Articles | Volume 27, issue 5
https://doi.org/10.5194/hess-27-1151-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-27-1151-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Projected changes in droughts and extreme droughts in Great Britain strongly influenced by the choice of drought index
Climatic Research Unit, School of Environmental Sciences, University of East Anglia, Norwich, UK
Timothy J. Osborn
Climatic Research Unit, School of Environmental Sciences, University of East Anglia, Norwich, UK
Water Security Research Centre, University of East Anglia, Norwich, UK
Nans Addor
Geography, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
Geoff Darch
Anglian Water Ltd., Huntingdon, UK
Related authors
Nele Reyniers, Qianyu Zha, Nans Addor, Timothy J. Osborn, Nicole Forstenhäusler, and Yi He
Earth Syst. Sci. Data, 17, 2113–2133, https://doi.org/10.5194/essd-17-2113-2025, https://doi.org/10.5194/essd-17-2113-2025, 2025
Short summary
Short summary
We present bias-corrected UK Climate Projections 2018 (UKCP18) regional datasets for temperature, precipitation, and potential evapotranspiration (1981–2080). All 12 members of the 12 km ensemble were corrected using quantile mapping and a change-preserving variant. Both methods effectively reduce biases in multiple statistics while maintaining projected climatic changes. We provide guidance on using the bias-corrected datasets for climate change impact assessment.
Eleyna L. McGrady, Stephen J. Birkinshaw, Elizabeth Lewis, Ben A. Smith, Claire L. Walsh, Geoff Darch, and Jeremy Dearlove
EGUsphere, https://doi.org/10.5194/egusphere-2025-1824, https://doi.org/10.5194/egusphere-2025-1824, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
We developed a method to improve a complex hydrological model that simulates how rivers respond to rainfall across the UK. By automatically adjusting the model’s settings, we made it more accurate at predicting river flows in almost 700 locations. Our method also helps ensure the model reflects real-world conditions. Results provide evidence that detailed hydrological models can now be used at a national scale, which is important for managing water and planning for future climate changes.
Nele Reyniers, Qianyu Zha, Nans Addor, Timothy J. Osborn, Nicole Forstenhäusler, and Yi He
Earth Syst. Sci. Data, 17, 2113–2133, https://doi.org/10.5194/essd-17-2113-2025, https://doi.org/10.5194/essd-17-2113-2025, 2025
Short summary
Short summary
We present bias-corrected UK Climate Projections 2018 (UKCP18) regional datasets for temperature, precipitation, and potential evapotranspiration (1981–2080). All 12 members of the 12 km ensemble were corrected using quantile mapping and a change-preserving variant. Both methods effectively reduce biases in multiple statistics while maintaining projected climatic changes. We provide guidance on using the bias-corrected datasets for climate change impact assessment.
Olivier Delaigue, Guilherme Mendoza Guimarães, Pierre Brigode, Benoît Génot, Charles Perrin, Jean-Michel Soubeyroux, Bruno Janet, Nans Addor, and Vazken Andréassian
Earth Syst. Sci. Data, 17, 1461–1479, https://doi.org/10.5194/essd-17-1461-2025, https://doi.org/10.5194/essd-17-1461-2025, 2025
Short summary
Short summary
This dataset covers 654 rivers all flowing in France. The provided time series and catchment attributes will be of interest to those modelers wishing to analyze hydrological behavior and perform model assessments.
Colin Peter Morice, David I. Berry, Richard C. Cornes, Kathryn Cowtan, Thomas Cropper, Ed Hawkins, John J. Kennedy, Timothy J. Osborn, Nick A. Rayner, Beatriz R. Rivas, Andrew P. Schurer, Michael Taylor, Praveen R. Teleti, Emily J. Wallis, Jonathan Winn, and Elizabeth C. Kent
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-500, https://doi.org/10.5194/essd-2024-500, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
We present a new data set of global gridded surface air temperature change extending back to the 1780s. This is achieved using marine air temperature observations with newly available estimates of diurnal heating biases together with an updated land station database that includes bias adjustments for early thermometer enclosures. These developments allow the data set to extend further into the past than current data sets that use sea surface temperature rather than marine air temperature data.
Claudia Färber, Henning Plessow, Simon Mischel, Frederik Kratzert, Nans Addor, Guy Shalev, and Ulrich Looser
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-427, https://doi.org/10.5194/essd-2024-427, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
Large-sample datasets are essential in hydrological science to support modelling studies and advance process understanding. Caravan is a community initiative to create a large-sample hydrology dataset of meteorological forcing data, catchment attributes, and discharge data for catchments around the world. This dataset is a subset of hydrological discharge data and station-based watersheds from the Global Runoff Data Centre (GRDC), which are covered by an open data policy.
