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Abstract. The gauging of free surface flows in waterways
provides the foundation for monitoring and managing the
water resources of built and natural environments. A sig-
nificant body of literature exists around the techniques and
benefits of optical surface velocimetry methods to estimate
flows in waterways without intrusive instruments or struc-
tures. However, to date, the operational application of these
surface velocimetry methods has been limited by site con-
figuration and inherent challenging optical variability across
different natural and constructed waterway environments.
This work demonstrates a significant advancement in the op-
erationalisation of non-contact stream discharge gauging ap-
plied in the computer vision stream gauging (CVSG) system
through the use of methods for remotely estimating water
levels and adaptively learning discharge ratings over time.
A cost-effective stereo camera-based stream gauging device
(CVSG device) has been developed for streamlined site de-
ployments and automated data collection. Evaluations be-
tween reference state-of-the-art discharge measurement tech-
nologies using DischargeLab (using surface structure im-
age velocimetry), Hydro-STIV (using space–time image ve-
locimetry), acoustic Doppler current profilers (ADCPs), and
gauging station discharge ratings demonstrated that the op-
tical surface velocimetry methods were capable of estimat-
ing discharge within a 5 %–15 % range between these best
available measurement approaches. Furthermore, results in-
dicated model machine learning approaches leveraging data
to improve performance over a period of months at the study
sites produced a marked 5 %–10 % improvement in discharge

estimates, despite underlying noise in stereophotogrammetry
water level or optical flow measurements. The operational-
isation of optical surface velocimetry technology, such as
CVSG, offers substantial advantages towards not only im-
proving the overall density and availability of data used in
stream gauging, but also providing a safe and non-contact ap-
proach for effectively measuring high-flow rates while pro-
viding an adaptive solution for gauging streams with non-
stationary characteristics.

1 Introduction

Globally, hydrological flow occurs through natural and man-
made open channels and floodplains, often transporting life-
sustaining water to ecosystems and civilisations (Herrera et
al., 2017; Albert et al., 2017, 2021; Grinham, 2007; Prüss-
Ustün et al., 2014). Likewise, rainfall variability with in-
creasing risk due to climate change can cause extreme flows
(Lehmann et al., 2015; Palmer and Räisänen, 2002) result-
ing in significant economic, environmental, and life losses
(Gaume et al., 2009; Grinham et al., 2012), as well as an in-
creasing risk of extreme drought events into the future (Park
et al., 2021; Li et al., 2016). Within this context the field of
hydrography endeavours to monitor and understand the dy-
namics of flows in these waterways through space and time
(Westerberg et al., 2016; Kuentz et al., 2017; Mcmillan et al.,
2012). From designing infrastructure intersecting with water-
ways (Lindow and Curtis, 2010), to budgeting water security
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(Daly et al., 2019; Sene et al., 2018) and improving forecast-
ing models for near and long-term policy planning (Hering et
al., 2015; Hutley et al., 2020), gauging waterways continues
to be an important utility for society with substantial time,
human risk, investment, and maintenance funding worldwide
(Crochemore et al., 2020).

There are many operational and emerging methods for wa-
terway gauging, varying widely in cost, accuracy, reliability,
and risk (Tauro et al., 2016, 2018; Gordon, 1989; Costa et al.,
2000; Yang et al., 2020). Intrusive methods range from the
resource-intensive installation of hydraulic control structures
to measure discharge rates analytically using simpler wa-
ter level measurements within a designed range by obstruct-
ing and controlling the flow through a standardised geome-
try (Boiten, 2002) (often to the detriment of aquatic species
(Mueller et al., 2011), as well as sedimentation and erosion
(Pagliara and Palermo, 2015; Ogden et al., 2011), through
to the risking of people and equipment entering the stream
to measure velocities using passive mechanical current me-
ters or active acoustic Doppler velocimetry profiles (Gordon,
1989).

In order to estimate discharges through a waterway with-
out the flow passing through the geometry of a known hy-
draulic control structure, other methods largely rely on the
measurement of velocities across the channel and integrat-
ing these estimated velocities through the cross-sectional
area using some binned resolution (Herschy, 1993). Measur-
ing these velocities within the cross section of waterways
is fraught with various challenges, including limitations in
measuring close to boundaries, debris, vegetation, aeration,
unsteady flows, equipment damage, and safety risks (Petrie
et al., 2013; Lee et al., 2014; Klema et al., 2020; Harding et
al., 2016). Furthermore, the ongoing measurements of veloc-
ities in a waterway are difficult and expensive to carry out
and maintain, especially during flood events (Banasiak and
Krzyżanowski, 2015). Therefore, the development of dis-
charge ratings (relating water level to an estimated discharge)
have become commonplace through the construction of (of-
ten still expensive to build and maintain) gauging structures
and stilling wells. This approach allows the more easily mea-
sured water level over time to be converted to discharge es-
timates through a fitting of manual discharge measurements
recorded routinely and/or opportunistically over decades by
professional hydrographers.

In practice, the common approach to gauging streams us-
ing fitted discharge ratings presents challenges for obtaining
unbiased measurements of non-stationary channel environ-
ments over time, particularly when significant flow events
cause changes to natural waterways (Birgand et al., 2013;
Tomkins, 2014; Guerrero et al., 2012; Jalbert et al., 2011;
Di Baldassarre and Montanari, 2009). Therefore, non-contact
and affordable solutions such as radar (Rahman Khan et al.,
2021) or optical offer the potential to overcome these chal-
lenges by measuring velocity and stage without in situ sen-
sors. Similar to one of the oldest manual methods to measure

velocities in a waterway by measuring the displacements of
surface floats over time, the passive optical measurement of
surface velocities using relatively inexpensive camera sys-
tems has been an attractive approach to stream gauging (Do-
briyal et al., 2017). Despite the documented advantages of
this approach (Dramais et al., 2011) coupled with its poten-
tial for affordable scalability to decrease monitoring sparsity,
traditional gauging approaches have not yet been replaced
or augmented by a widespread adoption of optical surface
velocimetry after 20 years of active research (Tauro et al.,
2018). Optical surface velocimetry in the form of large-scale
particle image velocimetry (LSPIV) and space–time image
velocimetry (STIV) are well-established approaches for es-
timating streamflow (Fujita and Komura, 1994; Watanabe et
al., 2021). Whilst operationalised systems using LSPIV ex-
ist (Bechle et al., 2012) using cross-correlation of sequen-
tial image vector fields, surface structure image velocime-
try (SSIV) is a derivative of LSPIV that filters the back-
ground, enhancing the moving surface structures (Leitão et
al., 2018). SSIV has been applied in the DischargeLab anal-
ysis software and DischargeKeeper operational monitoring
system reaching technology readiness level (TRL) 9 in use
internationally with the ability to apply optical water level
detection techniques with varying success without the use of
a vertical gauging reference structure in the water (Photrack
AG, Zürich, Switzerland) (Peña-Haro et al., 2021). Similarly,
STIV quantifies the change in luminance variation through
time across one-dimensional search lines defined in parallel
to the stream flow (Fujita et al., 2007). Whilst the majority of
STIV trials have been part of research efforts, the approach
has been packaged into user-friendly Hydro-STIV software
(Hydro Technology Institute Co., Ltd.) and is being deployed
by numerous organisations globally, particularly using un-
manned aerial vehicles (UAVs) (Koutalakis et al., 2019). The
central challenges with the application of these approaches
remain the reliance on an externally measured water level,
accurate ground control reference points assigned to fixed
pixels in the frame for accurate vector transformation, and a
moderate degree of expertise required to manually tune site-
specific settings to reduce errors from changes in the site en-
vironment and lighting conditions in the initial setup (Detert,
2021).

The existing barriers to widespread implementation of op-
tical stream gauging include initial surveying and calibration
of new sites, development of system integration, and diffi-
culties in measuring velocities reliably with surface tracers
across different site flow conditions, water clarity, and light-
ing environments (Pizarro et al., 2020). This study aims to
develop and evaluate a significant advance towards a rapidly
deployable, accessible, automated operational, and scalable
optical stream gauging system with improved reliability for
gauging streams across varying flow and lighting condi-
tions. With increasing successful developments in a range
of methods in optical surface velocimetry, recent techno-
logical advancements in optical technologies for capturing
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videos, surveying environments, and computer vision anal-
ysis, along with technical advancements in embedded com-
puting power efficiency, communications, and cloud comput-
ing and storage services, we anticipate optical approaches to
stream gauging will further transition from the research do-
main towards the operational domain.

2 Methods

To address the study aim, the methodology firstly presents
the operation of the computer vision stream gauging (CVSG)
system and the process for site setup and configuration.
Stereographic remote water level estimation approaches and
adaptive cross-sectional learning with rectification to coordi-
nates of the water surface are then outlined. The optical flow
technique used by CVSG for estimating surface velocities is
then described along with the approach for learning the sur-
face velocity distributions over multiple measurements under
different optical conditions and fitting these surface velocity
measurements to a model of the surface velocity profile trans-
formed into a function of a boundary distance factor. There-
after, the principles for the development of adaptive learn-
ing discharge ratings are detailed, followed by a summary
of the reference operational discharge estimation approaches
applied in this study. Finally, the characteristics of the opti-
cal flow field study sites and the stream gauging field sites
demonstrated in this work are presented.

