Articles | Volume 27, issue 10
https://doi.org/10.5194/hess-27-2051-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-27-2051-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Adaptively monitoring streamflow using a stereo computer vision system
Nicholas Reece Hutley
CORRESPONDING AUTHOR
School of Civil Engineering, The University of Queensland, Brisbane
4072, Australia
Ryan Beecroft
School of Civil Engineering, The University of Queensland, Brisbane
4072, Australia
Daniel Wagenaar
Xylem Water Solutions, Newcastle 2292, Australia
Josh Soutar
Xylem Water Solutions, Brisbane 4174, Australia
Blake Edwards
Leading Edge Engineering Solutions, Albury 2640, Australia
Nathaniel Deering
School of Civil Engineering, The University of Queensland, Brisbane
4072, Australia
Alistair Grinham
School of Civil Engineering, The University of Queensland, Brisbane
4072, Australia
Simon Albert
School of Civil Engineering, The University of Queensland, Brisbane
4072, Australia
Related authors
No articles found.
Martino E. Malerba, Blake Edwards, Lukas Schuster, Omosalewa Odebiri, Josh Glen, Rachel Kelly, Paul Phan, Alistair Grinham, and Peter I. Macreadie
Biogeosciences, 22, 5051–5067, https://doi.org/10.5194/bg-22-5051-2025, https://doi.org/10.5194/bg-22-5051-2025, 2025
Short summary
Short summary
The Pondi is a cost-effective, lightweight logger designed for long-term monitoring of carbon dioxide, methane, and nitrous oxide emissions in both terrestrial and aquatic ecosystems. It addresses key challenges in greenhouse gas monitoring by providing an automated, low-cost, solar-powered solution with cloud connectivity and real-time analytics. Its robust design enables deployment in diverse environmental conditions, supporting large-scale, high-resolution emission assessments.
Cited articles
Adelson, E. H., Burt, P. J., Anderson, C. H., Ogden, J. M., and Bergen, J.
R.: Pyramid Methods in Image Processing, RCA Eng., 29, 33–41, 1984.
Albert, S., Kvennefors, C., Jacob, K., Kera, J., and Grinham, A.:
Environmental change in a modified catchment downstream of a gold mine,
Solomon Islands, Environ. Pollut., 231, 942–953,
https://doi.org/10.1016/j.envpol.2017.08.113, 2017.
Albert, S., Deering, N., Tongi, S., Nandy, A., Kisi, A., Sirikolo, M.,
Maehaka, M., Hutley, N., Kies-Ryan, S., and Grinham, A.: Water quality
challenges associated with industrial logging of a karst landscape:
Guadalcanal, Solomon Islands, Mar. Pollut. Bull., 169, 112506,
https://doi.org/10.1016/J.MARPOLBUL.2021.112506, 2021.
Baker, S., Scharstein, D., Lewis, J. P., Roth, S., Black, M. J., and
Szeliski, R.: A database and evaluation methodology for optical flow, Int.
J. Comput. Vision, 92, 1–31, https://doi.org/10.1007/S11263-010-0390-2, 2011.
Banasiak, R. and Krzyżanowski, M.: Flood flows in the Odra River in 2010
– quantitative and qualitative assessment of ADCP data, Meteorol. Hydrol.
Water Manag. Res. Oper. Appl., 3, 11–20, 2015.
Bechle, A. J., Wu, C. H., Liu, W.-C., and Kimura, N.: Development and
Application of an Automated River-Estuary Discharge Imaging System, J.
Hydraul. Eng., 138, 327–339,
https://doi.org/10.1061/(ASCE)HY.1943-7900.0000521, 2012.
Birgand, F., Lellouche, G., and Appelboom, T. W.: Measuring flow in
non-ideal conditions for short-term projects: Uncertainties associated with
the use of stage-discharge rating curves, J. Hydrol., 503, 186–195,
https://doi.org/10.1016/j.jhydrol.2013.09.007, 2013.
Boiten, W.: Flow measurement structures, Flow Meas. Instrum., 13, 203–207,
https://doi.org/10.1016/S0955-5986(02)00057-2, 2002.
Branch, M. A., Coleman, T. F., and Li, Y.: A Subspace, Interior, and
Conjugate Gradient Method for Large-Scale Bound-Constrained Minimization
Problems, SIAM J. Sci. Comput., 21, 1–23,
https://doi.org/10.1137/S1064827595289108, 1999.