Wilson C. H. Chan, Nigel W. Arnell, Geoff Darch, Katie Facer-Childs, Theodore G. Shepherd, and Maliko Tanguy
Nat. Hazards Earth Syst. Sci., 24, 1065–1078, https://doi.org/10.5194/nhess-24-1065-2024, https://doi.org/10.5194/nhess-24-1065-2024, 2024
Short summary
Short summary
The most recent drought in the UK was declared in summer 2022. We pooled a large sample of plausible winters from seasonal hindcasts and grouped them into four clusters based on their atmospheric circulation configurations. Drought storylines representative of what the drought could have looked like if winter 2022/23 resembled each winter circulation storyline were created to explore counterfactuals of how bad the 2022 drought could have been over winter 2022/23 and beyond.
Marvin Höge, Martina Kauzlaric, Rosi Siber, Ursula Schönenberger, Pascal Horton, Jan Schwanbeck, Marius Günter Floriancic, Daniel Viviroli, Sibylle Wilhelm, Anna E. Sikorska-Senoner, Nans Addor, Manuela Brunner, Sandra Pool, Massimiliano Zappa, and Fabrizio Fenicia
Earth Syst. Sci. Data, 15, 5755–5784, https://doi.org/10.5194/essd-15-5755-2023, https://doi.org/10.5194/essd-15-5755-2023, 2023
Short summary
Short summary
CAMELS-CH is an open large-sample hydro-meteorological data set that covers 331 catchments in hydrologic Switzerland from 1 January 1981 to 31 December 2020. It comprises (a) daily data of river discharge and water level as well as meteorologic variables like precipitation and temperature; (b) yearly glacier and land cover data; (c) static attributes of, e.g, topography or human impact; and (d) catchment delineations. CAMELS-CH enables water and climate research and modeling at catchment level.
Wilson C. H. Chan, Theodore G. Shepherd, Katie Facer-Childs, Geoff Darch, and Nigel W. Arnell
Hydrol. Earth Syst. Sci., 26, 1755–1777, https://doi.org/10.5194/hess-26-1755-2022, https://doi.org/10.5194/hess-26-1755-2022, 2022
Short summary
Short summary
We select the 2010–2012 UK drought and investigate an alternative unfolding of the drought from changes to its attributes. We created storylines of drier preconditions, alternative seasonal contributions, a third dry winter, and climate change. Storylines of the 2010–2012 drought show alternative situations that could have resulted in worse conditions than observed. Event-based storylines exploring plausible situations are used that may lead to high impacts and help stress test existing systems.
Andrew J. Newman, Amanda G. Stone, Manabendra Saharia, Kathleen D. Holman, Nans Addor, and Martyn P. Clark
Hydrol. Earth Syst. Sci., 25, 5603–5621, https://doi.org/10.5194/hess-25-5603-2021, https://doi.org/10.5194/hess-25-5603-2021, 2021
Short summary
Short summary
This study assesses methods that estimate flood return periods to identify when we would obtain a large flood return estimate change if the method or input data were changed (sensitivities). We include an examination of multiple flood-generating models, which is a novel addition to the flood estimation literature. We highlight the need to select appropriate flood models for the study watershed. These results will help operational water agencies develop more robust risk assessments.
Peter T. La Follette, Adriaan J. Teuling, Nans Addor, Martyn Clark, Koen Jansen, and Lieke A. Melsen
Hydrol. Earth Syst. Sci., 25, 5425–5446, https://doi.org/10.5194/hess-25-5425-2021, https://doi.org/10.5194/hess-25-5425-2021, 2021
Short summary
Short summary
Hydrological models are useful tools that allow us to predict distributions and movement of water. A variety of numerical methods are used by these models. We demonstrate which numerical methods yield large errors when subject to extreme precipitation. As the climate is changing such that extreme precipitation is more common, we find that some numerical methods are better suited for use in hydrological models. Also, we find that many current hydrological models use relatively inaccurate methods.
John P. Bloomfield, Mengyi Gong, Benjamin P. Marchant, Gemma Coxon, and Nans Addor
Hydrol. Earth Syst. Sci., 25, 5355–5379, https://doi.org/10.5194/hess-25-5355-2021, https://doi.org/10.5194/hess-25-5355-2021, 2021
Short summary
Short summary
Groundwater provides flow, known as baseflow, to surface streams and rivers. It is important as it sustains the flow of many rivers at times of water stress. However, it may be affected by water management practices. Statistical models have been used to show that abstraction of groundwater may influence baseflow. Consequently, it is recommended that information on groundwater abstraction is included in future assessments and predictions of baseflow.
Keirnan J. A. Fowler, Suwash Chandra Acharya, Nans Addor, Chihchung Chou, and Murray C. Peel
Earth Syst. Sci. Data, 13, 3847–3867, https://doi.org/10.5194/essd-13-3847-2021, https://doi.org/10.5194/essd-13-3847-2021, 2021
Short summary
Short summary
This paper presents the Australian edition of the Catchment Attributes and Meteorology for Large-sample Studies (CAMELS) series of datasets. CAMELS-AUS comprises data for 222 unregulated catchments with long-term monitoring, combining hydrometeorological time series (streamflow and 18 climatic variables) with 134 attributes related to geology, soil, topography, land cover, anthropogenic influence and hydroclimatology. It is freely downloadable from https://doi.pangaea.de/10.1594/PANGAEA.921850.
