Articles | Volume 21, issue 5
Hydrol. Earth Syst. Sci., 21, 2497–2507, 2017
Hydrol. Earth Syst. Sci., 21, 2497–2507, 2017

Technical note 12 May 2017

Technical note | 12 May 2017

Dealing with uncertainty in the probability of overtopping of a flood mitigation dam

Eleni Maria Michailidi and Baldassare Bacchi Eleni Maria Michailidi and Baldassare Bacchi
  • DICATAM, Università degli Studi di Brescia, Via Branze 42, 25123 Brescia, Italy

Abstract. In recent years, copula multivariate functions were used to model, probabilistically, the most important variables of flood events: discharge peak, flood volume and duration. However, in most of the cases, the sampling uncertainty, from which small-sized samples suffer, is neglected. In this paper, considering a real reservoir controlled by a dam as a case study, we apply a structure-based approach to estimate the probability of reaching specific reservoir levels, taking into account the key components of an event (flood peak, volume, hydrograph shape) and of the reservoir (rating curve, volume–water depth relation). Additionally, we improve information about the peaks from historical data and reports through a Bayesian framework, allowing the incorporation of supplementary knowledge from different sources and its associated error. As it is seen here, the extra information can result in a very different inferred parameter set and consequently this is reflected as a strong variability of the reservoir level, associated with a given return period. Most importantly, the sampling uncertainty is accounted for in both cases (single-site and multi-site with historical information scenarios), and Monte Carlo confidence intervals for the maximum water level are calculated. It is shown that water levels of specific return periods in a lot of cases overlap, thus making risk assessment, without providing confidence intervals, deceiving.

Short summary
In this research, we explored how the sampling uncertainty of flood variables (flood peak, volume, etc.) can reflect on a structural variable, which in our case was the maximum water level (MWL) of a reservoir controlled by a dam. Next, we incorporated additional information from different sources for a better estimation of the uncertainty in the probability of exceedance of the MWL. Results showed the importance of providing confidence intervals in the risk assessment of a structure.