Articles | Volume 26, issue 20
https://doi.org/10.5194/hess-26-5411-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-26-5411-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Understanding the diurnal cycle of land–atmosphere interactions from flux site observations
Eunkyo Seo
CORRESPONDING AUTHOR
Center for Ocean-Land-Atmosphere Studies, George Mason University,
Fairfax, 22030, United States
Department of Environmental Atmospheric Sciences, Pukyong National
University, Busan, 48513, Republic of Korea
Paul A. Dirmeyer
Center for Ocean-Land-Atmosphere Studies, George Mason University,
Fairfax, 22030, United States
Related authors
Junnyeong Han, Eunkyo Seo, and Paul A. Dirmeyer
EGUsphere, https://doi.org/10.5194/egusphere-2025-4163, https://doi.org/10.5194/egusphere-2025-4163, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
Soil moisture sensors often exhibit misleading daytime peaks because they are sensitive to temperature. This study proposes a method to correct the spurious diurnal cycle of SM, using Fourier analysis with land reanalyses. The diurnally adjusted time series better captures realistic soil moisture behavior and provides more reliable insight into land–atmosphere interactions on a diurnal timescale.
Joonlee Lee, Myong-In Lee, Sunlae Tak, Eunkyo Seo, and Yong-Keun Lee
Geosci. Model Dev., 17, 8799–8816, https://doi.org/10.5194/gmd-17-8799-2024, https://doi.org/10.5194/gmd-17-8799-2024, 2024
Short summary
Short summary
We developed an advanced snow water equivalent (SWE) data assimilation framework using satellite data based on a land surface model. The results of this study highlight the beneficial impact of data assimilation by effectively combining land surface model and satellite-derived data according to their relative uncertainty, thereby controlling not only transitional regions but also the regions with heavy snow accumulation that are difficult to detect by satellite.
Eunkyo Seo and Paul A. Dirmeyer
EGUsphere, https://doi.org/10.5194/egusphere-2024-1066, https://doi.org/10.5194/egusphere-2024-1066, 2024
Short summary
Short summary
This study examines the impact of using a multi-layer snow scheme in seasonal forecasts. Compared to single-layer schemes, multi-layer schemes better represent snow's insulating effect, improving forecast accuracy for temperature, soil moisture, and precipitation. These enhancements lead to more realistic simulations of land-atmosphere interactions, mitigating biases and improving model performance over mid- and high-latitude regions of the Northern Hemisphere.
Kirsten L. Findell, Zun Yin, Eunkyo Seo, Paul A. Dirmeyer, Nathan P. Arnold, Nathaniel Chaney, Megan D. Fowler, Meng Huang, David M. Lawrence, Po-Lun Ma, and Joseph A. Santanello Jr.
Geosci. Model Dev., 17, 1869–1883, https://doi.org/10.5194/gmd-17-1869-2024, https://doi.org/10.5194/gmd-17-1869-2024, 2024
Short summary
Short summary
We outline a request for sub-daily data to accurately capture the process-level connections between land states, surface fluxes, and the boundary layer response. This high-frequency model output will allow for more direct comparison with observational field campaigns on process-relevant timescales, enable demonstration of inter-model spread in land–atmosphere coupling processes, and aid in targeted identification of sources of deficiencies and opportunities for improvement of the models.
Junnyeong Han, Eunkyo Seo, and Paul A. Dirmeyer
EGUsphere, https://doi.org/10.5194/egusphere-2025-4163, https://doi.org/10.5194/egusphere-2025-4163, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
Soil moisture sensors often exhibit misleading daytime peaks because they are sensitive to temperature. This study proposes a method to correct the spurious diurnal cycle of SM, using Fourier analysis with land reanalyses. The diurnally adjusted time series better captures realistic soil moisture behavior and provides more reliable insight into land–atmosphere interactions on a diurnal timescale.
Joonlee Lee, Myong-In Lee, Sunlae Tak, Eunkyo Seo, and Yong-Keun Lee
Geosci. Model Dev., 17, 8799–8816, https://doi.org/10.5194/gmd-17-8799-2024, https://doi.org/10.5194/gmd-17-8799-2024, 2024
Short summary
Short summary
We developed an advanced snow water equivalent (SWE) data assimilation framework using satellite data based on a land surface model. The results of this study highlight the beneficial impact of data assimilation by effectively combining land surface model and satellite-derived data according to their relative uncertainty, thereby controlling not only transitional regions but also the regions with heavy snow accumulation that are difficult to detect by satellite.