Peter Uhe, Daniel Mitchell, Paul D. Bates, Nans Addor, Jeff Neal, and Hylke E. Beck
Geosci. Model Dev., 14, 4865–4890, https://doi.org/10.5194/gmd-14-4865-2021, https://doi.org/10.5194/gmd-14-4865-2021, 2021
Short summary
Short summary
We present a cascade of models to compute high-resolution river flooding. This takes meteorological inputs, e.g., rainfall and temperature from observations or climate models, and takes them through a series of modeling steps. This is relevant to evaluating current day and future flood risk and impacts. The model framework uses global data sets, allowing it to be applied anywhere in the world.
Gemma Coxon, Nans Addor, John P. Bloomfield, Jim Freer, Matt Fry, Jamie Hannaford, Nicholas J. K. Howden, Rosanna Lane, Melinda Lewis, Emma L. Robinson, Thorsten Wagener, and Ross Woods
Earth Syst. Sci. Data, 12, 2459–2483, https://doi.org/10.5194/essd-12-2459-2020, https://doi.org/10.5194/essd-12-2459-2020, 2020
Short summary
Short summary
We present the first large-sample catchment hydrology dataset for Great Britain. The dataset collates river flows, catchment attributes, and catchment boundaries for 671 catchments across Great Britain. We characterise the topography, climate, streamflow, land cover, soils, hydrogeology, human influence, and discharge uncertainty of each catchment. The dataset is publicly available for the community to use in a wide range of environmental and modelling analyses.
Vinícius B. P. Chagas, Pedro L. B. Chaffe, Nans Addor, Fernando M. Fan, Ayan S. Fleischmann, Rodrigo C. D. Paiva, and Vinícius A. Siqueira
Earth Syst. Sci. Data, 12, 2075–2096, https://doi.org/10.5194/essd-12-2075-2020, https://doi.org/10.5194/essd-12-2075-2020, 2020
Short summary
Short summary
We present a new dataset for large-sample hydrological studies in Brazil. The dataset encompasses daily observed streamflow from 3679 gauges, as well as meteorological forcing for 897 selected catchments. It also includes 65 attributes covering topographic, climatic, hydrologic, land cover, geologic, soil, and human intervention variables. CAMELS-BR is publicly available and will enable new insights into the hydrological behavior of catchments in Brazil.
Cited articles
Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop
evapotranspiration-Guidelines for computing crop water requirements, FAO
Irrigation and drainage paper 56, Food and Agricultural Organisation of the United Nations (FAO), Rome, 300 pp., D05109, ISBN 92-5-104219-5, 1998. a
Arnell, N. and Freeman, A.: The effect of climate change on agro-climatic
indicators in the UK, Climatic Change, 165, 1–26,
https://doi.org/10.1007/s10584-021-03054-8, 2021. a, b, c
Bachmair, S., Svensson, C., Hannaford, J., Barker, L. J., and Stahl, K.: A quantitative analysis to objectively appraise drought indicators and model drought impacts, Hydrol. Earth Syst. Sci., 20, 2589–2609, https://doi.org/10.5194/hess-20-2589-2016, 2016. a, b, c
Bachmair, S., Tanguy, M., Hannaford, J., and Stahl, K.: How well do
meteorological indicators represent agricultural and forest drought across
Europe?, Environ. Res. Lett., 13, 034042, https://doi.org/10.1088/1748-9326/aaafda,
2018. a
Barker, L. J., Hannaford, J., Chiverton, A., and Svensson, C.: From meteorological to hydrological drought using standardised indicators, Hydrol. Earth Syst. Sci., 20, 2483–2505, https://doi.org/10.5194/hess-20-2483-2016, 2016. a, b, c, d
Berg, A. and Sheffield, J.: Climate Change and Drought: The Soil
Moisture Perspective, Current Climate Change Reports, 4, 180–191,
https://doi.org/10.1007/s40641-018-0095-0, 2018. a
Blauhut, V., Stahl, K., Stagge, J. H., Tallaksen, L. M., De Stefano, L., and Vogt, J.: Estimating drought risk across Europe from reported drought impacts, drought indices, and vulnerability factors, Hydrol. Earth Syst. Sci., 20, 2779–2800, https://doi.org/10.5194/hess-20-2779-2016, 2016. a
Blenkinsop, S. and Fowler, H. J.: Changes in Drought Frequency, Severity and
Duration for the British Isles Projected by the PRUDENCE Regional
Climate Models, J. Hydrol., 342, 50–71, https://doi.org/10.1016/j.jhydrol.2007.05.003,
2007. a
Bloomfield, J. P., Marchant, B. P., and McKenzie, A. A.: Changes in groundwater drought associated with anthropogenic warming, Hydrol. Earth Syst. Sci., 23, 1393–1408, https://doi.org/10.5194/hess-23-1393-2019, 2019. a, b, c
Blyth, E. M., Martínez-de la Torre, A., and Robinson, E. L.: Trends in
Evapotranspiration and Its Drivers in Great Britain: 1961 to 2015, Prog.