2.1 Computer vision stream gauging system

The CVSG system employed in this study was developed
for use in capturing stereo videos of waterways with auto-
mated processing of these into estimates of the water level,
surface velocities, and gauged discharges. Figure 1 outlines
the operational process of the CVSG system. The CVSG
hardware has been designed around the use of a ZED 2/2i
stereo camera (Stereolabs Inc., San Francisco, CA, USA)
with or without internal infrared filters and a NVIDIA Jet-
son Xavier NX (NVIDIA Co., Santa Clara, CA, USA). The
total power consumption of the CVSG hardware collecting
data in this study was on the order of 36 W h d−1, averag-
ing 1.5 W with a peak power draw of 30 W. A sliding lens
mechanism is inbuilt to allow for switching between differ-
ent light wavelength band filters to enhance night measure-
ments and collect data for discerning variables of water qual-
ity, such as suspended sediments. The system also employs a
cloud architecture for automated data handling and internet
of things (IoT) fleet management in managing the configu-
ration of CVSG devices and sites drawing from a range of
internal and external data sources. The integration of modern
cloud analytics and fleet management allows for artificially
intelligent predictive and adaptive sampling. Under typically
configured baseflow conditions, the device operates at a sam-
pling frequency of 60 min, capturing a video duration rang-

ing between 3 and 30 s. During rapid rises in streamflow, the
system can rapidly adapt and increase sampling frequency to
between 2 and 15 min (depending on bandwidth and power
conditions) to increase data density in less certain regions of
the discharge rating.

Placing a CVSG device perpendicular or parallel with
a waterway and configuring the upstream and downstream
boundary distances relative to the camera that defines the re-
gion to be analysed is sufficient for the system to begin es-
timating the level of any water within 40 m in view of the
camera. Then, using the inertial measurement unit (IMU),
the accelerometer provides the orientation of the camera rel-
ative to gravity and then projects the estimated planar water
surface into the image space for rectified surface velocities in
this plane to be estimated at 0.1 m resolution across the cross
section using an optical flow algorithm. The optical resolu-
tion of the flow in metres per pixel is calculated based on
the water surface projection in order to filter any motions in
the area of the field of view beyond the limits of acceptable
optical flow resolution accuracy (normally limited to a maxi-
mum of 0.05 m per pixel up to 0.2 m per pixel). Beyond this,
providing the bathymetry of the cross section and the cam-
era’s two-dimensional location (horizontal and vertical coor-
dinates) relative to the reference frame of the cross-sectional
data allows the system to begin learning a cross-sectional
model of the ground at a site, as well as fitting the model
of surface velocity profiles, estimating discharge, and adap-
tively learning a discharge rating through hundreds and thou-
sands of recordings at a site over time. Site configurations are
stored and referenced in time series, allowing for site config-
uration changes through time, typically from updated manual
cross-sectional surveys or changes to the camera location. It
is possible to set up the system with a cross section with-
out knowledge of a surveyed location of the camera. Cross-
sectional data can be referenced to the camera location vi-
sually through the projection of the cross-sectional data into
the image overlay and tuning the predicted location of the
camera to match the projection.

When videos are captured by the system, the analysis of
these videos occurs in configured branches, allowing the si-
multaneous automated analysis of the same video using dif-
ferent configurations or water level data sources (e.g. the
original stereo-derived water level estimation and an exter-
nal water level sensor). Site coordinate systems are standard-
ised with the x axis locally parallel to the waterway (positive
in downstream direction), the y axis locally perpendicular
to the waterway (positive away from or to the right of the
camera), and the z axis aligned locally with the gravitational
force measured by the camera. Cross-sectional data are one-
dimensional and referenced to the y axis across the water-
way. The analysis region is not needed to be directly in front
of the camera but should be ideally a section of uniform and
straight cross section in view (can be as small as 0.5 m along
the stream and up to as large as visible and practicable for op-
tical flow measurement). When selecting a site, care should
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Figure 1. Computer vision stream gauging (CVSG) system opera-
tion diagram.

be taken to identify sites with suitable surface flow visibility
and oriented south-facing (Southern Hemisphere) or north-
facing (Northern Hemisphere) where possible to avoid sun
glare, while keeping the horizon or sky outside of the cam-
era field of view (maximising the water surface in the field of
view and reducing automatic exposure determination from
the sky). The CVSG system has been developed to balance
ease of setup, ease of operation, affordability, accuracy of re-
sults, and reliability for stream gauging.

2.2 Stereo cross section and water level estimation

The primary driver for the use of a stereo camera in the
CVSG device is the potential to use stereophotogrammetry to
reduce the surveying requirements typically associated with
surface velocimetry techniques for the rectification of pixel
displacements into realistic spatial scales over a wide range
of water levels. However, a stereo computer vision system
also makes it possible to initially survey and then continu-
ously monitor the terrain of the cross section above the water
level for changes due to erosion, deposition, or vegetation
and offers the potential advantage for measuring surface ve-
locities on variable or steep hydraulic gradients. The adap-
tive learning of stream bank profiles over time allows for
an advancement forward with non-stationary stream gaug-
ing in morphologically unstable sites. While the CVSG sys-
tem maintains an adaptive cross-sectional database for each
site which is compared and adapted with each measurement
for visible terrain above the estimated water level (apply-
ing more weight to gradual changes in time and requiring
many consistent measurements to gradually apply any ob-
served dramatic changes in the cross-sectional profile), the
results of this study applied fixed manual cross-sectional sur-

veys from the time of deployment over the entirety of the
time periods evaluated.

Stereophotogrammetry is applied to estimate the distance
from the camera to features which are matched between the
stereo pairs of rectilinear-corrected images where a convolu-
tional neural network model (provided by the camera manu-
facturer, Stereolabs), that has been trained on pairs of stereo
images, is applied to improve both the accuracy and solu-
tion density particularly with reflective and featureless sur-
faces. With a point cloud calculated for each video frame,
the median coordinate is taken of each of the three coordi-
nate dimensions of the point cloud for each recording anal-
ysed. Water level is estimated by scanning across the point
cloud in 0.5 m wide lines within the configured stream cross-
sectional analysis region from the near bank towards the far
bank. The median elevation between these cross-sectional
scanning lines is taken, and the resulting cross-sectional pro-
file is lastly filtered by a 0.5 m footprint median filter. After
this, an iterative process constrains the near and far water
boundaries to ideally within the first 2 m (and not more than
10 m due to the effects of various optical conditions on the
accuracy of the point cloud over the water surface) from the
near bank across the water surface by moving the far bound-
ary closer using similar pixels assumed to be water from the
RGB image frame while avoiding any obstructed view of the
near bank. The first percentile of the elevation points of the
stereophotogrammetry cross-sectional profile within this do-
main is then estimated as the water level (effectively taking
the near minimum of the surface while reducing the impact
of any sporadic point cloud artefacts).

The CVSG system has also been developed with exter-
nal water level data source aggregation and parallel analy-
sis capability alongside stereo water level estimates. With an
estimated water plane level relative to the camera position,
and an IMU (median filtered and stability tested for each
recording) providing the orientation of the camera relative to
gravity, as well as the camera’s optical properties, the across
stream coordinates of the water surface plane every 0.1 m are
first projected and interpolated into the image pixel space.
Following this, the streamwise coordinates along the stream
are predicted for each pixel spanning from the image (from
the left lens in the camera’s perspective) centreline.

2.3 Optical flow surface velocimetry estimation

The motions in the recorded videos are computed using the
Farneback algorithm (Farnebäck, 2002, 2003) to solve the
energy-like minimisation problem for the optical flow equa-
tion across the pixel space between each pair of consecu-
tively recorded frames. Whilst optical flow has previously
been applied to the measurement of stream discharge (Perks,
2020a; Khalid et al., 2019), there are different existing al-
gorithms developed for reaching an optimal solution of the
optical flow equation (Baker et al., 2011). Shi et al. (2020)
compared three established and widely applied optical flow
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techniques to breaking surges, noting the advantages of the
Farneback algorithm for its relatively high accuracy and
dense flow fields, as well as a lower sensitivity to noise with
the converging iterative solution for the displacement vector,
d , between a pair of images using quadratic polynomials fol-
lowing Eq. (1):

d(Xim)=

(∑
1Xim∈Ilocal

wATA
)−1

∑
1Xim∈Ilocal

wAT1bf , (1)

where I is the greyscale image with local neighbourhood re-
gions denoted by Ilocal using the image coordinates xim and

yim to form Xim =

[
xim
yim

]
, where the change in bright-

ness between the corresponding pixels in the pairs of images
are denoted 1Xim. Furthermore, w is a weighting function
over the local neighbourhood regions, while the polynomials
are defined by f (xim,yim)∼= a1 + a2xim + a3yim + a4x

2
im +

a5y
2
im + a6ximyim with A=

[
a4

a6
2

a6
2 a5

]
, bf =

[
a2
a3

]
and

c = a1.
The approach is a variational method combining the as-

sumptions of local neighbourhood brightness intensity vari-
ation between frames with the minimisation of an energy
function assuming a slowly varying displacement field for lo-
cally smooth velocity gradients (Shah and Xuezhi, 2021). A
four-level pyramid of processing steps (Adelson et al., 1984)
is applied to estimate larger overall motions first at a coarser
resolution, interpolating these larger motions to higher reso-
lutions over the four steps refining the optical flow field with
each step increasing in resolution up to the original video
resolution (typically 1920× 1080 recorded from each cam-
era simultaneously).

