Articles | Volume 26, issue 4
https://doi.org/10.5194/hess-26-861-2022
https://doi.org/10.5194/hess-26-861-2022
Research article
 | 
17 Feb 2022
Research article |  | 17 Feb 2022

Future upstream water consumption and its impact on downstream water availability in the transboundary Indus Basin

Wouter J. Smolenaars, Sanita Dhaubanjar, Muhammad K. Jamil, Arthur Lutz, Walter Immerzeel, Fulco Ludwig, and Hester Biemans

Related authors

Mind the Gap: Misalignment Between Drought Monitoring and Community Realities
Sarra Kchouk, Louise Cavalcante, Lieke A. Melsen, David W. Walker, Germano Ribeiro Neto, Rubens Gondim, Wouter J. Smolenaars, and Pieter R. van Oel
EGUsphere, https://doi.org/10.5194/egusphere-2023-2726,https://doi.org/10.5194/egusphere-2023-2726, 2023
Short summary

Related subject area

Subject: Water Resources Management | Techniques and Approaches: Modelling approaches
Making a case for power-sensitive water modelling: a literature review
Rozemarijn ter Horst, Rossella Alba, Jeroen Vos, Maria Rusca, Jonatan Godinez-Madrigal, Lucie V. Babel, Gert Jan Veldwisch, Jean-Philippe Venot, Bruno Bonté, David W. Walker, and Tobias Krueger
Hydrol. Earth Syst. Sci., 28, 4157–4186, https://doi.org/10.5194/hess-28-4157-2024,https://doi.org/10.5194/hess-28-4157-2024, 2024
Short summary
Developing water supply reservoir operating rules for large-scale hydrological modelling
Saskia Salwey, Gemma Coxon, Francesca Pianosi, Rosanna Lane, Chris Hutton, Michael Bliss Singer, Hilary McMillan, and Jim Freer
Hydrol. Earth Syst. Sci., 28, 4203–4218, https://doi.org/10.5194/hess-28-4203-2024,https://doi.org/10.5194/hess-28-4203-2024, 2024
Short summary
An investigation of anthropogenic influences on hydrologic connectivity using model stress tests
Amelie Herzog, Jost Hellwig, and Kerstin Stahl
Hydrol. Earth Syst. Sci., 28, 4065–4083, https://doi.org/10.5194/hess-28-4065-2024,https://doi.org/10.5194/hess-28-4065-2024, 2024
Short summary
The H2Ours game to explore water use, resources and sustainability: connecting issues in two landscapes in Indonesia
Lisa Tanika, Rika Ratna Sari, Arief Lukman Hakim, Meine van Noordwijk, Marielos Peña-Claros, Beria Leimona, Edi Purwanto, and Erika N. Speelman
Hydrol. Earth Syst. Sci., 28, 3807–3835, https://doi.org/10.5194/hess-28-3807-2024,https://doi.org/10.5194/hess-28-3807-2024, 2024
Short summary
Drainage assessment of irrigation districts: on the precision and accuracy of four parsimonious models
Pierre Laluet, Luis Olivera-Guerra, Víctor Altés, Vincent Rivalland, Alexis Jeantet, Julien Tournebize, Omar Cenobio-Cruz, Anaïs Barella-Ortiz, Pere Quintana-Seguí, Josep Maria Villar, and Olivier Merlin
Hydrol. Earth Syst. Sci., 28, 3695–3716, https://doi.org/10.5194/hess-28-3695-2024,https://doi.org/10.5194/hess-28-3695-2024, 2024
Short summary

Cited articles

Ahmad, S. and Iqbal, J.: Transboundary impact assessment of Indian dams: a case study of Chenab River Basin in perspective of Indus Water Treaty, Water Policy, 18, 545–564, 2016. 
Amin, A., Iqbal, J., Asghar, A., and Ribbe, L.: Analysis of current and future water demands in the Upper Indus Basin under IPCC climate and socio-economic scenarios using a hydro-economic WEAP model, Water, 10, 537, 2018. 
Atef, S. S., Sadeqinazhad, F., Farjaad, F., and Amatya, D. M.: Water conflict management and cooperation between Afghanistan and Pakistan, J. Hydrol., 570, 875–892, 2019. 
Basharat, M.: Water Management in the Indus Basin in Pakistan: Challenges and Opportunities, in: Indus River Basin, Elsevier, 375–388, https://doi.org/10.1659/mrd-journal-d-11-00019.1, 2019. 
Basharat, M., Sultan, S., and Malik, A.: Groundwater management in Indus Plain and integrated water resources management approach, Pakistan Water and Power Development Authority (WAPDA), Lahore, Pakistan, available at: https://www.researchgate.net/publication/283014096_Groundwater_Management_in_Indus_Plain_and_Integrated_Water_Resources_Management_Approach (last access: 15 February 2022), 2015. 
Download
Short summary
The arid plains of the lower Indus Basin rely heavily on the water provided by the mountainous upper Indus. Rapid population growth in the upper Indus is expected to increase the water that is consumed there. This will subsequently reduce the water that is available for the downstream plains, where the population and water demand are also expected to grow. In future, this may aggravate tensions over the division of water between the countries that share the Indus Basin.