Articles | Volume 27, issue 10
https://doi.org/10.5194/hess-27-2051-2023
https://doi.org/10.5194/hess-27-2051-2023
Research article
 | 
31 May 2023
Research article |  | 31 May 2023

Adaptively monitoring streamflow using a stereo computer vision system

Nicholas Reece Hutley, Ryan Beecroft, Daniel Wagenaar, Josh Soutar, Blake Edwards, Nathaniel Deering, Alistair Grinham, and Simon Albert

Related authors

The importance of small artificial water bodies as sources of methane emissions in Queensland, Australia
Alistair Grinham, Simon Albert, Nathaniel Deering, Matthew Dunbabin, David Bastviken, Bradford Sherman, Catherine E. Lovelock, and Christopher D. Evans
Hydrol. Earth Syst. Sci., 22, 5281–5298, https://doi.org/10.5194/hess-22-5281-2018,https://doi.org/10.5194/hess-22-5281-2018, 2018
Short summary
Methane and nitrous oxide sources and emissions in a subtropical freshwater reservoir, South East Queensland, Australia
K. Sturm, Z. Yuan, B. Gibbes, U. Werner, and A. Grinham
Biogeosciences, 11, 5245–5258, https://doi.org/10.5194/bg-11-5245-2014,https://doi.org/10.5194/bg-11-5245-2014, 2014

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Instruments and observation techniques
Thermal regime of High Arctic tundra ponds, Nanuit Itillinga (Polar Bear Pass), Nunavut, Canada
Kathy L. Young and Laura C. Brown
Hydrol. Earth Syst. Sci., 28, 3931–3945, https://doi.org/10.5194/hess-28-3931-2024,https://doi.org/10.5194/hess-28-3931-2024, 2024
Short summary
Impacts of hydrofacies geometry designed from seismic refraction tomography on estimated hydrogeophysical variables
Nolwenn Lesparre, Sylvain Pasquet, and Philippe Ackerer
Hydrol. Earth Syst. Sci., 28, 873–897, https://doi.org/10.5194/hess-28-873-2024,https://doi.org/10.5194/hess-28-873-2024, 2024
Short summary
Seasonal dynamics and spatial patterns of soil moisture in a loess catchment
Shaozhen Liu, Ilja van Meerveld, Yali Zhao, Yunqiang Wang, and James W. Kirchner
Hydrol. Earth Syst. Sci., 28, 205–216, https://doi.org/10.5194/hess-28-205-2024,https://doi.org/10.5194/hess-28-205-2024, 2024
Short summary
Effects of urbanization on the water cycle in the Shiyang River basin: based on a stable isotope method
Rui Li, Guofeng Zhu, Siyu Lu, Liyuan Sang, Gaojia Meng, Longhu Chen, Yinying Jiao, and Qinqin Wang
Hydrol. Earth Syst. Sci., 27, 4437–4452, https://doi.org/10.5194/hess-27-4437-2023,https://doi.org/10.5194/hess-27-4437-2023, 2023
Short summary
Using high-frequency solute synchronies to determine simple two-end-member mixing in catchments during storm events
Nicolai Brekenfeld, Solenn Cotel, Mikaël Faucheux, Paul Floury, Colin Fourtet, Jérôme Gaillardet, Sophie Guillon, Yannick Hamon, Hocine Henine, Patrice Petitjean, Anne-Catherine Pierson-Wickmann, Marie-Claire Pierret, and Ophélie Fovet
EGUsphere, https://doi.org/10.5194/egusphere-2023-2214,https://doi.org/10.5194/egusphere-2023-2214, 2023
Short summary

Cited articles

Adelson, E. H., Burt, P. J., Anderson, C. H., Ogden, J. M., and Bergen, J. R.: Pyramid Methods in Image Processing, RCA Eng., 29, 33–41, 1984. 
Albert, S., Kvennefors, C., Jacob, K., Kera, J., and Grinham, A.: Environmental change in a modified catchment downstream of a gold mine, Solomon Islands, Environ. Pollut., 231, 942–953, https://doi.org/10.1016/j.envpol.2017.08.113, 2017. 
Albert, S., Deering, N., Tongi, S., Nandy, A., Kisi, A., Sirikolo, M., Maehaka, M., Hutley, N., Kies-Ryan, S., and Grinham, A.: Water quality challenges associated with industrial logging of a karst landscape: Guadalcanal, Solomon Islands, Mar. Pollut. Bull., 169, 112506, https://doi.org/10.1016/J.MARPOLBUL.2021.112506, 2021. 
Baker, S., Scharstein, D., Lewis, J. P., Roth, S., Black, M. J., and Szeliski, R.: A database and evaluation methodology for optical flow, Int. J. Comput. Vision, 92, 1–31, https://doi.org/10.1007/S11263-010-0390-2, 2011. 
Banasiak, R. and Krzyżanowski, M.: Flood flows in the Odra River in 2010 – quantitative and qualitative assessment of ADCP data, Meteorol. Hydrol. Water Manag. Res. Oper. Appl., 3, 11–20, 2015. 
Download
Short summary
Measuring flows in streams allows us to manage crucial water resources. This work shows the automated application of a dual camera computer vision stream gauging (CVSG) system for measuring streams. Comparing between state-of-the-art technologies demonstrated that camera-based methods were capable of performing within the best available error margins. CVSG offers significant benefits towards improving stream data and providing a safe way for measuring floods while adapting to changes over time.