Eunkyo Seo and Paul A. Dirmeyer
EGUsphere, https://doi.org/10.5194/egusphere-2024-1066, https://doi.org/10.5194/egusphere-2024-1066, 2024
Short summary
Short summary
This study examines the impact of using a multi-layer snow scheme in seasonal forecasts. Compared to single-layer schemes, multi-layer schemes better represent snow's insulating effect, improving forecast accuracy for temperature, soil moisture, and precipitation. These enhancements lead to more realistic simulations of land-atmosphere interactions, mitigating biases and improving model performance over mid- and high-latitude regions of the Northern Hemisphere.
Gaoyun Wang, Rong Fu, Yizhou Zhuang, Paul A. Dirmeyer, Joseph A. Santanello, Guiling Wang, Kun Yang, and Kaighin McColl
Atmos. Chem. Phys., 24, 3857–3868, https://doi.org/10.5194/acp-24-3857-2024, https://doi.org/10.5194/acp-24-3857-2024, 2024
Short summary
Short summary
This study investigates the influence of lower-tropospheric humidity on land–atmosphere coupling (LAC) during warm seasons in the US Southern Great Plains. Using radiosonde data and a buoyancy model, we find that elevated LT humidity is crucial for generating afternoon precipitation events under dry soil conditions not accounted for by conventional LAC indices. This underscores the importance of considering LT humidity in understanding LAC over dry soil during droughts in the SGP.
Kirsten L. Findell, Zun Yin, Eunkyo Seo, Paul A. Dirmeyer, Nathan P. Arnold, Nathaniel Chaney, Megan D. Fowler, Meng Huang, David M. Lawrence, Po-Lun Ma, and Joseph A. Santanello Jr.
Geosci. Model Dev., 17, 1869–1883, https://doi.org/10.5194/gmd-17-1869-2024, https://doi.org/10.5194/gmd-17-1869-2024, 2024
Short summary
Short summary
We outline a request for sub-daily data to accurately capture the process-level connections between land states, surface fluxes, and the boundary layer response. This high-frequency model output will allow for more direct comparison with observational field campaigns on process-relevant timescales, enable demonstration of inter-model spread in land–atmosphere coupling processes, and aid in targeted identification of sources of deficiencies and opportunities for improvement of the models.
Zun Yin, Kirsten L. Findell, Paul Dirmeyer, Elena Shevliakova, Sergey Malyshev, Khaled Ghannam, Nina Raoult, and Zhihong Tan
Hydrol. Earth Syst. Sci., 27, 861–872, https://doi.org/10.5194/hess-27-861-2023, https://doi.org/10.5194/hess-27-861-2023, 2023
Short summary
Short summary
Land–atmosphere (L–A) interactions typically focus on daytime processes connecting the land state with the overlying atmospheric boundary layer. However, much prior L–A work used monthly or daily means due to the lack of daytime-only data products. Here we show that monthly smoothing can significantly obscure the L–A coupling signal, and including nighttime information can mute or mask the daytime processes of interest. We propose diagnosing L–A coupling within models or archiving subdaily data.
Cited articles
Alemohammad, S. H., Fang, B., Konings, A. G., Aires, F., Green, J. K., Kolassa, J., Miralles, D., Prigent, C., and Gentine, P.: Water, Energy, and Carbon with Artificial Neural Networks (WECANN): a statistically based estimate of global surface turbulent fluxes and gross primary productivity using solar-induced fluorescence, Biogeosciences, 14, 4101–4124, https://doi.org/10.5194/bg-14-4101-2017, 2017.
Barr, A. G. and Betts, A. K.: Radiosonde boundary layer budgets above a
boreal forest, J. Geophys. Res.-Atmos., 102,
29205–29212, 1997.
Benson, D. O. and Dirmeyer, P. A.: Characterizing the relationship between
temperature and soil moisture extremes and their role in the exacerbation of
heat waves over the contiguous United States, Jo. Climate, 34,
2175–2187, 2021.
Betts, A.: FIFE atmospheric boundary layer budget methods, J.
Geophys. Res.-Atmos., 97, 18523–18531, 1992.
Betts, A. K., Ball, J. H., Beljaars, A. C., Miller, M. J., and Viterbo, P.