Phys. Geog., 43, 666–693,
https://doi.org/10.1177/0309133319841891, 2019. a, b
Ceppi, P., Zappa, G., Shepherd, T. G., and Gregory, J. M.: Fast and slow
components of the extratropical atmospheric circulation response to CO2
forcing, J. Climate, 31, 1091–1105, https://doi.org/10.1175/JCLI-D-17-0323.1, 2018. a
Chiang, F., Mazdiyasni, O., and AghaKouchak, A.: Evidence of anthropogenic
impacts on global drought frequency, duration, and intensity, Nat. Commun., 12,
1–10, https://doi.org/10.1038/s41467-021-22314-w, 2021. a, b
Cook, B. I., Smerdon, J. E., Seager, R., and Coats, S.: Global Warming and 21st
Century Drying, Clim. Dynam., 43, 2607–2627, https://doi.org/10.1007/s00382-014-2075-y,
2014. a
Dai, A.: Drought under Global Warming: A Review, WIRES Clim Change, 2, 45–65,
https://doi.org/10.1002/wcc.81, 2011. a
Denissen, J., Teuling, A., Pitman, A., Koirala, S., Migliavacca, M., Li, W.,
Reichstein, M., Winkler, A., Zhan, C., and Orth, R.: Widespread Shift from
Ecosystem Energy to Water Limitation with Climate Change, Nat. Clim. Change,
12, 677–684, https://doi.org/10.1038/s41558-022-01403-8, 2022. a
Dewes, C. F., Rangwala, I., Barsugli, J. J., Hobbins, M. T., and Kumar, S.:
Drought Risk Assessment under Climate Change Is Sensitive to Methodological
Choices for the Estimation of Evaporative Demand, PLOS ONE, 12, e0174045,
https://doi.org/10.1371/journal.pone.0174045, 2017. a, b
Feng, S. and Fu, Q.: Expansion of global drylands under a warming climate, Atmos. Chem. Phys., 13, 10081–10094, https://doi.org/10.5194/acp-13-10081-2013, 2013. a
Feng, S., Trnka, M., Hayes, M., and Zhang, Y.: Why Do Different Drought
Indices Show Distinct Future Drought Risk Outcomes in the U.S.
Great Plains?, J. Climate, 30, 265–278, https://doi.org/10.1175/JCLI-D-15-0590.1,
2017. a, b
Folland, C. K., Hannaford, J., Bloomfield, J. P., Kendon, M., Svensson, C., Marchant, B. P., Prior, J., and Wallace, E.: Multi-annual droughts in the English Lowlands: a review of their characteristics and climate drivers in the winter half-year, Hydrol. Earth Syst. Sci., 19, 2353–2375, https://doi.org/10.5194/hess-19-2353-2015, 2015. a
Fu, Q. and Feng, S.: Responses of Terrestrial Aridity to Global Warming, J. Geophys. Res.-Atmos., 119, 7863–7875, https://doi.org/10.1002/2014JD021608, 2014. a
Gampe, D., Zscheischler, J., Reichstein, M., O’Sullivan, M., Smith, W. K.,
Sitch, S., and Buermann, W.: Increasing impact of warm droughts on northern
ecosystem productivity over recent decades, Nat. Clim. Change, 11, 772–779,
https://doi.org/10.1038/s41558-021-01112-8, 2021. a, b
García-Valdecasas Ojeda, M., Gámiz-Fortis, S. R.,
Romero-Jiménez, E., Rosa-Cánovas, J. J., Yeste, P.,
Castro-Díez, Y., and Esteban-Parra, M. J.: Projected changes in the
Iberian Peninsula drought characteristics, Sci. Total Environ., 757, 143702,
https://doi.org/10.1016/j.scitotenv.2020.143702, 2021. a, b
Gohar, L., Bernie, D., Good, P., and Lowe, J. A.: UKCP18 Derived Projections of
Future Climate over the UK, Met Office Hadley Centre, Exeter, UK, 2018. a
Greve, P., Roderick, M. L., Ukkola, A. M., and Wada, Y.: The Aridity Index
under Global Warming, Environ. Res. Lett., 14, 124006,
https://doi.org/10.1088/1748-9326/ab5046, 2019. a, b, c
Grossiord, C., Buckley, T. N., Cernusak, L. A., Novick, K. A., Poulter, B.,
Siegwolf, R. T. W., Sperry, J. S., and McDowell, N. G.: Plant Responses to
Rising Vapor Pressure Deficit, New Phytol., 226, 1550–1566,
https://doi.org/10.1111/nph.16485, 2020. a, b
Hanlon, H. M., Bernie, D., Carigi, G., and Lowe, J. A.: Future Changes to High
Impact Weather in the UK, Climatic Change, 166, 50,
https://doi.org/10.1007/s10584-021-03100-5, 2021. a, b, c, d
Haro-Monteagudo, D., Daccache, A., and Knox, J.: Exploring the utility of
drought indicators to assess climate risks to agricultural productivity in a
humid climate, Hydrol. Res., 49, 539–551, https://doi.org/10.2166/nh.2017.010, 2018. a, b
Hollis, D., McCarthy, M., Kendon, M., Legg, T., and Simpson, I.: HadUK-Grid –
A new UK dataset of gridded climate observations, Geosci Data J, 6, 151–159,
https://doi.org/10.1002/gdj3.78, 2019. a
Ionita, M. and Nagavciuc, V.: Changes in drought features at the European level over the last 120 years, Nat. Hazards Earth Syst. Sci., 21, 1685–1701, https://doi.org/10.5194/nhess-21-1685-2021, 2021. a, b
Karimi, M., Vicente-Serrano, S. M., Reig, F., Shahedi, K., Raziei, T., and
Miryaghoubzadeh, M.: Recent trends in atmospheric evaporative demand in
Southwest Iran: implications for change in drought severity, Theor. Appl.