Cardona, J. L.: Visual Anemometry: Wind Speed Measurement Through Visual
Observation of Fluid-Structure Interactions, Stanford University PP, United
States, California, Ann Arbor, 144 pp., 2021.
Chen, C. Y., Wang, L., Hwang, C. H., Hsieh, C. W., and Chi, P. W.: Enhancing
the performance of a rainfall measurement system using artificial neural
networks based object tracking algorithms, in: I2MTC 2019 – 2019 IEEE
International Instrumentation and Measurement Technology Conference,
Proceedings, 1–4, https://doi.org/10.1109/I2MTC.2019.8827108, 2019.
Costa, J. E., Spicer, K. R., Cheng, R. T., Haeni, F. P., Melcher, N. B.,
Thurman, E. M., Plant, W. J., and Keller, W. C.: measuring stream discharge
by non-contact methods: A Proof-of-Concept Experiment, Geophys. Res. Lett.,
27, 553–556, https://doi.org/10.1029/1999GL006087, 2000.
Crochemore, L., Isberg, K., Pimentel, R., Pineda, L., Hasan, A., and
Arheimer, B.: Lessons learnt from checking the quality of openly accessible
river flow data worldwide, Hydrol. Sci. J., 65, 699–711,
https://doi.org/10.1080/02626667.2019.1659509, 2020.
Daly, E., Calabrese, S., Yin, J., and Porporato, A.: Hydrological Spaces of
Long-Term Catchment Water Balance, Water Resour. Res., 55, 10747–10764,
https://doi.org/10.1029/2019WR025952, 2019.
Despax, A., Le Coz, J., Hauet, A., Mueller, D. S., Engel, F. L., Blanquart,
B., Renard, B., and Oberg, K. A.: Decomposition of Uncertainty Sources in
Acoustic Doppler Current Profiler Streamflow Measurements Using Repeated
Measures Experiments, Water Resour. Res., 55, 7520–7540,
https://doi.org/10.1029/2019WR025296, 2019.
Detert, M.: How to Avoid and Correct Biased Riverine Surface Image
Velocimetry, Water Resour. Res., 57, e2020WR027833, https://doi.org/10.1029/2020WR027833,
2021.
Di Baldassarre, G. and Montanari, A.: Uncertainty in river discharge observations: a quantitative analysis, Hydrol. Earth Syst. Sci., 13, 913–921, https://doi.org/10.5194/hess-13-913-2009, 2009.
Dobriyal, P., Badola, R., Tuboi, C., and Hussain, S. A.: A review of methods
for monitoring streamflow for sustainable water resource management, Appl.
Water Sci., 7, 2617–2628, https://doi.org/10.1007/s13201-016-0488-y, 2017.
Dramais, G., Le Coz, J., Camenen, B., and Hauet, A.: Advantages of a mobile
LSPIV method for measuring flood discharges and improving stage-discharge
curves, J. Hydro-Environ. Res., 5, 301–312,
https://doi.org/10.1016/j.jher.2010.12.005, 2011.
Eltner, A., Elias, M., Sardemann, H., and Spieler, D.: Automatic Image-Based
Water Stage Measurement for Long-Term Observations in Ungauged Catchments,
Water Resour. Res., 54, 10362–10371, https://doi.org/10.1029/2018WR023913,
2018.
Eltner, A., Bressan, P. O., Akiyama, T., Gonçalves, W. N., and Marcato
Junior, J.: Using Deep Learning for Automatic Water Stage Measurements,
Water Resour. Res., 57, e2020WR027608, https://doi.org/10.1029/2020WR027608, 2021.
Farnebäck, G.: Polynomial expansion for orientation and motion
estimation, Linköping University Electronic Press, Computer Vision,
Department of Electrical Engineering, Linköping University, 181 pp., ISBN 91-7373-475-6,
2002.
Farnebäck, G.: Two-frame motion estimation based on polynomial
expansion, Lect. Notes Comput. Sc., 2749, 363–370,
https://doi.org/10.1007/3-540-45103-X_50, 2003.
Fenton, J. D.: On the generation of stream rating curves, J. Hydrol., 564,
748–757, https://doi.org/10.1016/J.JHYDROL.2018.07.025, 2018.
Fujita, I., Watanabe, H., and Tsubaki, R.: Development of a non-intrusive
and efficient flow monitoring technique: The space-time image velocimetry
(STIV), Int. J. River Basin Manag., 5, 105–114,
https://doi.org/10.1080/15715124.2007.9635310, 2007.