A.: The land surface-atmosphere interaction: A review based on observational
and global modeling perspectives, J. Geophys. Res.-Atmos., 101, 7209–7225, 1996.
Cheng, Y., Sayde, C., Li, Q., Basara, J., Selker, J., Tanner, E., and
Gentine, P.: Failure of Taylor's hypothesis in the atmospheric surface layer
and its correction for eddy-covariance measurements, Geophys. Res. Lett., 44, 4287–4295, 2017.
Colliander, A., Jackson, T. J., Bindlish, R., Chan, S., Das, N., Kim, S.,
Cosh, M., Dunbar, R., Dang, L., and Pashaian, L.: Validation of SMAP surface
soil moisture products with core validation sites, Remote Sens.
Environ., 191, 215–231, 2017.
Crow, W. T., Lei, F., Hain, C., Anderson, M. C., Scott, R. L., Billesbach,
D., and Arkebauer, T.: Robust estimates of soil moisture and latent heat
flux coupling strength obtained from triple collocation, Geophys.
Res. Lett., 42, 8415–8423, 2015.
Denissen, J., Orth, R., Wouters, H., Miralles, D. G., van Heerwaarden, C.
C., de Arellano, J. V.-G., and Teuling, A. J.: Soil moisture signature in
global weather balloon soundings, npj Climate and Atmospheric Science, 4,
1–8, 2021.
Dirmeyer, P. A.: The terrestrial segment of soil moisture–climate coupling,
Geophys. Res. Lett., 38, L16702, https://doi.org/10.1029/2011GL048268, 2011.
Dirmeyer, P. A., Zeng, F. J., Ducharne, A., Morrill, J. C., and Koster, R.
D.: The sensitivity of surface fluxes to soil water content in three land
surface schemes, J. Hydrometeorol., 1, 121–134, 2000.
Dirmeyer, P. A., Gao, X., Zhao, M., Guo, Z., Oki, T., and Hanasaki, N.:
GSWP-2: Multimodel Analysis and Implications for Our Perception of the Land
Surface, B. Am. Meteorol. Soc., 87, 1381–1398, https://doi.org/10.1175/bams-87-10-1381, 2006.
Dirmeyer, P. A., Wang, Z., Mbuh, M. J., and Norton, H. E.: Intensified land
surface control on boundary layer growth in a changing climate, Geophys.
Res. Lett., 41, 1290–1294, 2014.
Dirmeyer, P. A., Wu, J., Norton, H. E., Dorigo, W. A., Quiring, S. M., Ford,
T. W., Santanello Jr., J. A., Bosilovich, M. G., Ek, M. B., and Koster, R.
D.: Confronting weather and climate models with observational data from soil
moisture networks over the United States, J. Hydrometeorol., 17,
1049–1067, 2016.
Dirmeyer, P. A., Chen, L., Wu, J., Shin, C.-S., Huang, B., Cash, B. A.,
Bosilovich, M. G., Mahanama, S., Koster, R. D., and Santanello, J. A.:
Verification of land–atmosphere coupling in forecast models, reanalyses,
and land surface models using flux site observations, J.
Hydrometeorol., 19, 375–392, 2018.
Dirmeyer, P. A., Balsamo, G., Blyth, E. M., Morrison, R., and Cooper, H. M.:
Land-atmosphere interactions exacerbated the drought and heatwave over
northern Europe during summer 2018, AGU Advances, 2, e2020AV000283, https://doi.org/10.1029/2020AV000283, 2021.
Dong, J., Akbar, R., Short Gianotti, D. J., Feldman, A. F., Crow, W. T., and
Entekhabi, D.: Can Surface Soil Moisture Information Identify
Evapotranspiration Regime Transitions?, Geophys. Res. Lett., 49,
e2021GL097697, https://doi.org/10.1029/2021GL097697, 2022.
Dorigo, W., Wagner, W., Albergel, C., Albrecht, F., Balsamo, G., Brocca, L.,
Chung, D., Ertl, M., Forkel, M., and Gruber, A.: ESA CCI Soil Moisture for
improved Earth system understanding: State-of-the art and future directions,
Remote Sens. Environ., 203, 185–215, 2017.
Dorigo, W. A., Wagner, W., Hohensinn, R., Hahn, S., Paulik, C., Xaver, A., Gruber, A., Drusch, M., Mecklenburg, S., van Oevelen, P., Robock, A., and Jackson, T.: The International Soil Moisture Network: a data hosting facility for global in situ soil moisture measurements, Hydrol. Earth Syst. Sci., 15, 1675–1698, https://doi.org/10.5194/hess-15-1675-2011, 2011.
