Articles | Volume 26, issue 20
https://doi.org/10.5194/hess-26-5373-2022
https://doi.org/10.5194/hess-26-5373-2022
Research article
 | 
27 Oct 2022
Research article |  | 27 Oct 2022

FarmCan: a physical, statistical, and machine learning model to forecast crop water deficit for farms

Sara Sadri, James S. Famiglietti, Ming Pan, Hylke E. Beck, Aaron Berg, and Eric F. Wood

Related authors

Improving Seasonally Frozen Ground Monitoring Using Soil Freezing Characteristic Curve in Permittivity–Temperature Space
Hesam Salmabadi, Renato Pardo Lara, Aaron Berg, Alex Mavrovic, Chelene Hanes, Benoit Montpetit, and Alexandre Roy
EGUsphere, https://doi.org/10.5194/egusphere-2025-620,https://doi.org/10.5194/egusphere-2025-620, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Improving Streamflow Simulation through Machine Learning-Powered Data Integration and Its Implications for Forecasting in the Western U.S.
Yuan Yang, Ming Pan, Dapeng Feng, Mu Xiao, Taylor Dixon, Robert Hartman, Chaopeng Shen, Yalan Song, Agniv Sengupta, Luca Delle Monache, and F. Martin Ralph
EGUsphere, https://doi.org/10.5194/egusphere-2025-1708,https://doi.org/10.5194/egusphere-2025-1708, 2025
Short summary
Ensembling Differentiable Process-based and Data-driven Models with Diverse Meteorological Forcing Datasets to Advance Streamflow Simulation
Peijun Li, Yalan Song, Ming Pan, Kathryn Lawson, and Chaopeng Shen
EGUsphere, https://doi.org/10.5194/egusphere-2025-483,https://doi.org/10.5194/egusphere-2025-483, 2025
Short summary
Comprehensive Global Assessment of 23 Gridded Precipitation Datasets Across 16,295 Catchments Using Hydrological Modeling
Ather Abbas, Yuan Yang, Ming Pan, Yves Tramblay, Chaopeng Shen, Haoyu Ji, Solomon H. Gebrechorkos, Florian Pappenberger, Jong Cheol Pyo, Dapeng Feng, George Huffman, Phu Nguyen, Christian Massari, Luca Brocca, Tan Jackson, and Hylke E. Beck
EGUsphere, https://doi.org/10.5194/egusphere-2024-4194,https://doi.org/10.5194/egusphere-2024-4194, 2025
Short summary
Impacts of tile drainage on hydrology, soil biogeochemistry, and crop yield in the U.S. Midwestern agroecosystems
Zewei Ma, Kaiyu Guan, Bin Peng, Wang Zhou, Robert Grant, Jinyun Tang, Murugesu Sivapalan, Ming Pan, Li Li, and Zhenong Jin
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-340,https://doi.org/10.5194/hess-2024-340, 2024
Revised manuscript accepted for HESS
Short summary

Cited articles

Al Bitar, A., Mialon, A., Kerr, Y. H., Cabot, F., Richaume, P., Jacquette, E., Quesney, A., Mahmoodi, A., Tarot, S., Parrens, M., Al-Yaari, A., Pellarin, T., Rodriguez-Fernandez, N., and Wigneron, J.-P.: The global SMOS Level 3 daily soil moisture and brightness temperature maps, Earth Syst. Sci. Data, 9, 293–315, https://doi.org/10.5194/essd-9-293-2017, 2017. a
Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop evapotranspiration – Guidelines for computing crop water requirements, FAO Irrigation and drainage paper 56, FAO, Rome, Italy, http://www.fao.org/3/X0490E/X0490E00.htm (last access: October 2022), 1998. a
Allen, R., Tasumi, M., and Trezza, R.: Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)-Model, J. Irrig. Drain. Eng., 133, 380–394, 2007. a
Andarzian, B., Bannayan, M., Steduto, P., Mazraeh, H., Barati, M., Barati, M., and Rahnama, A.: Validation and testing of the AquaCrop model under full and deficit irrigated wheat production in Iran, Agr. Water Manage., 100, 1–8, https://doi.org/10.1016/j.agwat.2011.08.023, 2011. a
Ash, G. H. B., Shaykewich, C. F., and Raddatz, R. L.: Moisture risk assessment for spring wheat on the eastern Prairies: a water use simulation model, Climatol. Bull., 26, 65–78, 1992. a
Download
Short summary
A farm-scale hydroclimatic machine learning framework to advise farmers was developed. FarmCan uses remote sensing data and farmers' input to forecast crop water deficits. The 8 d composite variables are better than daily ones for forecasting water deficit. Evapotranspiration (ET) and potential ET are more effective than soil moisture at predicting crop water deficit. FarmCan uses a crop-specific schedule to use surface or root zone soil moisture.
Share