With the optical flow algorithm applied to each pair of
consecutively recorded frames, depending on the visual flow
conditions there can be errors in the estimated motion be-
tween frames, camera vibrations, as well as natural or man-
made motions occurring between the camera and the water-
way surface to be measured. By summing the estimated op-
tical flow fields over the duration of each recording and av-
eraging the optical flow field stack produced to find the nett
motions estimated over the duration of each recording, any
oscillatory and non-continuous motions can be suppressed.
While taking the median of the flow fields would be reason-
ably more preferable in this context, the average accumu-
lating flow field computation is applied to reduce the edge
computing hardware requirements of the method, particu-
larly with memory usage, as the duration of the measure-
ment scales the number of instantaneous flow field frames
stored in memory for a median calculation. Taking the two-
dimensional image space gradients of the previously com-
puted streamwise (x) and cross-stream (y) coordinates of the
water surface plane, the optical flow pixel displacement rates
are scaled onto the water surface plane, noting that the op-

tical flow motions in the horizontal and vertical directions
of the image space can each be indirectly measuring com-
ponents of both the streamwise and cross-stream motions on
the water surface plane. From this point, the motions out of
the assumed plane of the water surface are filtered out of
the analysis to further remove false motions unrelated to the
waterway surface velocities (such as animals and swinging
ropes, which are not moving in the assumed plane of the wa-
ter surface).

Assuming the remaining velocities over the length of the
analysis section are velocities related to the motion of the
water surface, and assuming a continuity in the uniformity
of the analysis section length without transitional flows,
the strongest detected velocities are collapsed into a single-
dimensional raw cross-sectional surface velocity profile. The
assumed continuity over the analysis section length facili-
tates the measurement of velocities across spatially inconsis-
tent optical flow measurement and lighting conditions along
the length of the analysed section.

Whilst the visual conditions for optical flow measurement
can still be insufficient for reliable measurements across the
length of the measurement section in all situations, the CVSG
system then applies an adaptive learning velocity distribu-
tion across the cross section at 0.1 m intervals and refer-
ences these learning measurements over the observed wa-
ter level range at 0.01 m intervals. This process of develop-
ing an adaptive database of surface velocity measurements
across the stream at different water levels (adaptive learn-
ing surface velocity distributions) allows the system to use
multiple measurements of the same water level over time in
different conditions to combine these measurements into a
complete surface velocity profile while simultaneously being
adaptive to observed changes in surface velocity profiles in
non-stationary environments. Furthermore, there can still be
biases present in these measurements over time which could
take the form of incorrect velocity signals and sections of the
cross section which are persistently in poor optical flow mea-
surement conditions or entirely out of the range of the cam-
era’s pixel resolution in order to measure the displacements
with any accuracy. In this case data gaps are filled by fitting
the sufficiently measurable surface velocities to an exponen-
tial relationship model in a transformed spatial domain that
scales with each measured surface velocity’s relative distance
to the boundaries of the flow according to Eq. (2):

vs = v∞

(
1− e−bx

)
, (2)

where vs is the surface velocity, v∞ constrains the asymptote
approaching the free stream velocity, b is a cross-sectional
variable, and x is the boundary distance factor (defined here
as the depth multiplied by the distance to the nearest water
surface edge). The relationship in Eq. (2) bounds the surface
velocity to zero either where the depth reaches zero or at the
intersection of the water surface and the cross section. By
using the measured adaptive learning surface velocities dis-
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tribution as data for automated fitting of the gap-filled sur-
face velocity profile model across the entirety of the cross
section, an estimated surface velocity profile consistent with
the measurements collected at each water level is produced.
The Trust Region Reflective algorithm (Branch et al., 1999)
is used to optimise the least squares fit of these data by pre-
dicting the free stream velocity and cross-sectional variables
fitting the measurements learned in the adaptive surface ve-
locity distribution. Whilst the automated fitting of the surface
velocity profile model assumes that the relationship between
the measured surface velocities and the flow boundary are
consistent across the cross section, this assumption is likely
to weaken with significant variations in channel roughness
across the cross section, particularly if the surface veloci-
ties neighbouring these regions of different roughness are not
represented by samples in the adaptive surface velocity dis-
tribution.

2.4 Adaptive learning discharge rating

In order to estimate discharges from surface velocity pro-
files, an assumption is made in scaling the surface veloc-
ities to approximate the mean velocity profile across the
cross section using a ratio, α, which is then integrated over
the cross-sectional area at 0.1 m increments to estimate dis-
charge. Hauet et al. (2018) examined the vertical profiles of
3611 gaugings from 176 sites with different bed types (con-
crete, sandy, pebbly, boulders), finding the primary driver of
the ratio, α, to be the depth of flow. Their study found a linear
trend for hydraulic radiuses above 1 m (α = 0.8) up to 5 m
(α = 0.9), and furthermore it was concluded to use α = 0.8
for depths less than 2 m and α = 0.9 for depths greater than
2 m in natural channels. Following from this, the CVSG anal-
ysis applies a varying α across the cross section switching be-
tween a low (default 0.8) and high (default 0.9) value depen-
dent on a threshold depth (default 2 m) at each 0.1 m inter-
val. The result of this cross-section-varying depth-dependent
approach is an effective α weighted on the distribution of
depths within the cross section.

Using the adaptive learning surface velocity distributions
and the associated fitted model surface velocity profiles, an
adaptive discharge estimation is produced for each observed
water level at 0.01 m intervals. This process is replicated in-
dependently in parallel for the lower and upper surface veloc-
ity and discharge estimates to produce an adaptive learning
discharge rating envelope. The result of this is a new dis-
charge rating envelope fitted to the latest discharge estimates
across all of the observed water levels at a site with each new
measurement. The learning discharge rating can be config-
ured to either be generated from the range of discharge es-
timates by directly applying a locally fitted Savitzky–Golay
signal filter (Savitzky and Golay, 1964) (using a filter win-
dow size of 0.05 m vertically with nearest boundaries and
linear fitting) or fitting a power law weighted by the num-
ber of observations and the optical flow coverage measured

at each 0.01 m water level increment. The latter power law
weighted fitting method has not been applied here, as the
Savitzky–Golay signal filter is chosen instead for the results
presented in this work (considered by the authors to be the
preferred default configuration for general application, fol-
lowing the arguments of Fenton, 2018). Quality codes are
automatically determined for each discharge estimate based
on a function of the number of observations, the optical mea-
surement coverage resulting from the lighting and seeding
conditions, water level estimation, and convergence between
the current measurement, the learning velocity distribution,
the fitted surface velocity profile model, and the learning dis-
charge rating.

2.5 Operational discharge estimation references

Results from the CVSG-derived discharge estimates in this
study have been directly compared against the best avail-
able acoustic and optical methods for measuring discharge.
As part of these reference technologies, two commercially
available and well-developed technologies for estimating dis-
charge using optical methods of measuring surface veloci-
ties have been applied. These analyses were undertaken by
DischargeLab software (Photrack AG, Zürich, Switzerland)
using surface structure image velocimetry (SSIV) (Leitão et
al., 2018) and Hydro-STIV software (Hydro Technology In-
stitute, Osaka, Japan) using space–time image velocimetry
(STIV) (Fujita et al., 2007). Furthermore, the raw surface ve-
locity results from these technologies have been processed
using the surface velocity model fitting methodology used in
the CVSG system that is presented here demonstrating the
broader applicability of the methods presented in this study.

Acoustic Doppler current profilers (ADCPs) were utilised
in order to estimate the subsurface velocities and produce
reference acoustic estimates of the discharge independent of
the optical approaches. Where available, ADCP velocity es-
timates closest to the surface (between 0.13 to 0.19 m depth)
were compared to surface velocity estimates from the opti-
cal surface velocimetry technologies. Additionally, historical
ADCP-derived estimates of discharge used to develop dis-
charge ratings were utilised as a reference. The most up-to-
date discharge rating fits published by government agencies
based on the professional judgement of hydrographers us-
ing the applied technology and data available prior to the de-
ployment of optical methods at each site were used to repre-
sent the best available estimates. These latest discharge rat-
ing fits at water level gauging station sites were then also
used as a reference for time series comparisons through the
conversion of the recorded water levels to the discharge pre-
dicted by the discharge rating fit. Although these different
reference estimates have their own limitations and uncertain-
ties, the comparison of the best available estimates at each
case study site using the different technologies can provide
some insights both in where they differ and to what degree
they agree. At two existing government-maintained gaug-
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Figure 2. Images collected from study sites at (a) Castor River, On-
tario, Canada (10 April 2019, 15:55 LT), (b) an irrigation channel,
NSW, Australia (19 September 2020, 14:00 LT), (c) Tyenna River,
Tasmania, Australia (5 March 2021, 12:12 LT), and (d) Paterson
River, NSW, Australia (1 March 2022, 09:48 LT).

ing stations, historical manual gaugings have been compared
along with CVSG, DischargeLab, and Hydro-STIV measure-
ments relative to the latest published discharge rating using
root mean square error (RMSE), the mean percentage dif-
ference, and the Nash–Sutcliffe efficiency (NSE) (Jackson
et al., 2019) commonly applied for assessing predictive skill
for discharges in hydrological settings due to its sensitivity
to extreme values.