Drought 2018 Team and ICOS Ecosystem Thematic Centre: Drought-2018 ecosystem eddy covariance flux product for 52 stations in FLUXNET-Archive format, ICOS [data set], https://doi.org/10.18160/YVR0-4898, 2020.
Ek, M. and and Holtslag, A.: Influence of soil moisture on boundary layer
cloud development, J. Hydrometeorol., 5, 86–99, 2004.
Entekhabi, D., Njoku, E. G., O'Neill, P. E., Kellogg, K. H., Crow, W. T.,
Edelstein, W. N., Entin, J. K., Goodman, S. D., Jackson, T. J., and Johnson,
J.: The soil moisture active passive (SMAP) mission, P.
IEEE, 98, 704–716, 2010.
ekseo: ekseo/Diurnal_LA_coupling: v1.0 (v1.0), Zenodo [code], https://doi.org/10.5281/zenodo.7242215, 2022.
Evans, J. G., Ward, H., Blake, J., Hewitt, E., Morrison, R., Fry, M., Ball,
L., Doughty, L., Libre, J., and Hitt, O.: Soil water content in southern
England derived from a cosmic-ray soil moisture observing system–COSMOS-UK,
Hydrol. Process., 30, 4987–4999, 2016.
Findell, K. L. and Eltahir, E. A.: Atmospheric controls on soil
moisture–boundary layer interactions. Part II: Feedbacks within the
continental United States, J. Hydrometeorol., 4, 570–583, 2003a.
Findell, K. L. and Eltahir, E. A.: Atmospheric controls on soil
moisture–boundary layer interactions. Part I: Framework development,
J. Hydrometeorol., 4, 552–569, 2003b.
Findell, K. L., Gentine, P., Lintner, B. R., and Kerr, C.: Probability of
afternoon precipitation in eastern United States and Mexico enhanced by high
evaporation, Nat. Geosci., 4, 434–439, 2011.
Guo, J., Zhang, J., Yang, K., Liao, H., Zhang, S., Huang, K., Lv, Y., Shao, J., Yu, T., Tong, B., Li, J., Su, T., Yim, S. H. L., Stoffelen, A., Zhai, P., and Xu, X.: Investigation of near-global daytime boundary layer height using high-resolution radiosondes: first results and comparison with ERA5, MERRA-2, JRA-55, and NCEP-2 reanalyses, Atmos. Chem. Phys., 21, 17079–17097, https://doi.org/10.5194/acp-21-17079-2021, 2021.
Guo, Z., Dirmeyer, P. A., Koster, R. D., Sud, Y., Bonan, G., Oleson, K. W.,
Chan, E., Verseghy, D., Cox, P., and Gordon, C.: GLACE: the global
land–atmosphere coupling experiment. Part II: analysis, J.
Hydrometeorol., 7, 611–625, 2006.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., and Schepers, D.:
The ERA5 global reanalysis, Q. J. Roy. Meteorol.
Soc., 146, 1999–2049, 2020 (data available at: https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels, last access: 24 October 2022).
Kapilaratne, R. J. and Lu, M.: Automated general temperature correction
method for dielectric soil moisture sensors, J. Hydrol., 551,
203–216, 2017.
Kerr, Y. H., Waldteufel, P., Wigneron, J.-P., Delwart, S., Cabot, F.,
Boutin, J., Escorihuela, M.-J., Font, J., Reul, N., and Gruhier, C.: The
SMOS mission: New tool for monitoring key elements ofthe global water cycle,
P. IEEE, 98, 666–687, 2010.
Koster, R. D., Dirmeyer, P. A., Hahmann, A. N., Ijpelaar, R., Tyahla, L.,
Cox, P., and Suarez, M. J.: Comparing the Degree of Land–Atmosphere
Interaction in Four Atmospheric General Circulation Models, J.
Hydrometeorol., 3, 363–375, https://doi.org/10.1175/1525-7541(2002)003<0363:Ctdola>2.0.Co;2, 2002.
Koster, R. D., Dirmeyer, P. A., Guo, Z., Bonan, G., Chan, E., Cox, P.,
Gordon, C., Kanae, S., Kowalczyk, E., and Lawrence, D.: Regions of strong
coupling between soil moisture and precipitation, Science, 305, 1138–1140,
2004.
