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Abstract. In the coming decades, a changing climate, the
loss of high-quality land, the slowing in the annual yield
of cereals, and increasing fertilizer use indicate that better
agricultural water management strategies are needed. In this
study, we designed FarmCan, a novel, robust remote sens-
ing and machine learning (ML) framework to forecast farms’
needed daily crop water quantity or needed irrigation (NI).
We used a diverse set of simulated and observed near-real-
time (NRT) remote sensing data coupled with a random for-
est (RF) algorithm and inputs about farm-specific situations
to predict the amount and timing of evapotranspiration (ET),
potential ET (PET), soil moisture (SM), and root zone soil
moisture (RZSM). Our case study of four farms in the Cana-
dian Prairies Ecozone (CPE) shows that 8 d composite pre-
cipitation (P ) has the highest correlation with changes (1)
of RZSM and SM. In contrast, 8 d PET and 8 d ET do not
offer a strong correlation with 8 d P . Using R2, root mean
square error (RMSE), and Kling–Gupta efficiency (KGE) in-
dicators, our algorithm could reasonably calculate daily NI
up to 14 d in advance. From 2015 to 2020, the R2 values be-
tween predicted and observed 8 d ET and 8 d PET were the
highest (80 % and 54 %, respectively). The 8 d NI also had an
average R2 of 68%. The KGE of the 8 d ET and 8 d PET in
four study farms showed an average of 0.71 and 0.50, respec-
tively, with an average KGE of 0.62. FarmCan can be used in
any region of the world to help stakeholders make decisions
during prolonged periods of drought or waterlogged condi-

tions, schedule cropping and fertilization, and address local
government policy concerns.

1 Introduction

The Food and Agricultural Organization (FAO) estimates
that global food production must increase 50 %–70 %
by 2050 to feed the projected population of 10 billion
(UN/ISDR, 2007; FAO, 2009). Combined with the increasing
frequency of drought due to climate change, non-sustainable
use of groundwater, and increasing competition from munic-
ipal, environmental, and industrial water needs, farmers are
facing the challenge of maximizing crop production without
a growing water supply (Han et al., 2018). Farmers across
the world, however, may lack adequate means to character-
ize crop water use, and thus agricultural water management
often operates under conditions of unknown water deficiency
(Levidowa et al., 2014). Therefore, identifying crop water
stress in different growing seasons is necessary to predict
yield conditions and plan irrigation scheduling (Virnodkar
et al., 2020). Needed irrigation (NI) or irrigation consumptive
water use (ICU) is the amount of water to reduce crop water
stress, satisfy crop water demand, and enhance agricultural
water use efficiency (WUE; Kirda, 2000). In irrigated farms,
information on NI can help regulate water deficit, achieve
higher levels of crop produced per unit of water consumed,
and optimize profit while minimizing potential negative en-
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vironmental effects (Han et al., 2018; Chalmers et al., 1981;
Taghvaeian et al., 2020). However, information on the proper
quantity of water to feed crops is also essential in rainfed ar-
eas with insufficient rainfall to maintain crop yields and soil
conditions (Virnodkar et al., 2020). As climate change and
recurring drought continue to impact crop water stress levels
and food security, rainfed farms in the U.S. and Canada are
increasingly adopting irrigation technologies (USDA-NASS,
2021). For example, the Canadian Ministry of Agriculture is
encouraging farmers in Saskatchewan to evaluate their poten-
tial NI and apply for irrigation development (Saskatchewan
Government, 2022). Knowing the quantity and timings of
the water supply gives farmers incentives for more efficient
practices such as adopting irrigation, identifying the tim-
ing and amount of fertilizer supply, and facilitating more
extensive insurance planning and adaptation strategy goals
(White et al., 2020; Levidowa et al., 2014; Stocker et al.,
2013; Geerts and Raes, 2009; Taghvaeian et al., 2020). The
timely determination of NI has shown to save water and en-
ergy and help farmers achieve improved yields and quality
(USDA-NASS, 2021). Several main approaches have been
investigated to determine the temporal variability in NI and
crop water stress. These methods are based on soil water sta-
tus, plant responses, and crop modeling using remote sens-
ing data (Taghvaeian et al., 2020; Virnodkar et al., 2020).
Most crop water deficit studies have focused on model-based
crop water stress, mostly because of the difficulty of measur-
ing water availability for specific agricultural periods such as
crop growth or yield (Ash et al., 1992; Wittrock and Ripley,
1999; Quiring, 2004). There have been limited implications
for monitoring and predicting farm-specific NI without using
in situ data (Jia et al., 2011). Therefore, providing accurate
short-term forecasts of irrigation depth and timing is chal-
lenging for soil water balance modeling and other scheduling
strategies (Taghvaeian et al., 2020). Smilovic et al. (2016)
and Andarzian et al. (2011) employed the crop water model,
AquaCrop, to evaluate the timing and spatial distribution of
irrigation water between farms within a watershed in west-
ern Canada. They showed that wheat production alone could
be maintained while reducing water use by 77 %, and pro-
duction could increase by 27 % without increasing irrigation
water use. Despite their advantages, NI and crop water stress
models can have limited spatial and temporal availability for
input data, can be too complicated to operate, and cannot
easily be operated as a forecasting tool using remote sens-
ing data. Plant hydraulic models, for example, have relatively
complete mechanistic representations of humidity, tempera-
ture, and leaf area index (LAI), but they are usually too com-
plex, with many parameters that are hard to measure for crops
(Yang et al., 2020).