Climatol., 142, 945–958, https://doi.org/10.1007/s00704-020-03349-3, 2020. a
Kay, A. L., Bell, V. A., Blyth, E. M., Crooks, S. M., Davies, H. N., and
Reynard, N. S.: A Hydrological Perspective on Evaporation: Historical Trends
and Future Projections in Britain, J. Water Clim. Change, 4, 193–208,
https://doi.org/10.2166/wcc.2013.014, 2013. a, b
Kay, A. L., Lane, R. A., and Bell, V. A.: Grid-Based Simulation of Soil
Moisture in the UK: Future Changes in Extremes and Wetting and Drying
Dates, Environ. Res. Lett., 17, 074029, https://doi.org/10.1088/1748-9326/ac7a4e, 2022. a
Kendon, M., Marsh, T., and Parry, S.: The 2010–2012 Drought in
England and Wales, Weather, 68, 88–95, https://doi.org/10.1002/wea.2101, 2013. a
Keyantash, J. and Dracup, J. A.: The Quantification of Drought: An
Evaluation of Drought Indices, B. Am. Meteorol. Soc., 83, 1167–1180,
https://doi.org/10.1175/1520-0477-83.8.1167, 2002. a
Lane, R. A. and Kay, A. L.: Climate Change Impact on the Magnitude and
Timing of Hydrological Extremes Across Great Britain, Frontiers in
Water, 3, 684982, https://doi.org/10.3389/frwa.2021.684982, 2021. a
Lange, S.: Trend-preserving bias adjustment and statistical downscaling with ISIMIP3BASD (v1.0), Geosci. Model Dev., 12, 3055–3070, https://doi.org/10.5194/gmd-12-3055-2019, 2019. a
Lange, S.: ISIMIP3BASD (2.4.1.), Zenodo [code], https://doi.org/10.5281/zenodo.3898426, 2020. a
Lee, M.-H., Im, E.-S., and Bae, D.-H.: A Comparative Assessment of Climate
Change Impacts on Drought over Korea Based on Multiple Climate
Projections and Multiple Drought Indices, Clim. Dynam., 53, 389–404,
https://doi.org/10.1007/s00382-018-4588-2, 2019. a
Lehner, F., Coats, S., Stocker, T. F., Pendergrass, A. G., Sanderson, B. M.,
Raible, C. C., and Smerdon, J. E.: Projected Drought Risk in 1.5 ∘C and
2 ∘C Warmer Climates, Geophys. Res. Lett., 44, 7419–7428,
https://doi.org/10.1002/2017GL074117, 2017. a
Lloyd-Hughes, B.: The Impracticality of a Universal Drought Definition, Theor.
Appl. Climatol., 117, 607–611, https://doi.org/10.1007/s00704-013-1025-7, 2014. a
Manning, C., Widmann, M., Bevacqua, E., Loon, A. F. V., Maraun, D., and Vrac,
M.: Soil Moisture Drought in Europe: A Compound Event of
Precipitation and Potential Evapotranspiration on Multiple Time
Scales, J. Hydrometeorol., 19, 1255–1271, https://doi.org/10.1175/JHM-D-18-0017.1,
2018. a, b, c
Marsh, T., Cole, G., and Wilby, R.: Major Droughts in England and
Wales, 1800–2006, Weather, 62, 87–93, https://doi.org/10.1002/wea.67,
2007. a
Massari, C., Avanzi, F., Bruno, G., Gabellani, S., Penna, D., and Camici, S.: Evaporation enhancement drives the European water-budget deficit during multi-year droughts, Hydrol. Earth Syst. Sci., 26, 1527–1543, https://doi.org/10.5194/hess-26-1527-2022, 2022. a, b, c
Met Office, Hollis, D., McCarthy, M., Kendon, M., Legg, T., and Simpson, I.:
HadUK-Grid Gridded Climate Observations on a 1 km grid over the UK, v1.0.1.0
(1862–2018), Centre for Environmental Data Analysis [data set], https://doi.org/10.5285/d134335808894b2bb249e9f222e2eca8,
2019. a
Milly, P. C. D. and Dunne, K. A.: Potential Evapotranspiration and Continental
Drying, Nat. Clim. Change, 6, 946–949, https://doi.org/10.1038/nclimate3046, 2016. a, b
Miralles, D. G., Gentine, P., Seneviratne, S. I., and Teuling, A. J.:
Land–Atmospheric Feedbacks during Droughts and Heatwaves: State of
the Science and Current Challenges, Ann. NY Acad. Sci., 1436, 19–35,
https://doi.org/10.1111/nyas.13912, 2019. a
Murphy, J. M., Harris, G. R., Sexton, D. M. H., Kendon, E. J., Bett, P. E.,
Clark, R. T., Eagle, K. E., Fosser, G., Fung, F., Lowe, J. A., McDonald,
R. E., McInnes, R. N., McSweeney, C. F., Mitchell, J. F. B., Rostron, J. W.,
Thornton, H. E., Tucker, S., and Yamazaki, K.: UKCP18 Land Projections:
Science Report, Met Office, 2018. a, b, c, d, e