2.6 Field case study sites

This study includes four field case study sites (Fig. 2), inclu-
sive of a single surface velocimetry benchmark time captured
on the Castor River, Ontario, Canada (Perks et al., 2020b)
and a single capture of an irrigation channel in New South
Wales (NSW), Australia. Single points in time were focused
on the optical method assessments relative to the available
reference data for measuring surface velocities and estimat-
ing discharges. Two of the four sites presented here were con-
tinuously gauged with CVSG devices on the Tyenna River,
Tasmania, Australia, and on the Paterson River, NSW, Aus-
tralia. One point in time recorded from Tyenna River, Tasma-
nia, Australia, in the middle of the observed water level range
was also used for assessment of the optical methods relative
to the available reference data. In total, 18 recorded points
in time spanning the observed water level range were evalu-
ated between the discharge estimates of the optical methods
at Tyenna River, Tasmania, Australia. Furthermore, both the
Tyenna River and Paterson River CVSG deployments were
evaluated with long-term operational considerations for the
implementation of CVSG methods into routine stream gaug-
ing. Table 1 provides a summary of the available reference
data for the field case study sites presented in this work, as
well as the measurement ranges observed.

2.6.1 Castor River, Ontario, Canada

The surface velocity profiles and discharge estimates for the
Castor River case study site at Russell in Ontario, Canada,
orientated facing across the stream from the left bank were
analysed in this work utilising the published benchmark data
(Perks et al., 2020b) from 10 April 2019, where an approx-
imately 20 Hz 30 s duration video recording was captured at
15:55 local time (LT) (2688× 1520 pixel resolution). The
benchmark data included a reference Teledyne RDI Stream-
Pro ADCP (Thousand Oaks, CA, USA) moving-boat tran-
sect with 0.05 m vertical cell resolution and the topmost cell
measuring at 0.17 m depth. From the cross-sectional depth
characteristics, the surface velocities extrapolated from the
ADCP transect were scaled using the same 0.8 ratio assumed
to approximate the depth-averaged velocity in the surface ve-
locimetry approaches and then integrated across the channel
cross section to estimate a comparable reference discharge.
However, the most recently published gauging station rating
was ultimately used as the reference discharge estimation, as
this is currently the reported discharge that is estimated when
the water level (3.77 m) is measured by the gauging station.
This benchmark case study presents a favourably diffusely
lit environment with visible surface rippling features across
the full width of the cross section and a water surface reflec-
tive of the sky and vegetation. There are 12 ground control
reference points provided with the recording for spatial rec-
tification and scaling of pixel displacements over time. The
cross section recorded by the moving-boat ADCP transect
was used for the estimation of discharge and boundary dis-
tance factor surface velocity profile model fitting with an ap-
proximate maximum depth of 1.2 m over a 27 m-wide cross
section (average depth of 0.8 m). Surface velocity analysis
regions for all technologies utilised were conducted in a sim-
ilar region across the downstream side of the ground control
reference points closest to the bridge to the left of frame. To
consider the variation resulting from different recording du-
rations, raw CVSG surface velocities were analysed over the
cross section for recording durations of 5, 10, and 20 s.

2.6.2 Irrigation channel, NSW, Australia

Canal channels are an important waterway type globally for
the measurement of discharge, with countries such as the
United Kingdom containing over 600 000 km of channels
and ditches, while streams and rivers comprise some 270 000
km (Peacock et al., 2021). A field case study was undertaken
with a camera oriented facing downstream from a hydraulic
sluice gate control structure in an irrigation channel in NSW,
Australia, on 10 September 2020 at 14:00 LT. A 30 Hz 30 s
video recording (3840× 2160 pixel resolution) formed the
basis for the surface velocimetry estimations, with a refer-
ence measurement provided by a series of four SonTek RS5
moving-boat ADCP (San Diego, CA, USA) transects taken
between 15 to 20 m downstream of the hydraulic control
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Table 1. Field case study sites summary (water level ranges presented relative to local datums).

Site Period Distance to Water Reference Ground control
stream (m) levels (m) gaugings reference points

Castor River, Ontario, Canada 30 s – 3.77 1 concurrent (2019) 12
Irrigation channel, NSW, Australia 30 s – 135.80 1 concurrent (2020) 10
Tyenna River, Tasmania, Australia 56 d 5.9–7.3 0.31–0.87 344 historical (1964–2022) 9
Paterson River, NSW, Australia 122 d 0–22.5 0.78–10.54 157 historical (1987–2021) 0

structure within a time span of 8 min and a maximum dis-
charge estimation difference of 8.5 % to the most outlying
transect measurement. A non-uniform flow distribution is ev-
ident across the width and length of the irrigation channel
with evidence of standing waves at the free surface includ-
ing shimmering sun glare reflections. The area of the irri-
gation channel was surveyed with 10 ground control refer-
ence points for rectification of the image spatial scales and
surface velocities from the pixel displacements over time.
The cross section used for discharge estimation was taken
from the ADCP reference transects with a maximum depth
of 1.3 m and a transect width of 6.8 m. CVSG optical flow
analysis along the length of the channel showed a marked
reduction in flow visibility towards the region of the refer-
ence ADCP transects downstream (Fig. S1). Furthermore,
the optical surface velocity measurement technologies were
optimised to their suitable regions of interest. Hydro-STIV
required a suboptimal analysis region closer to the camera
and hydraulic structure in order to estimate one-dimensional
space–time image stack angles for the determination of ve-
locities, necessitating search line lengths which were unsuit-
ably short for analysis under these conditions. Additionally
for this case study, the CVSG analysis region was limited to
1 m channel section lengths, as the assumptions for CVSG
analysis were found to be violated for sufficiently large anal-
ysis regions along the length of the cross section where the
streamlines were not continuous. Beyond this, the CVSG raw
surface velocities using recording durations of 5, 10, and 20 s
have been analysed to assess the difference in measurements
over differing sampling durations.

2.6.3 Tyenna River, Tasmania, Australia

The first long-term CVSG device field site was installed at
the Tasmanian Government gauging station site at Newbury
on Tyenna River, Tasmania, Australia, with CVSG analysis
beginning from 5 March 2021 at 16:47 LT. A 216 km2 catch-
ment upstream provides continuous flow through the site
with observed water levels between 0.26 and 0.87 m (max-
imum depths between 0.68 and 1.29 m) during CVSG opera-
tion. Along with a cross section of the site’s bathymetry, nine
ground control reference points were surveyed in the field of
view of the camera in order to carry out reference analyses
with DischargeLab and Hydro-STIV, while none were used
for the CVSG analysis. The bed of the stream becomes visi-

ble at low water levels (< 0.4 m) with very little visibility of
the water surface. Whilst the site experiences significant vari-
ations in lighting and flow conditions, the site’s streamflow
conditions are considered well-suited for remote optical mea-
surement of surface velocities due to naturally occurring cov-
erage of surface features above baseflow. However, it should
be noted that the onset of standing waves was evident at the
upper end of the range recorded by the CVSG device.

The CVSG device was mounted at an approximate water
level of 6.32 m at a distance from the near-bank water edge,
which ranged between 5.9 to 7.3 m over the recorded water
level range. Video recordings were generally set to be taken
with durations ranging between 5 to 20 s at 10 min intervals
generally with a resolution of 1920× 1080. The system was
offline for 5 months between May and October 2021 during
the first 12 months of operation included in this study. The
CVSG analysis was configured to consider a constant 9 m
long analysis region along the length of the stream with the
positive flow direction provided to the right of the camera. A
standard point cloud average temporal variation tolerance of
0.1 m was also set.

Historical manual discharge gauging measurements were
provided for the site since 1964, averaging between 2 to 9
gaugings per year each decade over a water level range from
0.23 to 1.54 m, with the peak number of gaugings in the
1980s. There were 18 reference comparison time points se-
lected from the CVSG recordings in March and April 2021
covering the range of water levels with a variety of lighting
conditions. One of these comparison time points (30 March
2021, 12:12 LT, at a water level of 0.509 m) was used for
the more detailed comparison of the estimated surface ve-
locity profiles between the technologies. The most recent
manual gauging measurement recorded within 0.05 m of the
time point of the more detailed comparison time point’s wa-
ter level was also used for reference. This manual gauging
measurement was undertaken on 7 August 2019 at 11:32 LT
using a SonTek M9 RiverSurveyor moving-boat ADCP setup
(San Diego, CA, USA) on the fixed cableway existing at the
site.

2.6.4 Paterson River, New South Wales, Australia

A second long-term CVSG device field site was installed
at the WaterNSW gauging station at Gostwyck on Pater-
son River, with analysis beginning from 3 November 2021
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05:59 LT and finishing after being submerged on 4 March
2022. Significant flows with stream rises greater than 10 m
that are ephemeral in nature at this site are more representa-
tive of regional Australian rivers. With a catchment area of
956 km2 which is largely cleared for agricultural land use,
2 km upstream from the site is a confluence with the Al-
lyn River, and Lostock Dam is 80 km upstream. Over the
4 months of CVSG operation at this site, water levels be-
tween 0.78 and 10.54 m were recorded (maximum depths
ranging between 1 and 11 m), with cascading erosion of the
far bank captured by the CVSG device at water levels higher
than baseflow. Strong winds along the streamflow direction
were observed in the first month of deployment significantly
biasing low-flow surface velocities.

