Articles | Volume 26, issue 20
Hydrol. Earth Syst. Sci., 26, 5373–5390, 2022
https://doi.org/10.5194/hess-26-5373-2022

Special issue: Experiments in Hydrology and Hydraulics

Hydrol. Earth Syst. Sci., 26, 5373–5390, 2022
https://doi.org/10.5194/hess-26-5373-2022
Research article
27 Oct 2022
Research article | 27 Oct 2022

FarmCan: a physical, statistical, and machine learning model to forecast crop water deficit for farms

Sara Sadri et al.

Related authors

Developing a drought-monitoring index for the contiguous US using SMAP
Sara Sadri, Eric F. Wood, and Ming Pan
Hydrol. Earth Syst. Sci., 22, 6611–6626, https://doi.org/10.5194/hess-22-6611-2018,https://doi.org/10.5194/hess-22-6611-2018, 2018
Short summary
Nonstationarity of low flows and their timing in the eastern United States
S. Sadri, J. Kam, and J. Sheffield
Hydrol. Earth Syst. Sci., 20, 633–649, https://doi.org/10.5194/hess-20-633-2016,https://doi.org/10.5194/hess-20-633-2016, 2016
Short summary

Related subject area

Subject: Engineering Hydrology | Techniques and Approaches: Stochastic approaches
Identifying sensitivities in flood frequency analyses using a stochastic hydrologic modeling system
Andrew J. Newman, Amanda G. Stone, Manabendra Saharia, Kathleen D. Holman, Nans Addor, and Martyn P. Clark
Hydrol. Earth Syst. Sci., 25, 5603–5621, https://doi.org/10.5194/hess-25-5603-2021,https://doi.org/10.5194/hess-25-5603-2021, 2021
Short summary
Characteristics and process controls of statistical flood moments in Europe – a data-based analysis
David Lun, Alberto Viglione, Miriam Bertola, Jürgen Komma, Juraj Parajka, Peter Valent, and Günter Blöschl
Hydrol. Earth Syst. Sci., 25, 5535–5560, https://doi.org/10.5194/hess-25-5535-2021,https://doi.org/10.5194/hess-25-5535-2021, 2021
Short summary
Objective functions for information-theoretical monitoring network design: what is “optimal”?
Hossein Foroozand and Steven V. Weijs
Hydrol. Earth Syst. Sci., 25, 831–850, https://doi.org/10.5194/hess-25-831-2021,https://doi.org/10.5194/hess-25-831-2021, 2021
Short summary
Stochastic simulation of streamflow and spatial extremes: a continuous, wavelet-based approach
Manuela I. Brunner and Eric Gilleland
Hydrol. Earth Syst. Sci., 24, 3967–3982, https://doi.org/10.5194/hess-24-3967-2020,https://doi.org/10.5194/hess-24-3967-2020, 2020
Short summary
Numerical investigation on the power of parametric and nonparametric tests for trend detection in annual maximum series
Vincenzo Totaro, Andrea Gioia, and Vito Iacobellis
Hydrol. Earth Syst. Sci., 24, 473–488, https://doi.org/10.5194/hess-24-473-2020,https://doi.org/10.5194/hess-24-473-2020, 2020
Short summary

Cited articles

Al Bitar, A., Mialon, A., Kerr, Y. H., Cabot, F., Richaume, P., Jacquette, E., Quesney, A., Mahmoodi, A., Tarot, S., Parrens, M., Al-Yaari, A., Pellarin, T., Rodriguez-Fernandez, N., and Wigneron, J.-P.: The global SMOS Level 3 daily soil moisture and brightness temperature maps, Earth Syst. Sci. Data, 9, 293–315, https://doi.org/10.5194/essd-9-293-2017, 2017. a
Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop evapotranspiration – Guidelines for computing crop water requirements, FAO Irrigation and drainage paper 56, FAO, Rome, Italy, http://www.fao.org/3/X0490E/X0490E00.htm (last access: October 2022), 1998. a
Allen, R., Tasumi, M., and Trezza, R.: Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)-Model, J. Irrig. Drain. Eng., 133, 380–394, 2007. a
Andarzian, B., Bannayan, M., Steduto, P., Mazraeh, H., Barati, M., Barati, M., and Rahnama, A.: Validation and testing of the AquaCrop model under full and deficit irrigated wheat production in Iran, Agr. Water Manage., 100, 1–8, https://doi.org/10.1016/j.agwat.2011.08.023, 2011. a
Ash, G. H. B., Shaykewich, C. F., and Raddatz, R. L.: Moisture risk assessment for spring wheat on the eastern Prairies: a water use simulation model, Climatol. Bull., 26, 65–78, 1992. a
Download
Short summary
A farm-scale hydroclimatic machine learning framework to advise farmers was developed. FarmCan uses remote sensing data and farmers' input to forecast crop water deficits. The 8 d composite variables are better than daily ones for forecasting water deficit. Evapotranspiration (ET) and potential ET are more effective than soil moisture at predicting crop water deficit. FarmCan uses a crop-specific schedule to use surface or root zone soil moisture.