Pendergrass, A. G., Meehl, G. A., Pulwarty, R., Hobbins, M., Hoell, A.,
AghaKouchak, A., Bonfils, C. J. W., Gallant, A. J. E., Hoerling, M.,
Hoffmann, D., Kaatz, L., Lehner, F., Llewellyn, D., Mote, P., Neale, R. B.,
Overpeck, J. T., Sheffield, A., Stahl, K., Svoboda, M., Wheeler, M. C., Wood,
A. W., and Woodhouse, C. A.: Flash Droughts Present a New Challenge for
Subseasonal-to-Seasonal Prediction, Nat. Clim. Change, 10, 191–199,
https://doi.org/10.1038/s41558-020-0709-0, 2020. a
Phillips, I. D. and McGregor, G. R.: The Utility of a Drought Index for
Assessing the Drought Hazard in Devon and Cornwall, South West
England, Meteorol. Appl., 5, 359–372, https://doi.org/10.1017/S1350482798000899, 1998. a
Rahiz, M. and New, M.: 21st Century Drought Scenarios for the UK, Water
Resour. Manag., 27, 1039–1061, https://doi.org/10.1007/s11269-012-0183-1, 2013. a, b, c, d
Reyniers, N., Osborn, T., Addor, N., and Darch, G.: Projected changes in
droughts and extreme droughts in Great Britain are strongly influenced by the
choice of drought index: UKCP18-based bias adjusted potential
evapotranspiration, Zenodo [data set], https://doi.org/10.5281/zenodo.6320707,
2022a. a
Reyniers, N., Osborn, T., Addor, N., and Darch, G.: Projected changes in
droughts and extreme droughts in Great Britain are strongly influenced by the
choice of drought index: UKCP18-based SPI and SPEI data, Zenodo [data set],
https://doi.org/10.5281/zenodo.6123020, 2022b. a
Richards, J.: A simple expression for the saturation vapour pressure of water
in the range −50 to 140∘ C, J. Phys. D Appl. Phys., 4, L15, https://doi.org/10.1088/0022-3727/4/4/101, 1971. a
Robinson, E., Blyth, E., Clark, D., Comyn-Platt, E., and Rudd, A.: Climate
hydrology and ecology research support system potential evapotranspiration
dataset for Great Britain (1961–2017) [CHESS-PE], NERC Environmental
Information Data Centre [data set], https://doi.org/10.5285/9116e565-2c0a-455b-9c68-558fdd9179ad,
2020. a, b
Robinson, E. L., Brown, M. J., Kay, A. L., Lane, R. A., Chapman, R., Bell, V. A., and Blyth, E. M.: Hydro-PE: gridded datasets of historical and future Penman-Monteith potential evaporation for the United Kingdom, Earth Syst. Sci. Data Discuss. [preprint], https://doi.org/10.5194/essd-2022-288, in review, 2022. a
Rodda, J. and March, T.: The 1975/76 Drought – a Contemporary
and Retrospective View, Centre for Ecology & Hydrology, p. 58,
http://nora.nerc.ac.uk/id/eprint/15011/1/CEH_1975-76_Drought_Report_Rodda_and_Marsh.pdf (last access: 30 January 2023),
2011. a
Satoh, Y., Shiogama, H., Hanasaki, N., Pokhrel, Y., Boulange, J. E. S., Burek,
P., Gosling, S. N., Grillakis, M., Koutroulis, A., Müller Schmied, H., Thiery, W., and Yokohata, T.: A
quantitative evaluation of the issue of drought definition: a source of
disagreement in future drought assessments, Environ. Res. Lett., 16, 104001,
https://doi.org/10.1088/1748-9326/ac2348, 2021. a, b
Scheff, J., Mankin, J. S., Coats, S., and Liu, H.: CO2-plant Effects Do Not
Account for the Gap between Dryness Indices and Projected Dryness Impacts in
CMIP6 or CMIP5, Environ. Res. Lett., 16, 034018,
https://doi.org/10.1088/1748-9326/abd8fd, 2021. a, b
Schönbeck, L. C., Schuler, P., Lehmann, M. M., Mas, E., Mekarni, L.,
Pivovaroff, A. L., Turberg, P., and Grossiord, C.: Increasing Temperature and
Vapour Pressure Deficit Lead to Hydraulic Damages in the Absence of Soil
Drought, Plant, Cell Environ., 45, 3275–3289, https://doi.org/10.1111/pce.14425,
2022. a
Seneviratne, S. I.: Historical Drought Trends Revisited, Nature, 491, 338–339,
https://doi.org/10.1038/491338a, 2012. a
Seneviratne, S. I., Lüthi, D., Litschi, M., and Schär, C.:
Land–Atmosphere Coupling and Climate Change in Europe, Nature,
443, 205–209, https://doi.org/10.1038/nature05095, 2006. a