The CVSG device was installed perpendicular to the
streamflow at an approximate water level of 11.34 m at a dis-
tance from the near bank water edge which ranged between 0
and 22.4 m over the recorded water level range. A cross sec-
tion of the bathymetry was surveyed in a straight line along
the same streamflow perpendicular axis as the camera orien-
tation up to a water level of 8.38 m (2.2 m below the highest
observed water level during CVSG operation), noting the lo-
cation of the camera along this cross-sectional survey line.
No ground control reference points were surveyed at this
site, and there was therefore no comparison to other optical
surface velocimetry technologies available. While alternative
measurements for direct comparisons were not available, the
latest published discharge rating estimates as well as the 157
historical manual gauging measurements taken across water
levels ranging from 0.56 to 10.54 m since 1987 were used for
reference. Dynamically varying downstream and upstream
analysis boundaries were defined entirely to the right-hand
(upstream) side of the CVSG device. Below 2 m water level,
the analysis region was set to an 18 m channel length, while
water levels above 2 m were able to analyse an expanded
35 m long channel length. The video recordings taken at the
site were 10 s duration at a resolution of 1920× 1080 every
10 min.

3 Results

3.1 Optical surface velocimetry

The surface velocity and ADCP (0.17 m depth) profiles
across the cross-sectional distance for the Castor River case
study (Fig. 3a) measured velocities increasing from the bank
up to 1.5 m s−1 occurring by approximately 2 m across the
channel for all measurement technology approaches. Within
the midsection of the channel, velocities were measured be-
tween 1.5 and 2 m s−1, with Hydro-STIV observing the low-
est peak velocity, less than the peak measurement of the
ADCP beneath the surface (which recorded some velocities
on the order of 2 m s−1). The lower resolution of Hydro-
STIV search line measurements across the channel could be

attributed to this result missing the peak velocities measured
by the other technologies; however the other reference tech-
nologies consistently estimated higher velocities across the
entire channel midsection. On the other hand, Hydro-STIV
showed the highest rate of full velocity development from the
edge of the channel, with the raw CVSG surface velocities
estimating the lowest rate of full velocity development from
the edge of the channel. Furthermore, the raw Discharge-
Lab and CVSG velocity estimates tracked closely across the
channel, although the optically estimated surface velocities
were all in agreement with peak surface velocities occurring
approximately 2 m closer to the left bank of the channel rel-
ative to the peak velocities measured by the ADCP. It can be
seen that the optical surface velocity measurement technolo-
gies were able to measure velocities in the shallower regions
closer to the channel edges than was possible with ADCP
moving-boat transects.

With the application of the CVSG surface velocity pro-
file model fitting methodology to all three optical surface ve-
locity estimation approaches (Fig. S2a), it can be seen that
whilst the raw surface velocity estimates largely fit within
the bounds of the ADCP measurements at 0.17 m depth over
the scale of the boundary distance factor, the resulting sur-
face velocity profile model fits from each technology takes
on a different shape. However, despite these differences in
fitted surface velocity model profiles with the free stream
surface velocities fitted ranging from 1.55 m s−1 in the case
of Hydro-STIV, up to 1.9 m s−1 in the case of CVSG, as
well as differences in the cross-sectional variable ranging be-
tween 0.45 (for CVSG) and 1.7 (for Hydro-STIV), the result-
ing discharges between all reference comparisons (including
varying recording duration for raw CVSG analysis between
5 and 20 s and the ADCP discharge estimation using con-
stant extrapolation to surface velocity) were within 5 % of
the latest published gauging station rating discharge at the
recorded water level (Table 2). For this case study, there was
little sensitivity observed between the different measurement
technologies, the duration of recording, or the resulting fitted
surface velocity profile model parameters on the estimated
discharges. Overall, the surface velocity profile model fitting
methodology did not negatively impact the calculation of dis-
charge for any of the surface velocity estimation technologies
in this case study.

In the irrigation channel case study, the raw surface veloc-
ity profiles estimated were broadly in agreement about the
shape of the velocity profiles across the channel (Fig. 3b),
with the largest peak occurring within 2 m of the left bank,
as well as reduced surface velocities measured in the mid-
dle of the channel and increased velocities towards the right
bank. These velocity profiles are consistent evidence of the
influence of the two hydraulic control gates upstream re-
leasing water into the channel. Whilst the surface velocity
magnitudes measured by the raw CVSG analyses from du-
rations of 5, 10, and 20 s across the channel profile were
more consistent with the ADCP-measured velocities at 0.13
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Figure 3. Detailed time point comparison of raw and model fitted velocity measurements plotted with nearest surface ADCP measurement
cells over the cross sections at (a) Castor River, Ontario, Canada; (b) an irrigation channel in NSW, Australia; and (c) Tyenna River, Tasma-
nia, Australia. (d) Correlation plot between the gauge rating and optically estimated discharges at comparison time points at Tyenna River,
Tasmania, Australia, with the detailed comparison time point indicated. CVSG 5 s duration surface velocities shown for (a) Castor River,
Ontario and (b) the irrigation channel in NSW, Australia. CVSG 10 s duration surface velocities shown for (c, d) Tyenna River, Tasma-
nia, Australia. Hydro-STIV velocity estimates outlined in black were automatically produced, whereas the estimates outlined in red were
corrected to the Fourier result or manually corrected to reduce automatically overestimated velocities resulting from the higher-frequency
surface wave patterns or underestimated tracer-poor search lines.

to 0.19 m depth, the surface velocities estimated by Hydro-
STIV and DischargeLab were on the order of double within
2 m of the channel edges. While the objective truth of the
surface velocity profile across the channel is not known, the
Hydro-STIV analysis contains results with unclear space–
time pattern angle identification under these conditions. It is
important to note the irrigation channel site differs substan-
tially from other trial sites with a downstream field of view
and highly turbulent flow conditions discharged through an
engineered channel. Furthermore, this case study not only
demonstrates where site selection can lead to troubling opti-
cal surface velocity measurements, but also highlights a case
where the assumptions of the CVSG surface velocity profile
model are not valid and therefore should not be applied (as in

Fig. S2b). Although the discharge is only inferred from the
signals measured by the reference technologies, only the raw
CVSG measurements and ADCP discharge estimates agree
within 5 % across all recording durations analysed (Table 3).

With 133 samples measured over the length of the ADCP
cross section, the resulting ADCP measurement resolution
was on the order of 0.04 m per sample (with 1 s per sam-
ple). This meant that the ADCP sampling durations for each
segment of the channel was on the order of 2.5 s per 0.1 m
channel cross-sectional segment. The lowest duration CVSG
optical surface velocity analysis occurred over 5 s sampling
the entire cross section simultaneously at 0.1 m resolution
(not possible with a moving-boat ADCP transect), which re-
sulted in a 1 % to 4 % difference to the ADCP discharge es-
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Table 2. Summary of discharge estimates for gauging technologies at Castor River, Ontario, Canada (10 April 2019, 15:55 LT).

Measurement Type Duration Discharge (m3 s−1)

Water level Published rating at 3.77 m – 27.8

ADCP (surface) Constant extrapolation to surface NA (+1 %) 28.2

CVSG Raw 5 s (−2 %) 27.3
Raw 10 s (−4 %) 26.8
Raw 20 s (−4 %) 26.6
Model fit (v∞ = 1.9, b = 0.45) 5 s (+1 %) 28.1

DischargeLab Raw 25 s (+4 %) 28.9
Model fit (v∞ = 1.8, b = 0.8) 25 s (+3 %) 28.6

Hydro-STIV Raw 25 s (+1 %) 28.0
Model fit (v∞ = 1.55, b = 1.7) 25 s (+2 %) 28.3

NA = not available

Table 3. Summary of discharge estimates for gauging technologies at an irrigation channel in NSW, Australia (10 September 2020, 14:00 LT).

Measurement Type Duration Discharge (m3 s−1)

ADCP (profile) Moving boat 124 s 1.65

CVSG Raw 5 s (+2 %) 1.68
Raw 10 s (−1 %) 1.64
Raw 20 s (−4 %) 1.58
Model fit (v∞ = 0.8, b = 0.4) 5 s (+55 %) 2.56

DischargeLab Raw 20 s (+215 %) 5.19
Model fit (v∞ = 1.05, b = 2.5) 20 s (+224 %) 5.34

Hydro-STIV Raw 20 s (+111 %) 3.48
Model fit (v∞ = 1, b = 1) 20 s (+189 %) 4.77

timate. However, the incorrect application of the surface ve-
locity profile model resulted in estimates 55 % higher than
the reference ADCP discharge estimate.

After 25 d into the operation of CVSG at the case study site
on the Tyenna River capturing 2452 gaugings, the first flow
event had been observed (reaching a maximum recorded wa-
ter level of 0.735 m) with the water level receding to 0.509 m
on 30 March 2021 at 12:12 LT; the comparison surface ve-
locity profile estimates were found to be grouped within
±0.1 m s−1 in the midsection of the channel (Fig. 3c). The
ADCP-measured mean velocities across the channel were
scaled up to estimate the surface velocity using the assumed
ratio of 0.8 recorded at a water level 0.038 m higher on 7
August 2019 at 11:32 LT. Similarly, this resulted in ADCP-
estimated surface velocities within the same range of vari-
ability measured by the surface velocimetry reference meth-
ods but with a 14 % higher calculated discharge relative to
the latest published discharge rating at 0.509 m water level
(Table 4). Although the true discharge is not known, all ref-
erence technologies estimated discharges within 10 % of the
latest published discharge rating at this water level, except

for the ADCP profile recorded 601 d prior at a higher water
level estimating within 15 %.