With near-real-time (NRT) remote sensing, farm NI mod-
eling with reasonable confidence and the potential for better-
informed water resources management is now achievable, es-
pecially in areas where access or more advanced on-farm
technologies are too costly. Remote sensing has been used

to calculate vegetation indices (Romero et al., 2018), mea-
sure changes in photosynthetic pigment cells (Poblete et al.,
2017), measure canopy content and water balance in leaves
(Rapaport et al., 2015), and estimate the surface energy bal-
ance (Allen et al., 2007). Over the past few decades, ma-
chine learning (ML) techniques also have been progres-
sively used to process large amounts of information cre-
ated by remotely sensed data. Several studies have indicated
the high significance of addressing plant water stress us-
ing ML, which will help farmers improve water and crop-
land management practices in the low water productivity
areas, substantially enhancing the food security (Virnodkar
et al., 2020). Various machine learning algorithms, such as
random forests (RFs), support vector machines (SVMs), ar-
tificial neural networks (ANNs), genetic algorithms (GAs),
and ensemble learning, have been used on remote sensing
information in farming (Virnodkar et al., 2020). RF appli-
cations have become popular for addressing data overfitting,
especially in geospatial classification and prediction of re-
mote sensing data (Vergopolan et al., 2021; Saini and Ghosh,
2018). Poccas et al. (2017) used RF and SVM to model leaf
water potential for assessing grapevine water stress. Loggen-
berg et al. (2018) combined RF with remote sensing data
to distinguish stressed and non-stressed Shiraz vines. De-
spite these advances, scientific NI applications for evaluat-
ing crop water stress using remote sensing data have gener-
ally remained limited, with relatively low adoption by farm-
ers (Virnodkar et al., 2020; Yang et al., 2020; ScienceDaily,
2021). Some of the problems to date are as follows:

1. Lack of access. Many farmers across the globe do not
have access to the results of NI models. Therefore, man-
agement practices mostly rely on farmers’ experience
rather than scientific NI models.

2. Lack of timely predictions. Producers need to make
NI decisions several days in advance and require tools
capable of accurately forecasting short-term crop water
use.

3. Complex procedures. Many of these models have ten-
uous requirements for inputs, time, labor, and financial
investment, making the model remain within the scien-
tific domain and out of reach for potential users.

To improve crop water stress and NI deficit management,
focus should be on (1) including short-term forecasts in
NI schedulers, (2) reducing data, time, labor, and cost re-
quirements for schedulers, (3) providing user-friendly deci-
sion support systems, and (4) incorporating remotely sensed
data in scheduling (Taghvaeian et al., 2020).

In this study, we developed the FarmCan model to address
the abovementioned issues. FarmCan is a hybrid physical–
statistical–ML model for NI scheduling and other agricul-
tural applications. At its core, FarmCan is trained on NRT
remote sensing data such as surface soil moisture (SM), root
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Table 1. Land use from 2015 to 2019.

Study Dominant land use (total mm crop water need during growing period)

site 2015 2016 2017 2018 2019

S1 Lentil (325) Canola Barley (450–650) Canola Spring wheat
S2 Spring wheat (450–650) Canola Peas (350–500) Spring wheat Canola
M1 Canola (450–580) Spring wheat Soybeans Canola Spring wheat
M2 Oats (450–650) Soybeans (450–700) Oats Soybeans Oats

Average crop water use is from FAO guidelines.

zone soil moisture (RZSM), precipitation (P ), evapotranspi-
ration (ET), and potential ET (PET) to monitor and fore-
cast daily NI daily and up to 14 d in advance. The con-
tributions of the FarmCan algorithm are to (1) use farm-
specific NRT remote sensing data as inputs, (2) use ML to
forecast PET, SM, and RZSM using P prediction, (3) de-
velop a climate-informed forecast of crop NI volume and
timing with up to 14 d lead time, (4) allow users to inter-
act with the tool by finding their farms, choosing crop and
growing days, and joining a plan that guides and informs
them about NI through the growing season, and (5) use SM
or RZSM, depending on the timing and crop growth stage.
Our framework is customized for the Canadian Prairies Eco-
zone (CPE). However, the methodology is generic and can
be transferred anywhere to inform farmers and stakehold-
ers where and when additional water is potentially needed
to compensate for water deficits. The tool will provide valu-
able information to governments’, agriculturalists’, and in-
dustries’ sustainable initiatives to grow more food and avoid
waste with better-managed water; however, ultimately adap-
tation decisions will need to be made in a more extensive
community and through government dialogue within man-
agement goals.