Seneviratne, S. I., Zhang, X., Adnan, M., Badi, W., Dereczynski, C., Di Luca, A., Ghosh, S., Iskandar, I., Kossin, J., Lewis, S., Otto, F., Pinto, I., Satoh, M., Vicente-Serrano, S. M., Wehner, M., and Zhou, B.: Weather and Climate Extreme Events in a Changing Climate, in: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1513–1766, https://doi.org/10.1017/9781009157896.013, 2021. a, b
Sheffield, J., Wood, E. F., and Roderick, M. L.: Little Change in Global
Drought over the Past 60 Years, Nature, 491, 435–438,
https://doi.org/10.1038/nature11575, 2012. a, b
Spinoni, J., Vogt, J. V., Naumann, G., Barbosa, P., and Dosio, A.: Will Drought
Events Become More Frequent and Severe in Europe?, Int. J. Climatol., 38,
1718–1736, https://doi.org/10.1002/joc.5291, 2018. a, b, c
Stagge, J. H., Kohn, I., Tallaksen, L. M., and Stahl, K.: Modeling drought
impact occurrence based on meteorological drought indices in Europe, J.
Hydrol., 530, 37–50, https://doi.org/10.1016/j.jhydrol.2015.09.039, 2015a. a, b
Stagge, J. H., Tallaksen, L. M., Gudmundsson, L., Van Loon, A. F., and Stahl,
K.: Candidate distributions for climatological drought indices (SPI and
SPEI), Int. J. Climatol., 35, 4027–4040, https://doi.org/10.1002/joc.4267,
2015b. a, b, c
Stagge, J. H., Kingston, D. G., Tallaksen, L. M., and Hannah, D. M.: Observed
drought indices show increasing divergence across Europe, Sci. Rep.-UK, 7,
1–10, https://doi.org/10.1038/s41598-017-14283-2, 2017. a, b, c, d
Sutanto, S. J. and Van Lanen, H. A. J.: Streamflow drought: implication of drought definitions and its application for drought forecasting, Hydrol. Earth Syst. Sci., 25, 3991–4023, https://doi.org/10.5194/hess-25-3991-2021, 2021. a
World Meteorological Organization and Global Water Partnership: Handbook of Drought Indicators and Indices (Svoboda, M. and Fuchs, B. A.), Integrated Drought Management Programme (IDMP), Integrated Drought Management Tools and Guidelines Series 2, Geneva, 45 pp., ISBN 978-92-63-11173-9 and 978-91-87823-24-4, 2016. a
Tanguy, M., Haslinger, K., Svensson, C., Parry, S., Barker, L. J., Hannaford,
J., and Prudhomme, C.: Regional differences in spatiotemporal drought
characteristics in Great Britain, Frontiers in Environmental Science, 9, 639649, https://doi.org/10.3389/fenvs.2021.639649, 2021. a
Teuling, A. J., Hirschi, M., Ohmura, A., Wild, M., Reichstein, M., Ciais, P.,
Buchmann, N., Ammann, C., Montagnani, L., Richardson, A. D., Wohlfahrt, G.,
and Seneviratne, S. I.: A Regional Perspective on Trends in Continental
Evaporation, Geophys. Res. Lett., 36, L02404, https://doi.org/10.1029/2008GL036584, 2009. a
Teuling, A. J., Seneviratne, S. I., Stöckli, R., Reichstein, M., Moors, E.,
Ciais, P., Luyssaert, S., van den Hurk, B., Ammann, C., Bernhofer, C.,
Dellwik, E., Gianelle, D., Gielen, B., Grünwald, T., Klumpp, K.,
Montagnani, L., Moureaux, C., Sottocornola, M., and Wohlfahrt, G.:
Contrasting Response of European Forest and Grassland Energy Exchange to
Heatwaves, Nat. Geosci., 3, 722–727, https://doi.org/10.1038/ngeo950, 2010. a
Tomas-Burguera, M., Vicente-Serrano, S. M., Peña-Angulo, D.,
Domínguez-Castro, F., Noguera, I., and El Kenawy, A.: Global
characterization of the varying responses of the standardized precipitation
evapotranspiration index to atmospheric evaporative demand, J. Geophys. Res.-Atmos., 125, e2020JD033017, https://doi.org/10.1029/2020JD033017, 2020. a
Touma, D., Ashfaq, M., Nayak, M. A., Kao, S.-C., and Diffenbaugh, N. S.: A
Multi-Model and Multi-Index Evaluation of Drought Characteristics in the 21st
Century, J. Hydrol., 526, 196–207, https://doi.org/10.1016/j.jhydrol.2014.12.011, 2015. a, b
Turner, S., Barker, L. J., Hannaford, J., Muchan, K., Parry, S., and Sefton,
C.: The 2018/2019 Drought in the UK: A Hydrological Appraisal, Weather, 76, 248–253, https://doi.org/10.1002/wea.4003, 2018. a
ukcp18 data: UKCP18 Spatial Files, GitHub [data set], https://github.com/ukcp-data/ukcp-spatial-files, last access: 12 October 2021. a