Surface velocity profile model fits for this case study mea-
surement ranged between 0.78 (CVSG and Hydro-STIV) to
0.88 m s−1 (DischargeLab) for free stream velocities and 1
(DischargeLab) to 1.4 (Hydro-STIV) for cross-sectional vari-
ables (Fig. S2c). The model fitting of the raw surface veloc-
ities estimated across all optical measurement technologies
was not found to have any negative measurable impacts on
the calculation of discharge. However, in practice the model
fit would not be computed using the raw velocities alone, as
the CVSG system would instead compute the model fit of the
learning velocity distribution after the 25 d of measurements
that had resulted in eight observations within 0.005 m and an
accumulated 72 % optical flow measurement coverage over
the width of the cross section at this water level (Fig. S3a).

Furthermore, up to this measurement time there had been
a total of 2452 CVSG gaugings across a wider range of wa-
ter levels, and the resulting learning discharge rating was
also estimated (Table 4). Additionally, quantifying any fur-
ther change in the learning estimations considering a point
in time which is another 30 d advanced into the CVSG gaug-

https://doi.org/10.5194/hess-27-2051-2023 Hydrol. Earth Syst. Sci., 27, 2051–2073, 2023



2062 N. R. Hutley et al.: Adaptively monitoring streamflow

ings (Fig. S3b) saw the difference between the learning es-
timated CVSG discharges and the latest published discharge
rating at 0.509 m water level drop from within 6 % to within
2 %. However, it is important to note that the variability in
CVSG discharge estimates is minimal compared to the vari-
ation in manual gauging estimates from similar water levels
since 1989. This variation in discharge estimates over time is
often a function of cross section changes and subsequent rat-
ings shifts. Relative differences are expected to be within the
realm of uncertainty of the true discharge, particularly as the
discharge has only been measured at this water level once in
1966, with measurements within 0.005 m occurring 5 times
(most recently in 1989) and 37 measurements within 0.05 m
(the two most recent occurring 2 and 8 years prior to the time
of this case study recording) (Fig. 4).

Further comparison of the reference optical surface ve-
locimetry technologies at 16 time points along the time se-
ries recorded at Tyenna River shows the importance of dis-
charge gauging technology assessments over multiple con-
ditions (Table 5). With the evaluation of more time points,
an understanding of the most suitable conditions for gaug-
ing can be built from the statistics of the RMSE, mean per-
centage bias difference, and the NSE relative to the reference
latest gauging station rating. In the absence of gauged wa-
ter levels, the raw CVSG discharge estimation had the great-
est time series absolute error performance with an RMSE of
1.28 m3 s−1 however suffered a worse bias in the mean dif-
ference relative to the latest gauging station discharge rat-
ing, with the learning estimations demonstrating improving
this bias to 1.9 % in hindsight after 12 months of learning
with an increased 2.28 m3 s−1 RMSE. For the CVSG dis-
charge estimations using the gauge water level, the RMSEs
were reduced to less than half of the stereophotogrammetry-
estimated water-level-based discharge estimations, implying
that the stereophotogrammetry estimation of water level is
the largest source of error in the discharge estimate.

3.2 Stereophotogrammetry water level detection

During the operation of the CVSG system on the Tyenna and
Paterson rivers, water levels were remotely estimated using
stereophotogrammetry with every recording possible, requir-
ing sufficient daylight, as night vision equipment was not
installed at these sites during the period of this evaluation.
The time series of remotely estimated water levels were clas-
sified into different error ranges relative to the water levels
recorded by the reference gauging stations at Tyenna River
(Fig. S4a) and Paterson River (Fig. S4b). Water level estima-
tion errors within 0.005 m were considered to be exactly cor-
rect relative to the 0.01 m water level database precision used
in CVSG operation in this work. Errors found to be within
0.05 m were also expected to be useful, as this is the water
level Savitzky–Golay filter window size used in the CVSG
learning distributions of these studies. Both sites in this study
with CVSG deployed suffered from higher variability during

lower flows, corresponding to low visual distinction of the
texture of the water surface, particularly with the greater dis-
tance of the site to the edge of the Paterson River at low flows
and clear water displaying the bed of the Tyenna River.

Correlation plots between the gauge water level and
the CVSG stereophotogrammetry-estimated water level at
Tyenna River (Fig. 5a) and Paterson River (Fig. 5b) show the
remotely estimated water levels compared over the range of
the gauge recorded water levels with some potential cluster-
ing of different error regions at particular water levels. From
this, the cumulative error distributions (Fig. 5c) shows 2 %
and 1 % of measurements taken over the study period were
considered to be precise at the Tyenna River and Paterson
River sites, respectively. Furthermore, just 16 % and 7 % of
measurements at the sites were considered within the CVSG
learning distribution noise tolerance, with the remaining ma-
jority of measurements falling outside of this error range with
potentially significant contributions to discharge bias possi-
ble as a result.

3.3 Time series discharge

The real-time estimation of discharge over time relative to
the latest gauging station rating at Tyenna River using CVSG
raw, learning model fit, and learning rating all demonstrated
the ability to capture the patterns of hydrographic rises and
falls despite the significant presence of errors in the remote
stereophotogrammetry estimation of water level (Figs. 6a
and S5a). Whilst the raw CVSG discharge estimates follow
the latest gauging station rating estimation more closely than
the learning estimations, this can be attributed to the sig-
nificantly higher vulnerability of the learning estimates for
any individual time point to errors in the water level esti-
mation. However, with the learning process continuing over
12 months at the site, a marked improvement in the discharge
estimation from the learned discharge rating (despite the un-
derlying water level estimation errors) was evident.

Using the gauge water level in the CVSG analysis in-
dependently parallel to the stereophotogrammetry-estimated
measurements yielded learning discharge estimations rapidly
improving on the variability observed in the raw CVSG mea-
surements (which are each independently estimated through
time) relying on the suitability of the naturally occurring con-
ditions for optical flow at the time of measurement (Figs. 6b
and S5b). Even though the true discharges at the measure-
ment times are not known, the CVSG learning discharge es-
timations using the gauge water levels at the time overesti-
mated the discharges of events occurring in April 2021 rel-
ative to the latest gauging station discharge rating by up to
20 %. However, the application of the learning CVSG dis-
charge rating after 12 months in hindsight demonstrated a
stronger agreement to the gauging station rating in this series
of events. While the original learning estimate may have been
correct at the time of the measurement, with non-stationary
site conditions resulting in a shift in the true discharge rating
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Table 4. Summary of discharge estimates for gauging technologies at Tyenna River, Tasmania, Australia (30 March 2021, 12:12 LT) using
gauge water levels.

Measurement Type Duration Discharge
(m3 s−1)

Water level Published rating at 0.509 m – 4.37

ADCP (profile) Moving boat 7 August 2019, 11:32 LT, at 0.547 m 1522 s (+14 %) 4.97

CVSG Raw 10 s (−6 %) 4.09
Model fit (v∞ = 0.78, b = 1.2) 10 s (−6 %) 4.11

25 d gauged Learning model fit (v∞ = 0.86, b = 1.39) – 8 observations at 72 % coverage 10 s (+6 %) 4.63
Learning rating (2452 observations) – (+5 %) 4.58

55 d gauged Learning model fit (v∞ = 0.8, b = 1.47) – 19 observations at 84 % coverage 5 s (−1 %) 4.33
Learning rating (3890 observations) – (+2 %) 4.46

DischargeLab Raw 10 s (+5 %) 4.59
Model fit (v∞ = 0.88, b = 1) 10 s (+4 %) 4.55

Hydro-STIV Raw 10 s (−8 %) 4.03
Model fit (v∞ = 0.78, b = 1.4) 10 s (−3 %) 4.23

Figure 4. Historical and CVSG gaugings at Tyenna River, Tasmania, Australia, in the vicinity of 0.509 m water level.

after a further 10 months of site evolution, it is considered
more likely that the lower agreement between the real-time
CVSG learning discharge estimations and the latest gauge
discharge rating was due to discontinuities from the sparser
CVSG device sampling during this period beyond the range
of previously recorded measurements.

The Paterson River site demonstrated more challenging
conditions for continuous optical measurements of surface
velocities due to surface texture combined with CVSG de-
vice distance to the water surface at low flows and the wider
channel cross section approaching the eye level of the cam-
era at the higher observed flow events. The resulting CVSG
discharge estimations at Paterson River (Figs. 6c, S7a, 6d,
and S7b) demonstrate the utility of the learning model fit and
discharge rating for improving the operational gauging capa-
bility using optically measured surface velocities.

Similarly to the findings at Tyenna River, the difference
between the CVSG learning results relative to the latest gaug-

ing station discharge rating at Paterson River implied the ma-
jority of discharge gauging noise was the result of noise in
the stereophotogrammetry-estimated water level (Fig. S8a).
This noise, as evidenced by the distribution of CVSG wa-
ter level error (Fig. 5c), was significantly worse at Paterson
River during low flows approaching the upper range of the
point cloud distance to reach the near bank intersection with
the water surface. Despite this significant noise, the CVSG
learning discharge estimations demonstrated a capability to
reduce this influence of this error both in real-time learning
and improve further with more measurements. Interestingly,
the magnitude of raw CVSG discharge estimation errors was
remarkably similar between the remotely sensed and gauge
water level cases due to the most significant errors in the
raw measurements occurring during flow events with poor
surface velocity visibility. In these cases, the learning sur-
face velocity distribution fitted model demonstrated signifi-
cant improvements to the raw optical measurements. Further
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Table 5. Summary of comparison time points relative to the gauge rating at Tyenna River, Tasmania, Australia.