Koster, R. D., Sud, Y., Guo, Z., Dirmeyer, P. A., Bonan, G., Oleson, K. W.,
Chan, E., Verseghy, D., Cox, P., and Davies, H.: GLACE: the global
land–atmosphere coupling experiment. Part I: overview, J.
Hydrometeorol., 7, 590–610, 2006.
Koster, R. D., Mahanama, S. P. P., Yamada, T. J., Balsamo, G., Berg, A. A.,
Boisserie, M., Dirmeyer, P. A., Doblas-Reyes, F. J., Drewitt, G., Gordon, C.
T., Guo, Z., Jeong, J.-H., Lee, W.-S., Li, Z., Luo, L., Malyshev, S.,
Merryfield, W. J., Seneviratne, S. I., Stanelle, T., van den Hurk, B. J. J.
M., Vitart, F., and Wood, E. F.: The Second Phase of the Global
Land–Atmosphere Coupling Experiment: Soil Moisture Contributions to
Subseasonal Forecast Skill, J. Hydrometeorol., 12, 805–822,
https://doi.org/10.1175/2011jhm1365.1, 2011.
Lawrence, D. M., Hurtt, G. C., Arneth, A., Brovkin, V., Calvin, K. V., Jones, A. D., Jones, C. D., Lawrence, P. J., de Noblet-Ducoudré, N., Pongratz, J., Seneviratne, S. I., and Shevliakova, E.: The Land Use Model Intercomparison Project (LUMIP) contribution to CMIP6: rationale and experimental design, Geosci. Model Dev., 9, 2973–2998, https://doi.org/10.5194/gmd-9-2973-2016, 2016.
Leroux, D. J., Kerr, Y. H., Al Bitar, A., Bindlish, R., Jackson, T. J.,
Berthelot, B., and Portet, G.: Comparison between SMOS, VUA, ASCAT, and
ECMWF soil moisture products over four watersheds in US, IEEE T.
Geosci. Remote, 52, 1562–1571, 2013.
Lorenz, R., Pitman, A. J., Hirsch, A. L., and Srbinovsky, J.: Intraseasonal
versus interannual measures of land–atmosphere coupling strength in a
global climate model: GLACE-1 versus GLACE-CMIP5 experiments in ACCESS1. 3b,
J. Hydrometeorol., 16, 2276–2295, 2015.
Ma, H., Zeng, J., Chen, N., Zhang, X., Cosh, M. H., and Wang, W.: Satellite
surface soil moisture from SMAP, SMOS, AMSR2 and ESA CCI: A comprehensive
assessment using global ground-based observations, Remote Sens.
Environ., 231, 111215, https://doi.org/10.1016/j.rse.2019.111215, 2019.
Miralles, D., Van Den Berg, M., Teuling, A., and De Jeu, R.: Soil
moisture-temperature coupling: A multiscale observational analysis,
Geophys. Res. Lett., 39, L21707, https://doi.org/10.1029/2012GL053703, 2012.
Miralles, D. G., Jiménez, C., Jung, M., Michel, D., Ershadi, A., McCabe, M. F., Hirschi, M., Martens, B., Dolman, A. J., Fisher, J. B., Mu, Q., Seneviratne, S. I., Wood, E. F., and Fernández-Prieto, D.: The WACMOS-ET project – Part 2: Evaluation of global terrestrial evaporation data sets, Hydrol. Earth Syst. Sci., 20, 823–842, https://doi.org/10.5194/hess-20-823-2016, 2016.
Miralles, D. G., Gentine, P., Seneviratne, S. I., and Teuling, A. J.:
Land–atmospheric feedbacks during droughts and heatwaves: state of the
science and current challenges, Ann. NY Acad. Sci.,
1436, 19–35, 2019.
Novick, K. A., Biederman, J., Desai, A., Litvak, M., Moore, D. J., Scott,
R., and Torn, M.: The AmeriFlux network: A coalition of the willing,
Agr. Forest Meteorol., 249, 444–456, 2018 (data available at: https://ameriflux.lbl.gov/data/download-data/, last access: 24 October 2022).
Pastorello, G., Trotta, C., Canfora, E., Chu, H., Christianson, D., Cheah,
Y.-W., Poindexter, C., Chen, J., Elbashandy, A., and Humphrey, M.: The
FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance
data, Scientific Data, 7, 1–27, 2020 (data available at: https://fluxnet.org/data/download-data/, last access: 24 October 2022).