Fujita, I. and Komura, S.: Application of Video Image Analysis for
Measurements of River-Surface Flows, Proc. Hydraul. Eng., 38, 733–738,
https://doi.org/10.2208/prohe.38.733, 1994.
Gaume, E., Bain, V., Bernardara, P., Newinger, O., Barbuc, M., Bateman, A.,
Blaškovičová, L., Blöschl, G., Borga, M., Dumitrescu, A.,
Daliakopoulos, I., Garcia, J., Irimescu, A., Kohnova, S., Koutroulis, A.,
Marchi, L., Matreata, S., Medina, V., Preciso, E., Sempere-Torres, D.,
Stancalie, G., Szolgay, J., Tsanis, I., Velasco, D., and Viglione, A.: A
compilation of data on European flash floods, J. Hydrol., 367, 70–78,
https://doi.org/10.1016/J.JHYDROL.2008.12.028, 2009.
Gordon, R. L.: Acoustic Measurement of River Discharge, J. Hydraul. Eng.,
115, 925–936, https://doi.org/10.1061/(asce)0733-9429(1989)115:7(925),
1989.
Grinham, A. R.: Downstream effects of land use on shallow-water benthic
microalgal communities in Moreton Bay, Australia and Marovo Lagoon, PhD thesis, Solomon
Islands, https://espace.library.uq.edu.au/view/UQ:158525 (last access: 28 July 2022), 2007.
Grinham, A., Gibbes, B., Gale, D., Watkinson, A., and Bartkow, M.: Extreme
rainfall and drinking water quality: A regional perspective, WIT Trans.
Ecol. Envir., 164, 183–194, https://doi.org/10.2495/WP120161, 2012.
Guerrero, J.-L., Westerberg, I. K., Halldin, S., Xu, C.-Y., and Lundin,
L.-C.: Temporal variability in stage–discharge relationships, J. Hydrol.,
446–447, 90–102, https://doi.org/10.1016/j.jhydrol.2012.04.031, 2012.
Harding, S. F., Richmond, M. C., Romero-Gomez, P., and Serkowski, J. A.:
Effects of non-homogeneous flow on ADCP data processing in a hydroturbine
forebay, Flow Meas. Instrum., 52, 1–9,
https://doi.org/10.1016/J.FLOWMEASINST.2015.12.010, 2016.
Hauet, A., Creutin, J.-D., and Belleudy, P.: Sensitivity study of
large-scale particle image velocimetry measurement of river discharge using
numerical simulation, J. Hydrol., 349, 178–190,
https://doi.org/10.1016/j.jhydrol.2007.10.062, 2008.
Hauet, A., Morlot, T., and Daubagnan, L.: Velocity profile and
depth-averaged to surface velocity in natural streams: A review over alarge
sample of rivers, E3S Web Conf., 40, 06015,
https://doi.org/10.1051/e3sconf/20184006015, 2018.
Hering, D., Carvalho, L., Argillier, C., Beklioglu, M., Borja, A., Cardoso,
A. C., Duel, H., Ferreira, T., Globevnik, L., Hanganu, J., Hellsten, S.,
Jeppesen, E., Kodeš, V., Solheim, A. L., Nõges, T., Ormerod, S.,
Panagopoulos, Y., Schmutz, S., Venohr, M., and Birk, S.: Managing aquatic
ecosystems and water resources under multiple stress – An introduction to
the MARS project, Sci. Total Environ., 503–504, 10–21, 2015.
Herrera, D., Ellis, A., Fisher, B., Golden, C. D., Johnson, K., Mulligan,
M., Pfaff, A., Treuer, T., and Ricketts, T. H.: Upstream watershed condition
predicts rural children's health across 35 developing countries, Nat.
Commun., 8, 811, https://doi.org/10.1038/s41467-017-00775-2, 2017.
Herschy, R.: The velocity-area method, Flow Meas. Instrum., 4, 7–10,
https://doi.org/10.1016/0955-5986(93)90004-3, 1993.
Hutley, N., Boselalu, M., Wenger, A., Grinham, A., Gibbes, B., and Albert,
S.: Evaluating the effect of data-richness and model complexity in the
prediction of coastal sediment loading in Solomon Islands, Environ. Res.
Lett., 15, 124044, https://doi.org/10.1088/1748-9326/ABC8BA, 2020.