The remainder of this paper is organized as follows: Sect. 2
describes the study area and the datasets used to train Farm-
Can. Section 3 describes the FarmCan model structure and
development. Section 4 presents the performance and vali-
dation of model results. Major conclusions of the study are
presented in Sect. 5.

2 Materials and methods

2.1 Study area

Over 80 % of Canadian farms are concentrated in the CPE –
i.e., southern portions of Alberta (AB), Saskatchewan (SK),
and Manitoba (MB; Wheaton et al., 2005). The CPE has
some of the world’s highest climate and weather variabil-
ity. It is predominately continental with long, cold winters,
short, hot summers, and relatively low precipitation amounts
during the short growing season of May to September (Bon-
sal et al., 1999). The annual mean precipitation is around

478 mm, of which rainfall accounts for almost two-thirds
of it during the growing season, and snowfall makes up
another 30 % of it. Average winter and summer tempera-
tures are −10 and 15 ◦C, respectively (Hadwen and Schaan,
2017). Such variabilities significantly affect the CPE’s agri-
culture, environment, economy, and culture yearly (Sadri
et al., 2020). For example, the drought of 2001–2002 cost
approximately USD 3.6 billion in agricultural production
losses (Wheaton et al., 2005). Between 2008 and 2012,
federal–provincial disaster relief payouts for climate-related
events totaled more than USD 785 million and more than
USD 16.7 billion in crop insurance. The 100-year record-
breaking drought in 2017 caused massive wildfires, reduced
yields (particularly canola), heat stress, poor grain fill, live-
stock feed shortages, and the relocation of nearly 3000 cattle
in Saskatchewan and Alberta (Cherneski, 2018). The vulner-
ability of the CPE to agricultural production risks and the
future scenarios of climate, which show more severe and fre-
quent droughts with declining precipitation trends and sur-
face water resources during summer and fall, makes the re-
gion ideal for developing and testing robust crop NI method-
ologies.

A total of four study farms, on average 160 ha each,
were selected within the provinces of SK and MB (Fig. 1).
These farms are sites for other soil moisture core vali-
dation networks, such as the Agriculture and Agri-Food
Canada (AAFC) RISMA (Real-Time In-Situ Soil Monitor-
ing for Agriculture) network (Bhuiyan et al., 2018) and the
Kenaston Network in Saskatchewan for NASA Soil Moisture
Active Passive (SMAP) validation (Sadri et al., 2020; Tetlock
et al., 2019). All four farms are rainfed and have alternat-
ing crop years (ECCC, 2013). Farmers use pasture, spring
wheat, shrubland, and other cover crops to avoid farrow and
water-logged conditions in spring. Depending on field and
weather conditions, planting typically occurs in late April
and early May. For this study, we consider a fixed 7-month
window for the growing season from 1 April to 31 October.
Table 1 shows that, between 2015 to 2019, at least seven dif-
ferent crops were planted on the four study farms. Most crops
were canola and spring wheat, although there were also soy-
beans, oats, barley, peas, and lentils. These crops have low to
medium sensitivity to drought, and their root depth at maxi-
mum growth is anywhere from 0.6 m (lentils and soybeans)
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Figure 1. Locations of the four study farms in Saskatchewan (S1 and S2), near Kenaston, and in Manitoba (M1 and M2), near Carman
(© Google Earth 2021).

Table 2. Information about each of the four study sites (data from 2015 to 2019).

Study Lat Long Area P (mm) P (mm) P /PET
site (ha) 1 Apr–31 Oct annual (mm d−1)

S1 51.42335 −106.46100 263 122.45 146 0.292
S2 51.55185 −106.37318 192 131.62 155 0.282
M1 49.67328 −97.95417 130 167.6 211.7 0.385
M2 49.62460 −97.95435 65 179 221 0.402

P /PET is the aridity index. PET is the potential ET obtained from National Atlas of Canada.

to 1.5 m (canola, barley, and spring wheat). The average crop
water needs through the growing season are 550 mm; much
less was provided by rain, as shown in Table 2 (Shuval and
Dweik, 2007; Brouwer and Heibloem, 1986). Table 2 shows
the amount of precipitation during and outside the growing
season. Precipitation outside the growing season is primar-
ily snow. Wind plays a critical role in moving and blowing
snow. Therefore, the contribution of melting snow toward
meeting future crop water requirements is not substantial and
not considered in the FarmCan model. However, establishing
soil water reservoirs or having stubble fields (Pomeroy et al.,
1990) can improve snow contribution to SM in the future.
Comparing PET with the total annual precipitation, we ex-
pect to confirm that the amount of water supplied by precip-
itation is insufficient to meet optimum crop growth.