Quiring, S. M., Ford, T. W., Wang, J. K., Khong, A., Harris, E., Lindgren,
T., Goldberg, D. W., and Li, Z.: The North American Soil Moisture Database:
Development and Applications, B. Am. Meteorol.
Soc., 97, 1441–1459, https://doi.org/10.1175/bams-d-13-00263.1, 2016.
Reichle, R. H., De Lannoy, G. J., Liu, Q., Ardizzone, J. V., Colliander, A.,
Conaty, A., Crow, W., Jackson, T. J., Jones, L. A., and Kimball, J. S.:
Assessment of the SMAP level-4 surface and root-zone soil moisture product
using in situ measurements, J. Hydrometeorol., 18, 2621–2645,
2017.
Reichstein, M., Falge, E., Baldocchi, D., Papale, D., Aubinet, M.,
Berbigier, P., Bernhofer, C., Buchmann, N., Gilmanov, T., and Granier, A.:
On the separation of net ecosystem exchange into assimilation and ecosystem
respiration: review and improved algorithm, Glob. Change Biol., 11,
1424–1439, 2005.
Santanello Jr., J. A., Peters-Lidard, C. D., Kumar, S. V., Alonge, C., and
Tao, W.-K.: A modeling and observational framework for diagnosing local
land–atmosphere coupling on diurnal time scales, J. Hydrometeorol., 10, 577–599, 2009.
Santanello Jr., J. A., Peters-Lidard, C. D., and Kumar, S. V.: Diagnosing the
sensitivity of local land–atmosphere coupling via the soil
moisture–boundary layer interaction, J. Hydrometeorol., 12,
766–786, 2011.
Santanello Jr., J. A., Dirmeyer, P. A., Ferguson, C. R., Findell, K. L.,
Tawfik, A. B., Berg, A., Ek, M., Gentine, P., Guillod, B. P., and Van
Heerwaarden, C.: Land–atmosphere interactions: The LoCo perspective,
B. Am. Meteorol. Soc., 99, 1253–1272, 2018.
Schumacher, D. L., Keune, J., Van Heerwaarden, C. C., Vilà-Guerau de
Arellano, J., Teuling, A. J., and Miralles, D. G.: Amplification of
mega-heatwaves through heat torrents fuelled by upwind drought, Nat.
Geosci., 12, 712–717, 2019.
Senécal, J.-F., Doyon, F., and Messier, C.: Management implications of
varying gap detection height thresholds and other canopy dynamics processes
in temperate deciduous forests, Forest Ecol. Manag., 410, 84–94,
2018.
Seneviratne, S. I., Corti, T., Davin, E. L., Hirschi, M., Jaeger, E. B.,
Lehner, I., Orlowsky, B., and Teuling, A. J.: Investigating soil
moisture–climate interactions in a changing climate: A review,
Earth-Sci. Rev., 99, 125–161, 2010.
Seneviratne, S. I., Wilhelm, M., Stanelle, T., van den Hurk, B., Hagemann,
S., Berg, A., Cheruy, F., Higgins, M. E., Meier, A., Brovkin, V., Claussen,
M., Ducharne, A., Dufresne, J.-L., Findell, K. L., Ghattas, J., Lawrence, D.
M., Malyshev, S., Rummukainen, M., and Smith, B.: Impact of soil
moisture-climate feedbacks on CMIP5 projections: First results from the
GLACE-CMIP5 experiment, Geophys. Res. Lett., 40, 5212–5217,
https://doi.org/10.1002/grl.50956, 2013.
Seo, E. and Dirmeyer, P. A.: Improving the ESA CCI Daily Soil Moisture Time
Series with Physically Based Land Surface Model Datasets Using a Fourier
Time-Filtering Method, J. Hydrometeorol., 23, 473–489, https://doi.org/10.1175/jhm-d-21-0120.1, 2022.
Seo, E., Lee, M.-I., Jeong, J.-H., Koster, R. D., Schubert, S. D., Kim,
H.-M., Kim, D., Kang, H.-S., Kim, H.-K., and MacLachlan, C.: Impact of soil
moisture initialization on boreal summer subseasonal forecasts: mid-latitude
surface air temperature and heat wave events, Clim. Dynam., 52,
1695–1709, 2019.