Jackson, E. K., Roberts, W., Nelsen, B., Williams, G. P., Nelson, E. J., and
Ames, D. P.: Introductory overview: Error metrics for hydrologic modelling
– A review of common practices and an open source library to facilitate use
and adoption, Environ. Modell. Softw., 119, 32–48,
https://doi.org/10.1016/J.ENVSOFT.2019.05.001, 2019.
Jalbert, J., Mathevet, T., and Favre, A.-C.: Temporal uncertainty estimation
of discharges from rating curves using a variographic analysis, J. Hydrol.,
397, 83–92, https://doi.org/10.1016/j.jhydrol.2010.11.031, 2011.
Jiang, S., Babovic, V., Zheng, Y., and Xiong, J.: Advancing Opportunistic
Sensing in Hydrology: A Novel Approach to Measuring Rainfall With Ordinary
Surveillance Cameras, Water Resour. Res., 55, 3004–3027,
https://doi.org/10.1029/2018WR024480, 2019.
Khalid, M., Pénard, L., and Mémin, E.: Optical flow for image-based
river velocity estimation, Flow Meas. Instrum., 65, 110–121,
https://doi.org/10.1016/j.flowmeasinst.2018.11.009, 2019.
Kiang, J. E., Gazoorian, C., McMillan, H., Coxon, G., Le Coz, J.,
Westerberg, I. K., Belleville, A., Sevrez, D., Sikorska, A. E.,
Petersen-Øverleir, A., Reitan, T., Freer, J., Renard, B., Mansanarez, V.,
and Mason, R.: A Comparison of Methods for Streamflow Uncertainty
Estimation, Water Resour. Res., 54, 7149–7176,
https://doi.org/10.1029/2018WR022708, 2018.
Klema, M. R., Pirzado, A. G., Venayagamoorthy, S. K., and Gates, T. K.:
Analysis of acoustic Doppler current profiler mean velocity measurements in
shallow flows, Flow Meas. Instrum., 74, 101755,
https://doi.org/10.1016/j.flowmeasinst.2020.101755, 2020.
Koutalakis, P., Tzoraki, O., and Zaimes, G.: Uavs for hydrologic scopes:
Application of a low-cost UAV to estimate surface water velocity by using
three different image-based methods, Drones, 3, 1–15,
https://doi.org/10.3390/DRONES3010014, 2019.
Kuentz, A., Arheimer, B., Hundecha, Y., and Wagener, T.: Understanding hydrologic variability across Europe through catchment classification, Hydrol. Earth Syst. Sci., 21, 2863–2879, https://doi.org/10.5194/hess-21-2863-2017, 2017.
Le Coz, J., Hauet, A., Pierrefeu, G., Dramais, G., and Camenen, B.:
Performance of image-based velocimetry (LSPIV) applied to flash-flood
discharge measurements in Mediterranean rivers, J. Hydrol., 394, 42–52,
2010.
Le Coz, J., Renard, B., Vansuyt, V., Jodeau, M., and Hauet, A.: Estimating
the uncertainty of video-based flow velocity and discharge measurements due
to the conversion of field to image coordinates, Hydrol. Process., 35, e14169,
https://doi.org/10.1002/hyp.14169, 2021.
Lee, K., Ho, H.-C., Marian, M., and Wu, C.-H.: Uncertainty in open channel
discharge measurements acquired with StreamPro ADCP, J. Hydrol., 509,
101–114, https://doi.org/10.1016/j.jhydrol.2013.11.031, 2014.
Lee, M.-C., Leu, J.-M., Chan, H.-C., and Huang, W.-C.: The measurement of
discharge using a commercial digital video camera in irrigation canals, Flow
Meas. Instrum., 21, 150–154,
https://doi.org/10.1016/j.flowmeasinst.2010.02.002, 2010.
Leeuw, T. and Boss, E.: The HydroColor App: Above Water Measurements of
Remote Sensing Reflectance and Turbidity Using a Smartphone Camera, Sensors, 18, 256,
https://doi.org/10.3390/s18010256, 2018.
Lehmann, J., Coumou, D., and Frieler, K.: Increased record-breaking
precipitation events under global warming, Clim. Change, 132, 501–515,
https://doi.org/10.1007/S10584-015-1434-Y, 2015.