Measurement Type RMSE NSE
(m3 s−1)

CVSG (stereophotogrammetry-estimated water level) Raw 1.28 0.905
Learning model fit 2.69 0.581
Learning rating 2.26 0.705
Learning rating (12 months) 2.28 0.719

CVSG (gauge water level) Raw 0.48 0.986
Learning model fit 1.18 0.919
Learning rating 1.03 0.939
Learning rating (12 months) 0.60 0.979

DischargeLab (gauge water level) Raw 0.97 0.945

Hydro-STIV (gauge water level) Raw 0.68 0.973

Figure 5. Correlation between gauge- and stereophotogrammetry-estimated CVSG water level classified according to error magnitude at (a)
Tyenna River, Tasmania, Australia, and (b) Paterson River, NSW, Australia, on a logarithmic scale. The cumulative stereophotogrammetry-
estimated CVSG water level error class distribution (c) for both Tyenna River, Tasmania, Australia, and Paterson River, NSW, Australia, on
a logarithmic scale.
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Figure 6. Correlation plots for the latest gauging station rating discharge time series against the CVSG-estimated discharge time series at
Tyenna River, Tasmania, Australia, using (a) stereophotogrammetry-estimated water levels and (b) gauge water levels, as well as at Paterson
River, NSW, Australia, using (c) stereophotogrammetry-estimated water levels and (d) gauge water levels.

to this, the reduced water level estimation noise when us-
ing the gauge water level (Fig. S8b) displayed significantly
reduced error in the CVSG learning discharge estimations
converging much faster between the real-time and 4-month
hindsight rating estimates.

3.4 Adaptive learning discharge rating

The latest CVSG learning discharge ratings after
12 months of deployment at Tyenna River using the
stereophotogrammetry-estimated water levels and gauge
water levels were found to be within the range of historical
manual gaugings (Fig. 7). With the manual gaugings classi-
fied by decade, it is important to understand the foundation
of the measurements behind the latest gauging station
discharge ratings, as well as how the degree of fit to the
smooth gauging station rating curves. Whilst the majority

of the CVSG learning rating using stereophotogrammetry-
estimated water levels was found to be within the range
of the 344 manual gaugings undertaken at the Tyenna
River site since the 1960s, the discharge ratings for
stereophotogrammetry-estimated water levels below 0.4 m
(where water clarity impacted measurements) demonstrated
a bias to higher discharge. There was also a transition point
from high discharge estimates to low discharge estimates
using the stereophotogrammetry-estimated water levels
in the vicinity of 0.6 m. Furthermore, the CVSG learning
discharge rating using gauge water levels demonstrated a
tighter convergence to the most recent manual gaugings and
the latest gauging station rating.

It is important to note the upper range of discharge mea-
surements above 0.79 m gauged by the CVSG system to
0.87 m has not been manually gauged at Tyenna River for
more than 10 years, where the RMSE to the latest gauging
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Figure 7. Discharge gaugings at Tyenna River, Tasmania, Australia, with CVSG learning ratings after 12 months of deployment using
stereophotogrammetry-estimated water levels and gauge water levels.

station discharge rating is above 2 m3 s−1 with mean dif-
ferences greater than 20 % (Table 6). All real-time CVSG
discharge estimations over the time series demonstrated
less RMSE than the most recent decade containing an in-
creased manual gauging range that includes the range mea-
sured by the CVSG system. For the stereophotogrammetry-
estimated water-level-based CVSG discharge ratings, the
RMSE showed an increasing trend with the progression of
the learning process primarily due to an increasing gauged
water level range containing sparse observations with more
absolute discharge error. However, the NSE of these learning
CVSG discharge ratings showed increasing skill relative to
the latest gauging station discharge rating. The CVSG dis-
charge estimations using the gauge water level demonstrated
a relatively stable fit to the reference discharge rating, while
the learning method was able to provide a significant reduc-
tion in the mean difference to the reference discharge rating.

After 4 months of CVSG operation at Paterson River, the
system had gauged the maximum water level range that had
been manually gauged since as far back as the 1980s, with the
CVSG discharge estimations using the gauge water level pro-
ducing an estimated discharge at the top of this range within
0.22 % of the discharge measured in the 2000s at this wa-
ter level. Whilst the manually gauged discharges at the up-
per recorded water levels appear to be sparsely measured,
the CVSG discharge learnings using either gauge water lev-
els or stereophotogrammetry-estimated water levels were in
agreement with the manual gaugings across the measurement
range (Fig. 8). Further to this, the shape of the CVSG dis-
charge ratings agrees more closely with the shape of the rat-
ing curve implied by the manual gaugings, rather than the
smoother fit of the gauging station rating curve.

The summary statistics of the CVSG discharge estimations
at Paterson River (Table 7) showed that the learning CVSG

analysis using stereophotogrammetry-estimated water levels
were significantly impacted by the error in the water level
estimation resulting in mean differences in excess of 100 %
relative to the reference latest gauging station discharge rat-
ing. However, the NSEs of the learning discharge estimations
were significantly higher than the raw CVSG discharge esti-
mations.

3.5 Overview of results

The results of this work found broadly comparable gauging
results using the raw data of the different measurement tech-
nology approaches employed, predominantly falling within
a relative error of 15 % under suitable conditions when
comparing between the results of both the detailed sur-
face velocity distribution case studies and longer deployment
timescales evaluated. However, it was demonstrated that the
use of a surface velocity profile model fitted to raw measure-
ments under suboptimal or only partially measurable condi-
tions could be beneficial to improving the reliability of sur-
face velocimetry methods. Furthermore, the learning of an
adaptive surface velocity distribution extended to an adaptive
learning discharge rating produced robust results for stream
gauging over time. While the initial CVSG results for the
non-contact measurement of water levels using stereopho-
togrammetry found less than 20 % of measurements within
0.05 m, the learning capability of the CVSG approach pre-
sented was able to converge towards a robust discharge rating
despite noisy raw observation data.

4 Discussion

The study has outlined a new non-contact optical stream
gauging approach (CVSG) and provided a detailed compara-

Hydrol. Earth Syst. Sci., 27, 2051–2073, 2023 https://doi.org/10.5194/hess-27-2051-2023



N. R. Hutley et al.: Adaptively monitoring streamflow 2067

Table 6. Summary of site gauging results for Tyenna River, Tasmania, Australia relative to the latest gauging station discharge rating.

Measurement Type N Range (m) RMSE (m3 s−1) NSE

Manual gaugings 1960s 57 0.35–1.21 1.11 0.964
1970s 82 0.25–1.33 2.79 0.916
1980s 90 0.23–1.51 3.23 0.884
1990s 43 0.27–1.54 2.58 0.936
2000s 25 0.26–1.40 2.18 0.823
2010s 42 0.26–0.79 0.38 0.989
2020s 5 0.30–0.71 0.32 0.990

CVSG Raw (time series) 2133 −0.33–1.05 1.05 0.904
(stereophotogrammetry-estimated Learning model fit (time series) 2232 −0.33–1.05 1.54 0.793
water level) Learning rating (time series) 2232 −0.33–1.05 1.50 0.805

Learning rating (1 month) 1795 −0.33–0.79 1.28 0.891
Learning rating (2 months) 2133 −0.33–1.05 2.02 0.922
Learning rating (12 months) 17 178 −0.33–1.07 2.54 0.956

CVSG Raw (time series) 2141 0.31–0.87 0.63 0.961
(gauge water level) Learning model fit (time series) 9049 0.31–0.87 0.56 0.976

Learning rating (time series) 9293 0.31–0.87 0.53 0.979
Learning rating (1 month) 3276 0.31–0.73 0.26 0.993
Learning rating (2 months) 3905 0.31–0.87 0.90 0.955
Learning rating (12 months) 19 005 0.26–0.87 0.60 0.983

Figure 8. Discharge gaugings at Paterson River, NSW, Australia, with CVSG learning ratings after 4 months of deployment using
stereophotogrammetry-estimated water levels and gauge water levels.

tive analysis against existing optical approaches (Discharge-
Lab and Hydro-STIV) and the current standard technologies
and historical measurements informing gauging stations. Re-
sults highlight that the advancements in stereophotogram-
metry and machine learning approaches can overcome some
of the challenges of non-contact optical stream gauging and
provide insights into the added value of these emerging oper-
ational technologies. Whilst a significant uncertainty on the
order of 6 % has been found to be possible from user varia-
tions in ADCP discharge estimations (Despax et al., 2019),
as well as comparable deviations evident in a study of ADCP

measurement validation (Oberg and Mueller, 2007), a simi-
lar order of magnitude in difference between direct technol-
ogy comparisons was found in all but one exceptional case
in an irrigation channel in NSW, Australia. A study in an
irrigation canal using an experimental video camera system
with LSPIV and optical water level detection on a staff gauge
demonstrated results within 5 % of the reference estimates
but highlighted that reflections and shadows produced nega-
tive effects on the detection of motion, requiring further con-
sideration of spatial filters and light distribution (Lee et al.,
2010).
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Table 7. Summary of site gauging results for Paterson River, NSW, Australia relative to the latest gauging station discharge rating.