Seo, E., Lee, M.-I., Schubert, S. D., Koster, R. D., and Kang, H.-S.:
Investigation of the 2016 Eurasia heat wave as an event of the recent
warming, Environ. Res. Lett., 15, 114018, https://doi.org/10.1088/1748-9326/abbbae, 2020.
Seo, E., Lee, M.-I., and Reichle, R. H.: Assimilation of SMAP and ASCAT soil
moisture retrievals into the JULES land surface model using the Local
Ensemble Transform Kalman Filter, Remote Sens. Environ., 253,
112222, https://doi.org/10.1016/j.rse.2020.112222, 2021.
Still, C. J.: Meteorological data from the Discovery Tree at the Andrews Experimental Forest, 2015 to present ver 2, Environmental Data Initiative, https://doi.org/10.6073/pasta/3f2717e614e96d67bbe59918a75ee646, 2019 (data available at: https://portal.edirepository.org/nis/mapbrowse?packageid=knb-lter-and.5476.2, last access: 24 October 2022).
Stommel, H.: Entrainment of air into a cumulus cloud, J. Meteorol., 4, 91–94,
1947.
Swenson, S. C., Burns, S. P., and Lawrence, D. M.: The impact of biomass
heat storage on the canopy energy balance and atmospheric stability in the
community land model, J. Adv. Model. Earth Sy., 11,
83–98, 2019.
Tawfik, A. B. and Dirmeyer, P. A.: A process-based framework for quantifying
the atmospheric preconditioning of surface-triggered convection, Geophys. Res. Lett., 41, 173–178, 2014.
Tawfik, A. B., Dirmeyer, P. A., and Santanello, J. A.: The heated
condensation framework. Part I: Description and Southern Great Plains case
study, J. Hydrometeorol., 16, 1929–1945, 2015a.
Tawfik, A. B., Dirmeyer, P. A., and Santanello Jr., J. A.: The heated
condensation framework. Part II: Climatological behavior of convective
initiation and land–atmosphere coupling over the conterminous United
States, J. Hydrometeorol., 16, 1946–1961, 2015b.
Tramontana, G., Jung, M., Schwalm, C. R., Ichii, K., Camps-Valls, G., Ráduly, B., Reichstein, M., Arain, M. A., Cescatti, A., Kiely, G., Merbold, L., Serrano-Ortiz, P., Sickert, S., Wolf, S., and Papale, D.: Predicting carbon dioxide and energy fluxes across global FLUXNET sites with regression algorithms, Biogeosciences, 13, 4291–4313, https://doi.org/10.5194/bg-13-4291-2016, 2016.
Van de Boer, A., Moene, A., Graf, A., Schüttemeyer, D., and Simmer, C.:
Detection of entrainment influences on surface-layer measurements and
extension of Monin–Obukhov similarity theory, Bound.-Lay. Meteorol.,
152, 19–44, 2014.
van den Hurk, B., Kim, H., Krinner, G., Seneviratne, S. I., Derksen, C., Oki, T., Douville, H., Colin, J., Ducharne, A., Cheruy, F., Viovy, N., Puma, M. J., Wada, Y., Li, W., Jia, B., Alessandri, A., Lawrence, D. M., Weedon, G. P., Ellis, R., Hagemann, S., Mao, J., Flanner, M. G., Zampieri, M., Materia, S., Law, R. M., and Sheffield, J.: LS3MIP (v1.0) contribution to CMIP6: the Land Surface, Snow and Soil moisture Model Intercomparison Project – aims, setup and expected outcome, Geosci. Model Dev., 9, 2809–2832, https://doi.org/10.5194/gmd-9-2809-2016, 2016.
Van Heerwaarden, C. C., Vilà-Guerau de Arellano, J., Moene, A. F., and
Holtslag, A. A.: Interactions between dry-air entrainment, surface
evaporation and convective boundary-layer development, Quarterly Journal of
the Royal Meteorological Society: A journal of the atmospheric sciences,
Applied Meteorology and Physical Oceanography, 135, 1277–1291, 2009.
van Stratum, B. J., de Arellano, J. V.-G., van Heerwaarden, C. C., and
Ouwersloot, H. G.: Subcloud-layer feedbacks driven by the mass flux of
shallow cumulus convection over land, J. Atmos. Sci.,
71, 881–895, 2014.