Leitão, J. P., Peña-Haro, S., Lüthi, B., Scheidegger, A., and
Moy de Vitry, M.: Urban overland runoff velocity measurement with
consumer-grade surveillance cameras and surface structure image velocimetry,
J. Hydrol., 565, 791–804, https://doi.org/10.1016/j.jhydrol.2018.09.001,
2018.
Li, S., Sparrow, S. N., L, F. E., Gudmundsson, L., and Seneviratne, S. I.:
Anthropogenic climate change affects meteorological drought risk in Europe,
Environ. Res. Lett., 11, 044005,
https://doi.org/10.1088/1748-9326/11/4/044005, 2016.
Li, W., Liao, Q., and Ran, Q.: Stereo-imaging LSPIV (SI-LSPIV) for 3D water
surface reconstruction and discharge measurement in mountain river flows, J.
Hydrol., 578, 124099, https://doi.org/10.1016/j.jhydrol.2019.124099, 2019.
Lindow, N. L. and Curtis, M. C.: Developing a framework for watershed
implementation plans, in: ASABE – TMDL 2010: Watershed Management to Improve
Water Quality Proceedings, Hyatt Regency Baltimore on the Inner Harbor, Baltimore, Maryland, USA, 14–17 November 2010, 133–141, https://doi.org/10.13031/2013.35749, 2010.
Mcmillan, H., Krueger, T., and Freer, J.: Benchmarking observational
uncertainties for hydrology: Rainfall, river discharge and water quality,
Hydrol. Process., 26, 4078–4111, 2012.
Mueller, M., Pander, J., and Geist, J.: The effects of weirs on structural
stream habitat and biological communities, J. Appl. Ecol., 48, 1450–1461,
https://doi.org/10.1111/J.1365-2664.2011.02035.X, 2011.
Naves, J., García, J. T., Puertas, J., and Anta, J.: Assessing different imaging velocimetry techniques to measure shallow runoff velocities during rain events using an urban drainage physical model, Hydrol. Earth Syst. Sci., 25, 885–900, https://doi.org/10.5194/hess-25-885-2021, 2021.
Nearing, G. S. and Gupta, H. V.: Ensembles vs. information theory:
supporting science under uncertainty, Front Earth Sci.-Prc., 12, 653–660,
https://doi.org/10.1007/s11707-018-0709-9, 2018.
Nemade, N. and Gohokar, V. V.: Comparative Performance Analysis of Optical Flow Algorithms for Anomaly Detection, in: Proceedings of International Conference on Communication and Information Processing (ICCIP), 18 May 2019, https://doi.org/10.2139/ssrn.3419775, 2019.
Oberg, K. and Mueller, D. S.: Validation of Streamflow Measurements Made
with Acoustic Doppler Current Profilers, J. Hydraul. Eng., 133, 1421–1432,
https://doi.org/10.1061/(ASCE)0733-9429(2007)133:12(1421), 2007.
Ogden, F. L., Crouch, T. D., Pradhan, N. R., and Kempema, E.: Laboratory
Investigation of Sedimentation Effects on V-Notch Weirs, Bear. Knowl. Sustain. – Proc. 2011 World Environ.
Water Resour. Congr., Palm Springs, California, 22–26 May 2011, 4820–4827, https://doi.org/10.1061/41173(414)500,
2011.
Pagliara, S. and Palermo, M.: Scour problems downstream of low-head
hydraulic structures, in: Rivers – Physical, Fluvial and Environmental Processes, 99–119,
https://doi.org/10.1007/978-3-319-17719-9_4, 2015.
Palmer, T. N. and Räisänen, J.: Quantifying the risk of extreme
seasonal precipitation events in a changing climate, Nature, 415, 512–514,
https://doi.org/10.1038/415512a, 2002.
Park, S. Y., Sur, C., Kim, J. S., Choi, S. J., Lee, J. H., and Kim, T. W.:
Projected drought risk assessment from water balance perspectives in a
changing climate, Int. J. Climatol., 41, 2765–2777,
https://doi.org/10.1002/JOC.6988, 2021.
Peacock, M., Audet, J., Bastviken, D., Futter, M. N., Gauci, V., Grinham,
A., Harrison, J. A., Kent, M. S., Kosten, S., Lovelock, C. E., Veraart, A.
J., and Evans, C. D.: Global importance of methane emissions from drainage
ditches and canals, Environ. Res. Lett., 16, 044010,
https://doi.org/10.1088/1748-9326/ABEB36, 2021.