Measurement Type N Range (m) RMSE (m3 s−1) NSE

Manual gaugings 1980s 17 0.81–1.69 4.45 0.455
1990s 45 0.66–2.04 4.51 0.540
2000s 50 0.56–10.54 29.42 0.917
2010s 38 0.61–8.07 6.20 0.908
2020s 7 0.71–1.28 0.24 0.993

CVSG Raw (time series) 6228 −0.2-1-9.94 21.92 0.680
(stereophotogrammetry-estimated Learning model fit (time series) 6246 −0.21–9.94 16.13 0.827
water level) Learning rating (time series) 6246 −0.21–9.94 15.86 0.832

Learning rating (1 month) 1940 −0.14–8.13 17.74 0.953
Learning rating (2 months) 3534 −0.19–8.13 20.83 0.939
Learning rating (4 months) 6265 −0.21–9.94 25.18 0.950

CVSG Raw (time series) 6592 0.78–10.54 19.04 0.973
(gauge water level) Learning model fit (time series) 18 352 0.78–10.54 5.47 0.951

Learning rating (time series) 18 624 0.78–10.54 4.89 0.961
Learning rating (1 month) 1978 0.78–7.86 9.60 0.981
Learning rating (2 months) 3627 0.78–7.86 8.95 0.982
Learning rating (4 months) 6627 0.78–10.54 20.78 0.942

There has been some LSPIV discharge uncertainty estima-
tions undertaken from recordings of a stream in the French
Alps (Dramais et al., 2011) showing less than 2 % discharge
deviation for recording durations more than 4 s, consistent
with the CVSG results tested using different durations. With
in situ profile measurements, this study in the French Alps
found the uncertainty in the mean velocity coefficient to be
close to 7 %, with the largest source of uncertainty up to
15 % possible without velocity depth profile measurements
within the flow range of interest. Further to this, the sensi-
tivity analysis of this French Alps study examined the effect
of waves (negligible), cross-sectional transects (±4 %), and
water level errors at 4 % from a 10 cm error (noting that the
CVSG stereophotogrammetry water level error was within
this range only 27 % and 14 % of the time at the Tyenna River
and Paterson River sites, respectively). Alternative meth-
ods for estimating the uncertainty of stream discharge rat-
ing curves have been compared in Kiang et al. (2018), find-
ing a wide variation in uncertainty estimates resulting from
different methods, which demonstrated the necessary care-
ful selection and communication of the assumptions of the
uncertainty estimates provided.

By using UAV footage of artificially seeded low-flow
conditions (average surface velocities between 0.12 to
0.14 m s−1) on a river in Serbia, a significant sensitivity to
algorithm parameters was apparent for LSPIV, large-scale
particle tracking velocimetry (LSPTV), and optical tracking
velocimetry (OTV) relative to the less sensitive SSIV (an en-
hancement of LSPIV) and Kanade–Lucas Tomasi image ve-
locimetry (KLT-IV) (using an optical flow algorithm, simi-
larly to CVSG) (Pearce et al., 2020). Whilst there has been
some evidence that KLT optical flow performance degrades

in low lighting (Wang and Miao, 2010), the Farneback op-
tical flow approach used by CVSG has been found to pro-
vide more robust results in comparison studies (Nemade and
Gohokar, 2019; Shi et al., 2020). This identified sensitiv-
ity of algorithm parameters has been reinforced by simula-
tions using LSPIV, showing substantial care must be taken
for ensuring reliable results with regards to seeding shapes/-
sizes/densities, frame rates, recording durations, and camera
angles (Hauet et al., 2008; Pumo et al., 2021). The general
vulnerability of optical surface velocimetry methods to mea-
surement setup (Detert, 2021) and environmental conditions,
such as evidenced by a study of varying rainfall intensity par-
ticularly finding LSPIV-based autocorrelation methods to be
susceptible to biased results under higher rainfall intensities
(whilst results were demonstrably improved by sufficiently
low rainfall intensities) (Naves et al., 2021), reinforces the
need and utility of methodologies, such as those presented in
this work, for increasing robustness to visual environmental
noise pertaining to individual measurements.

The CVSG learning surface velocity distribution and dis-
charge rating results evaluated in this study provide evidence
to the benefits of the presented methods for improving mea-
surement accuracy and reliability over time. Given increas-
ing frequency of extreme rainfall yielding flow events that
exceed manual gauging records (Steinbakk et al., 2016), the
ability of the CVSG approach to learn and adapt over time
is particularly valuable. Whilst the entire range of the dis-
charge ratings developed and evaluated did not necessarily
yet contain a sufficient combination of quantity and quality
of observations, this is similarly evident in the best available
estimates provided from the reference gauging station dis-
charge rating fits (which may be overly smoothed due to lim-
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ited temporal and vertical–spatial data density). With the per-
sistent measurement of velocities, sudden or gradual changes
in velocity distributions over time can be detected in order to
identify when the resurveying of a site’s bathymetry is nec-
essary (Peña-Haro et al., 2021).

The results of this study between CVSG-estimated
time series discharges and discharge ratings using
stereophotogrammetry-estimated water levels and pro-
vided gauge water levels showcased the improvement in
non-contact measurements that could be possible with
improvements to the remotely estimated water levels alone.
A combination of optical approaches to water level esti-
mation using water line detection spatio-temporal texture
histograms (Eltner et al., 2018) or deep learning (Eltner
et al., 2021), as well as grayscale brightness or motion
segmentation (Peña-Haro et al., 2021) combined with a
stereo camera approach has potential for reducing remotely
estimated water level noise and improving the range of
suitable operational environments. This concept could
simultaneously reduce the uncertainties and site deployment
barriers associated with ground control reference points (Le
Coz et al., 2021). Significant work has been undertaken
towards developing and applying photogrammetry tech-
niques operating using different camera perspectives from
more than one camera for long-term automated water level
and discharge measurements (Stumpf et al., 2016). Stereo
cameras have demonstrated potential added value to stream
gauging applications (Ran et al., 2016; Li et al., 2019), with
the CVSG system providing a reduction in the barrier to the
deployment of a stereo camera-based optical stream gauging
site. With continuous automated site resurveying with
every video recording, the quantification of cross-sectional
changes and vegetation growth offers significant advantages
to monitoring streams without stationarity assumptions
(Westerberg et al., 2011). A comprehensive study evaluating
the use of stereo camera systems such as CVSG for quanti-
fying adaptive cross sections is an important area of future
research to be determined over studies spanning longer
timescales with significant erosion and/or accretion events at
suitable study sites.

Whilst optical-based non-contact stream gauging has well-
documented advantages for gauging high-flow events com-
pared to alternative methods (Le Coz et al., 2010), well-
understood and relatively stable low-end discharge ratings
could be provided to the CVSG system as a manually pro-
vided and updated basis for estimating low flows where low-
flow site conditions may be unsuitable. However, the depic-
tions of discharge ratings evaluated in this study are simpli-
fied one-dimensional water-level-dependent discharge esti-
mates (as is commonly developed and applied for gauging
station discharge ratings), but this is a simplification of the
variation in discharge resulting from the changing hydraulic
gradients across the rising and falling stages of hydrographs
(Fenton, 2018). This nuance could be developed automati-
cally through the significantly improved gauging data den-

sity offered by optical surface velocimetry approaches such
as CVSG, providing an additional dimension for the genera-
tion of discharge ratings dependent on both water level and
the hydraulic gradient.

While the CVSG system evaluated utilised Savitzky–
Golay filtering, it is noted that recent improvements on this
method have been developed addressing the known pitfalls
of the technique (Schmid et al., 2022). Beyond the ap-
proaches in this study for optically discerning water sur-
face motion, further enhancement of optical measurement
capabilities could be achieved through novel techniques us-
ing well-studied and bounded principles of fluid dynamics
(Khalid et al., 2019). An ensemble of surface velocimetry
techniques could be applied, given sufficient computational
power, to provide an additional quantification of algorithm-
based uncertainty similar to ensemble approaches employed
in other fields for quantifying model structural sensitivity
(Nearing and Gupta, 2018) and facilitate the identification
of disagreements between methods under particular sites and
conditions over time while expanding the broader applica-
bility of the technology through the advantages offered by
each technique. Furthermore, the optical nature of the meth-
ods developed supposes the possibility for the incorporation
of additional computer vision analysis through rainfall (Jiang
et al., 2019; Chen et al., 2019; Wang et al., 2022), wind (Car-
dona, 2021), and water turbidity (Leeuw and Boss, 2018)
monitoring.

5 Conclusions

This study has demonstrated the development of an auto-
mated operational optical stream gauging system employing
methods providing improved reliability for remotely gauging
streams using state-of-the-art surface velocimetry technolo-
gies across varying flow and lighting conditions. Evaluation
of the existing best practice in available stream measurement
technologies and published discharge ratings across the ar-
ray of site conditions evident in this work demonstrated that
the methods in this study were similarly effective for gaug-
ing stream discharge to existing accuracy benchmarks. This
work did not address errors associated with cross-sectional
area changes and the capability of the CVSG system to ex-
tract stereophotogrammetry-estimated elevations of the dry
channel areas to inform changes to discharge ratings, which
is recommended for future research using stereo imagery-
based optical stream gauging approaches. In addition, the
challenges associated with analysing surface velocity at night
and quantifying water level through stereophotogrammetry
under a range of lighting conditions and greater distances
provide opportunities for future work. Despite these chal-
lenges, non-contact and automated solutions offer a sig-
nificantly greater density of velocity-stage observations re-
sulting in up-to-date adaptively learning discharge ratings
through time. As climate-driven extreme weather events in-
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crease in frequency, it is increasingly important to develop
and apply flexible monitoring tools, such as CVSG, that can
reduce the human and environmental risks associated with
traditional approaches and deliver real-time data to water re-
source managers.
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