UNEP: World atlas of desertification, ISBN/ISSN: 0340555122, 1992. a
Vicente-Serrano, S. M., Beguería, S., and López-Moreno, J. I.: A
Multiscalar Drought Index Sensitive to Global Warming: The
Standardized Precipitation Evapotranspiration Index, J. Climate, 23,
1696–1718, https://doi.org/10.1175/2009JCLI2909.1, 2009. a
Vicente-Serrano, S. M., Van der Schrier, G., Beguería, S.,
Azorin-Molina, C., and Lopez-Moreno, J.-I.: Contribution of Precipitation
and Reference Evapotranspiration to Drought Indices under Different Climates,
J. Hydrol., 526, 42–54, https://doi.org/10.1016/j.jhydrol.2014.11.025, 2015. a
Vicente-Serrano, S. M., Peña-Gallardo, M., Hannaford, J., Murphy, C.,
Lorenzo-Lacruz, J., Dominguez-Castro, F., López-Moreno, J. I.,
Beguería, S., Noguera, I., Harrigan, S., and Vidal, J.-P.: Climate,
Irrigation, and Land Cover Change Explain Streamflow Trends in
Countries Bordering the Northeast Atlantic, Geophys. Res. Lett., 46,
10821–10833, https://doi.org/10.1029/2019GL084084, 2019.
a
Vicente-Serrano, S. M., Domínguez-Castro, F., Murphy, C., Hannaford, J.,
Reig, F., Peña-Angulo, D., Tramblay, Y., Trigo, R. M., Mac Donald, N.,
Luna, M. Y., Mc Carthy, M., Van der Schrier, G., Turco, M., Camuffo, D.,
Noguera, I., García-Herrera, R., Becherini, F., Della Valle, A.,
Tomas-Burguera, M., and El Kenawy, A.: Long-Term Variability and Trends in
Meteorological Droughts in Western Europe (1851–2018), Int. J. Climatol.,
41, E690–E717, https://doi.org/10.1002/joc.6719, 2021. a, b
Vicente‐Serrano, S. M., McVicar, T. R., Miralles, D. G., Yang, Y., and
Tomas‐Burguera, M.: Unraveling the Influence of Atmospheric Evaporative
Demand on Drought and Its Response to Climate Change, WIRES Clim. Change, 11,
e632, https://doi.org/10.1002/wcc.632, 2020. a, b, c
Vidal, J.-P. and Wade, S.: A Multimodel Assessment of Future Climatological
Droughts in the United Kingdom, Int. J. Climatol., 29, 2056–2071,
https://doi.org/10.1002/joc.1843, 2009. a
Wang, T., Tu, X., Singh, V. P., Chen, X., and Lin, K.: Global data assessment
and analysis of drought characteristics based on CMIP6, J. Hydrol., 596,
126091, https://doi.org/10.1016/j.jhydrol.2021.126091, 2021. a
Watts, G., Battarbee, R. W., Bloomfield, J. P., Crossman, J., Daccache, A.,
Durance, I., Elliott, J. A., Garner, G., Hannaford, J., Hannah, D. M., Hess,
T., Jackson, C. R., Kay, A. L., Kernan, M., Knox, J., Mackay, J., Monteith,
D. T., Ormerod, S. J., Rance, J., Stuart, M. E., Wade, A. J., Wade, S. D.,
Weatherhead, K., Whitehead, P. G., and Wilby, R. L.: Climate Change and Water
in the UK – Past Changes and Future Prospects, Prog. Phys. Geog., 39, 6–28, https://doi.org/10.1177/0309133314542957, 2015. a
Wilhite, D. A. and Glantz, M. H.: Understanding the Drought Phenomenon:
The Role of Definitions, Water Int., 111–120, 1985. a
Yevjevich, V.: An Objective Approach to Definitions and Investigations of
Continental Hydrologic Droughts, J. Hydrol., 7, 353,
https://doi.org/10.1016/0022-1694(69)90110-3, 1967. a, b
Zhao, M., A, G., Liu, Y., and Konings, A. G.: Evapotranspiration Frequently
Increases during Droughts, Nat. Clim. Change, 12, 1024–1030,
https://doi.org/10.1038/s41558-022-01505-3, 2022. a, b, c
Short summary
In an analysis of future drought projections for Great Britain based on the Standardised Precipitation Index and the Standardised Precipitation Evapotranspiration Index, we show that the choice of drought indicator has a decisive influence on the resulting projected changes in drought characteristics, although both result in increased drying. This highlights the need to understand the interplay between increasing atmospheric evaporative demand and drought impacts under a changing climate.
In an analysis of future drought projections for Great Britain based on the Standardised...