Pearce, S., Ljubičić, R., Peña-Haro, S., Perks, M., Tauro, F.,
Pizarro, A., Dal Sasso, S., Strelnikova, D., Grimaldi, S., Maddock, I.,
Paulus, G., Plavšić, J., Prodanović, D., and Manfreda, S.: An
Evaluation of Image Velocimetry Techniques under Low Flow Conditions and
High Seeding Densities Using Unmanned Aerial Systems, Remote Sens.-Basel, 12, 232,
https://doi.org/10.3390/rs12020232, 2020.
Peña-Haro, S., Carrel, M., Lüthi, B., Hansen, I., and Lukes, R.:
Robust Image-Based Streamflow Measurements for Real-Time Continuous
Monitoring, Front. Water, 3, 766918,
https://doi.org/10.3389/FRWA.2021.766918, 2021.
Perks, M. T.: KLT-IV v1.0: image velocimetry software for use with fixed and mobile platforms, Geosci. Model Dev., 13, 6111–6130, https://doi.org/10.5194/gmd-13-6111-2020, 2020a.
Perks, M. T., Dal Sasso, S. F., Hauet, A., Jamieson, E., Le Coz, J., Pearce, S., Peña-Haro, S., Pizarro, A., Strelnikova, D., Tauro, F., Bomhof, J., Grimaldi, S., Goulet, A., Hortobágyi, B., Jodeau, M., Käfer, S., Ljubičić, R., Maddock, I., Mayr, P., Paulus, G., Pénard, L., Sinclair, L., and Manfreda, S.: Towards harmonisation of image velocimetry techniques for river surface velocity observations, Earth Syst. Sci. Data, 12, 1545–1559, https://doi.org/10.5194/essd-12-1545-2020, 2020b.
Petrie, J., Diplas, P., Gutierrez, M., and Nam, S.: Data evaluation for
acoustic Doppler current profiler measurements obtained at fixed locations
in a natural river, Water Resour. Res., 49, 1003–1016,
https://doi.org/10.1002/wrcr.20112, 2013.
Pizarro, A., Dal Sasso, S. F., Perks, M. T., and Manfreda, S.: Identifying the optimal spatial distribution of tracers for optical sensing of stream surface flow, Hydrol. Earth Syst. Sci., 24, 5173–5185, https://doi.org/10.5194/hess-24-5173-2020, 2020.
Prüss-Ustün, A., Bartram, J., Clasen, T., Colford, J. M., Cumming,
O., Curtis, V., Bonjour, S., Dangour, A. D., De France, J., Fewtrell, L.,
Freeman, M. C., Gordon, B., Hunter, P. R., Johnston, R. B., Mathers, C.,
Mäusezahl, D., Medlicott, K., Neira, M., Stocks, M., Wolf, J., and
Cairncross, S.: Burden of disease from inadequate water, sanitation and
hygiene in low- and middle-income settings: A retrospective analysis of data
from 145 countries, Trop. Med. Int. Health, 19, 894–905,
https://doi.org/10.1111/tmi.12329, 2014.
Pumo, D., Alongi, F., Ciraolo, G., and Noto, L.: Optical Methods for River
Monitoring: A Simulation-Based Approach to Explore Optimal Experimental
Setup for LSPIV, Water, 13, 247, https://doi.org/10.3390/w13030247, 2021.
Rahman Khan, M., Gourley, J. J., Duarte, J. A., Vergara, H., Wasielewski,
D., Ayral, P.-A., and Fulton, J. W.: Uncertainty in remote sensing of
streams using noncontact radars, J. Hydrol., 603, 126809,
https://doi.org/10.1016/j.jhydrol.2021.126809, 2021.
Ran, Q. H., Li, W., Liao, Q., Tang, H. L., and Wang, M. Y.: Application of
an automated LSPIV system in a mountainous stream for continuous flood flow
measurements, Hydrol. Process., 30, 3014–3029,
https://doi.org/10.1002/HYP.10836, 2016.
Savitzky, A. and Golay, M. J. E.: Smoothing and Differentiation of Data by
Simplified Least Squares Procedures, Anal. Chem., 36, 1627–1639,
https://doi.org/10.1021/AC60214A047, 1964.
Schmid, M., Rath, D., and Diebold, U.: Why and How Savitzky–Golay Filters
Should Be Replaced, ACS Meas. Sci. Au, 2, 185–196,
https://doi.org/10.1021/ACSMEASURESCIAU.1C00054, 2022.
