of fit evaluation demonstrate that
the model underestimated current median RP concentrations
(µg L−1) at the catchment outlet in sub-catchment 6200 and
the probable risk class. Simulated concentrations were more
widely distributed, as compared to the observed data, as is
evident in the 2 % of observations within a high-risk state
for simulated concentrations, compared to 0 % for observed
concentrations. A wider distribution in simulated RP val-
ues using a hybrid BN model was also found by Glendell
et al. (2022). We concur with their considerations that both
the quality and the low temporal resolutions of observed data
may be responsible for this discrepancy.

The BN model was considered an appropriate method
for analysing the resilience of freshwater catchments by the
project team at the final evaluation meeting. Our participa-
tory process and methods can be replicated to create future
BN models that incorporate diverse stakeholder knowledge
to address end-user needs and support interdisciplinary re-
silience assessments. Our findings enabled stakeholders to
gain new perspectives on how future scenarios may influence
their specific sectors (Fig. 9) and how their sector impacted
other sectors and environmental conditions within the catch-
ment system (Fig. 7), promoting social learning as described
by Basco-Carrera et al. (2017). Identifying specific aspects
of the catchment system that are least resilient to the impacts
of future change will allow decision-makers to target both
the areas of the catchment where adaptive management is
required and the extent of action required in the face of po-
tential future shocks and changes. Recognising the influence
that all sectors have on water quality issues in the catchment
highlighted the need for collaborative action.

4.3 Limitations and outlook

It is important to highlight that the BN model was effective as
a strategic tool to meet the needs of participating stakehold-
ers to investigate the resilience of catchment systems. Com-
pared to other modelling options – such as process-based
modelling – BN models could be both a resource- and cost-
effective option to conduct resilience assessments. Despite
being effective as a strategic resilience tool, the BN model is
limited in its ability to provide a detailed resilience assess-
ment due to the lack of both temporal and spatial scales built
into the model. For example, in this study, we considered
future precipitation change anomalies using the UKCP18
25 km2 grid data which are limited compared to the possible
use of UKCP18 2.2 km2 grid precipitation change anomaly
data. Temporal and spatial scales could be applied to build
on dynamic BN model applications such as in Molina et al.
(2013), who assessed the impacts of climatic and land-use
change on groundwater systems over 5-year time slices cov-
ering 30 years (2070–2100) or spatial BN model applications
such as in Troldborg et al. (2022), who applied a spatial BN

model to investigate field-level pesticide pollution risk at a
small catchment scale. Applying these methods would allow
for assessment of their effectiveness compared to process-
based modelling to provide a detailed resilience assessment.

Having multiple workshops created difficulties when try-
ing to achieve consistent participant numbers across all
workshops. Eliciting formal feedback at the end of each
workshop for the catchment stakeholder participants was also
challenging. For future improvement, we recommend testing
the inclusivity of meetings or further focus groups and work-
shops, with wider catchment stakeholders, to give structured
formal feedback sessions on the model structure and outputs.

Using our findings, we will assess the ability of the BN
model to inform the identification of adaptive management
options and test their effectiveness in increasing the re-
silience of the Eden catchment in future research. With the
same group of workshop participants, we will use the out-
puts presented in this study to test if they inform innovative
and collaborative management options. The BN model struc-
ture will be updated to test the effectiveness of management
scenarios in parallel with both the current and future scenar-
ios.

5 Conclusion

Using the Eden catchment case study, our research applied
participatory methods to create a Bayesian network (BN)
model that addressed the needs of stakeholders to increase
their understanding of catchment-scale resilience to the cu-
mulative impacts of future change. We identified four stake-
holder knowledge needs that the BN model would aim to ad-
dress: (1) ensuring systems-thinking by mapping the socio-
ecological interactions in the catchment, (2) measuring the
impacts of future Business As Usual (BAU) change and
shocks of extreme events and future pathways to a 2050 time
horizon, (3) using a holistic capitals approach to measure the
overall future catchment health, and (4) identifying specific
aspects of the catchment system that are least resilient to the
cumulative impacts of future change.

Applying an iterative five-stage participatory process to
construct the BN model achieved a systems-based under-
standing of socio-ecological interactions within the catch-
ment. The model provided an effective tool for understand-
ing system complexity and enabling knowledge sharing be-
tween stakeholders. Our hybrid equation-based BN model
facilitated investigation of diverse future pathway scenar-
ios, providing stakeholders with a strategic tool to measure
the cumulative impacts of both climatic and socio-economic
changes until 2050.

Our findings provided a holistic assessment of catchment-
scale resilience, demonstrating the possibility to apply a par-
ticipatory BN model to consider the impacts of both current
and future conditions on multiple capitals and their associ-
ated resources. The BN model structure enabled identifica-
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tion of specific areas of the catchment which were least re-
silient to future change pathways, enabling stakeholders to
recognise the risks to their individual sectors while also un-
derstanding their influence on the wider system and sectors.

We found that a BN model is a credible, salient and legiti-
mate strategic tool for addressing the stakeholder knowledge
needs about catchment resource resilience. Improvements to
the BN model could involve the addition of spatial and tem-
poral scales to take the tool beyond a strategic resilience tool.
Future research will test the ability of the BN model to in-
form the identification and test the effectiveness of adaptive
management options identified by stakeholders.
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