Vilà-Guerau de Arellano, J., Ney, P., Hartogensis, O., de Boer, H., van Diepen, K., Emin, D., de Groot, G., Klosterhalfen, A., Langensiepen, M., Matveeva, M., Miranda-García, G., Moene, A. F., Rascher, U., Röckmann, T., Adnew, G., Brüggemann, N., Rothfuss, Y., and Graf, A.: CloudRoots: integration of advanced instrumental techniques and process modelling of sub-hourly and sub-kilometre land–atmosphere interactions, Biogeosciences, 17, 4375–4404, https://doi.org/10.5194/bg-17-4375-2020, 2020.
Wulfmeyer, V., Turner, D. D., Baker, B., Banta, R., Behrendt, A., Bonin, T.,
Brewer, W. A., Buban, M., Choukulkar, A., Dumas, E., Hardesty, R. M., Heus,
T., Ingwersen, J., Lange, D., Lee, T. R., Metzendorf, S., Muppa, S. K.,
Meyers, T., Newsom, R., Osman, M., Raasch, S., Santanello, J., Senff, C.,
Späth, F., Wagner, T., and Weckwerth, T.: A New Research Approach for
Observing and Characterizing Land–Atmosphere Feedback, B. Am. Meteorol. Soc., 99, 1639–1667, https://doi.org/10.1175/bams-d-17-0009.1,
2018.
Xue, Y., De Sales, F., Lau, W. K.-M., Boone, A., Kim, K.-M., Mechoso, C. R.,
Wang, G., Kucharski, F., Schiro, K., and Hosaka, M.: West African monsoon
decadal variability and surface-related forcings: second West African
Monsoon Modeling and Evaluation Project Experiment (WAMME II), Clim.
Dynam., 47, 3517–3545, 2016.
Xue, Y., Yao, T., Boone, A. A., Diallo, I., Liu, Y., Zeng, X., Lau, W. K. M., Sugimoto, S., Tang, Q., Pan, X., van Oevelen, P. J., Klocke, D., Koo, M.-S., Sato, T., Lin, Z., Takaya, Y., Ardilouze, C., Materia, S., Saha, S. K., Senan, R., Nakamura, T., Wang, H., Yang, J., Zhang, H., Zhao, M., Liang, X.-Z., Neelin, J. D., Vitart, F., Li, X., Zhao, P., Shi, C., Guo, W., Tang, J., Yu, M., Qian, Y., Shen, S. S. P., Zhang, Y., Yang, K., Leung, R., Qiu, Y., Peano, D., Qi, X., Zhan, Y., Brunke, M. A., Chou, S. C., Ek, M., Fan, T., Guan, H., Lin, H., Liang, S., Wei, H., Xie, S., Xu, H., Li, W., Shi, X., Nobre, P., Pan, Y., Qin, Y., Dozier, J., Ferguson, C. R., Balsamo, G., Bao, Q., Feng, J., Hong, J., Hong, S., Huang, H., Ji, D., Ji, Z., Kang, S., Lin, Y., Liu, W., Muncaster, R., de Rosnay, P., Takahashi, H. G., Wang, G., Wang, S., Wang, W., Zhou, X., and Zhu, Y.: Impact of Initialized Land Surface Temperature and Snowpack on Subseasonal to Seasonal Prediction Project, Phase I (LS4P-I): organization and experimental design, Geosci. Model Dev., 14, 4465–4494, https://doi.org/10.5194/gmd-14-4465-2021, 2021.
Zhang, Y., Wang, L., Santanello Jr., J. A., Pan, Z., Gao, Z., and Li, D.:
Aircraft observed diurnal variations of the planetary boundary layer under
heat waves, Atmos. Res., 235, 104801, https://doi.org/10.1016/j.atmosres.2019.104801, 2020.
Zreda, M., Desilets, D., Ferré, T., and Scott, R. L.: Measuring soil
moisture content non-invasively at intermediate spatial scale using
cosmic-ray neutrons, Geophys. Res. Lett., 35, L21402, https://doi.org/10.1029/2008GL035655, 2008.
Short summary
This study presents the climatology of the observed land–atmosphere interactions on a subdaily timescale during the warm season from flux site observations. Multivariate metrics are employed to examine the land, atmosphere, and combined couplings, and a mixing diagram is adopted to understand the coevolution of the moist and thermal energy budget within the atmospheric mixed layer. The diurnal cycles of both mixing diagrams and hourly land–atmosphere couplings exhibit hysteresis.
This study presents the climatology of the observed land–atmosphere interactions on a subdaily...