Sene, K., Tych, W., and Beven, K.: Exploratory studies into seasonal flow forecasting potential for large lakes, Hydrol. Earth Syst. Sci., 22, 127–141, https://doi.org/10.5194/hess-22-127-2018, 2018.
Shah, S. T. H. and Xuezhi, X.: Traditional and modern strategies for optical
flow: an investigation, SN Appl. Sci., 3, 289,
https://doi.org/10.1007/s42452-021-04227-x, 2021.
Shi, R., Leng, X., and Chanson, H.: On optical flow techniques applied to
breaking surges, Flow Meas. Instrum., 72, 101710,
https://doi.org/10.1016/j.flowmeasinst.2020.101710, 2020.
Steinbakk, G. H., Thorarinsdottir, T. L., Reitan, T., Schlichting, L.,
Hølleland, S., and Engeland, K.: Propagation of rating curve uncertainty
in design flood estimation, Water Resour. Res., 52, 6897–6915,
https://doi.org/10.1002/2015WR018516, 2016.
Stumpf, A., Augereau, E., Delacourt, C., and Bonnier, J.: Photogrammetric
discharge monitoring of small tropical mountain rivers: A case study at
Rivière des Pluies, Réunion Island, Water Resour. Res., 52,
4550–4570, https://doi.org/10.1002/2015WR018292, 2016.
Tauro, F., Petroselli, A., Porfiri, M., Giandomenico, L., Bernardi, G., Mele, F., Spina, D., and Grimaldi, S.: A novel permanent gauge-cam station for surface-flow observations on the Tiber River, Geosci. Instrum. Method. Data Syst., 5, 241–251, https://doi.org/10.5194/gi-5-241-2016, 2016.
Tauro, F., Petroselli, A., and Grimaldi, S.: Optical sensing for stream flow
observations: A review, J. Agr. Eng., 49, 199–206,
https://doi.org/10.4081/jae.2018.836, 2018.
Tomkins, K. M.: Uncertainty in streamflow rating curves: methods, controls
and consequences, Hydrol. Process., 28, 464–481,
https://doi.org/10.1002/hyp.9567, 2014.
Wang, S. and Miao, Z.: Anomaly detection in crowd scene, Int. Conf. Signal
Process. Proceedings, ICSP, Beijing, China, 24–28 October 2010, 1220–1223,
https://doi.org/10.1109/ICOSP.2010.5655356, 2010.
Wang, X., Wang, M., Liu, X., Zhu, L., Glade, T., Chen, M., Zhao, W., and
Xie, Y.: A novel quality control model of rainfall estimation with videos –
A survey based on multi-surveillance cameras, J. Hydrol., 605, 127312,
https://doi.org/10.1016/j.jhydrol.2021.127312, 2022.
Watanabe, K., Fujita, I., Iguchi, M., and Hasegawa, M.: Improving Accuracy
and Robustness of Space-Time Image Velocimetry (STIV) with Deep Learning,
Water, 13, 2079, https://doi.org/10.3390/W13152079,
2021.
Westerberg, I., Guerrero, J.-L., Seibert, J., Beven, K. J., and Halldin, S.:
Stage-discharge uncertainty derived with a non-stationary rating curve in
the Choluteca River, Honduras, Hydrol. Process., 25, 603–613,
https://doi.org/10.1002/hyp.7848, 2011.
Westerberg, I. K., Wagener, T., Coxon, G., McMillan, H. K., Castellarin, A.,
Montanari, A., and Freer, J.: Uncertainty in hydrological signatures for
gauged and ungauged catchments, Water Resour. Res., 52, 1847–1865,
https://doi.org/10.1002/2015WR017635, 2016.
Yang, Y., Wen, B., Wang, C., and Hou, Y.: Real-Time and Automatic River
Discharge Measurement with UHF Radar, IEEE Geosci. Remote S, 17,
1851–1855, https://doi.org/10.1109/LGRS.2019.2958082, 2020.
Short summary
Measuring flows in streams allows us to manage crucial water resources. This work shows the automated application of a dual camera computer vision stream gauging (CVSG) system for measuring streams. Comparing between state-of-the-art technologies demonstrated that camera-based methods were capable of performing within the best available error margins. CVSG offers significant benefits towards improving stream data and providing a safe way for measuring floods while adapting to changes over time.
Measuring flows in streams allows us to manage crucial water resources. This work shows the...