Each farm’s growing season aridity index (P /PET) is
shown in the last column of Table 2. This index is used across
the globe to represent vegetation’s biogeographical distribu-
tion and estimate crop yield (Franz et al., 2020). Based on the
aridity index, Manitoba farms have a higher expected crop
yield than Saskatchewan farms.

2.2 Model components

The two main requirements for the datasets to develop Farm-
Can are the (1) availability of at least 5 years’ worth of NRT
remotely sensed data and (2) accessibility of such data in
real time. These two factors would make the FarmCan al-
gorithm trainable and updatable daily. Various datasets were
considered, such as leaf area index (LAI) and the ET from
the NASA ECOSTRESS satellite (ECOsystem Spaceborne
Thermal Radiometer Experiment on Space Station; Fisher
et al., 2017), but they did not meet one or both of the require-
ments. On the other hand, MODIS (Moderate Resolution
Imaging Spectroradiometer) ET and PET products are avail-
able and accessible in NRT at 500 m pixel resolution. The
Multi-Source Weighted-Ensemble Precipitation (MSWEP)
can provide global P values with a 3 h 0.1◦ resolution cov-
ering the period 1979 to the near present (Beck et al., 2019)
as an NRT or forecasted product. PET, ET, and P are critical
predictors of crop water stress that link the water–energy–
carbon cycle (Pendergrass et al., 2020; Brust et al., 2021).
SMAP SM products (surface and root zone) are also avail-
able and accessible in NRT and provide a highly accurate
descriptor of crop stress globally (White et al., 2020). SM is
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a direct measure of agricultural drought (Sadri et al., 2020;
Vergopolan et al., 2021). RZSM becomes important during
particular growth stages (mid season and late season) and
affects crop growth at maturity stage and final crop yield
(Smilovic et al., 2019). The inclusion of SM as a dynamic
parameter within crop water stress numerical modeling has
improved forecast capabilities (Tetlock et al., 2019; Wanders
et al., 2014; Koster et al., 2009). The datasets used in this
study are listed in Table 3.

The SMAP satellite was launched in 2015, and the data
are available from 31 March 2015 to the present. SMAP
level 3 SM (0–5 cm; SPL3SMP) is a composite based on
daily passive radiometer retrievals of global land SM in the
top 5 cm of the soil that is resampled to a global, cylindri-
cal ∼ 36 km Equal-Area Scalable Earth Grid, version 2.0
(EASE-Grid 2.0). For this study, we used version 4 of
SPL3SMP retrievals from the morning overpasses to mini-
mize uncertainties and bias from the in situ data (Al Bitar
et al., 2017).

The SMAP level 4 (SPL4SMAU) is a daily global RZSM
product (0–1 m) obtained by assimilating low-frequency (L-
band) microwave brightness temperature observations (for
which SPL3SMP is the gridded version) into the GEOS-5
catchment land surface model (CLSM; Reichle, 2017; Re-
ichle et al., 2015; Sadri et al., 2018), which is driven by
surface meteorological data from the NASA Goddard Earth
Observation System (GEOS) weather analysis (Brust et al.,
2021; Rienecker et al., 2008). Additional corrections using
gauge- and satellite-based precipitation estimates downscale
to the model’s temporal and 9 km scale (Liu et al., 2011; Re-
ichle et al., 2011).

ET and PET data are derived from MODIS, a modified
MOD16A2/A3 Terra version 6 (Running et al., 2019a) ET/la-
tent heat flux algorithm. The units are 0.1 kg m−2 per 8 d (i.e.,
0.1 mm per 8 d), which is the summation of total daily ET
through 8 d (Running et al., 2019b). The last acquisition pe-
riod of each year is a 5 or 6 d composite period, depending
on the year. The algorithm used for the MOD16 data prod-
uct collection is based on the Penman–Monteith equation,
which includes inputs of daily meteorological reanalysis data
along with MODIS remotely sensed data products such as
vegetation property dynamics, albedo, and land cover. Pro-
vided in the MOD16A2 v006 product are layers for com-
posited ET and PET along with a quality control layer from
1 January 2001 to the present. MODIS data are available
from 2010 to the present.

MSWEP version 1 (0.25◦ spatial resolution) was released
in May 2016 and since then has been applied regionally
and globally for modeling SM and ET (Beck et al., 2019;
Martens et al., 2017), estimating plant rooting depth (Yang
et al., 2016), evaluating root zone soil moisture patterns (Zo-
haib et al., 2017), evaluating climatic controls on vegetation
(Papagiannopoulou et al., 2017), and analyzing diurnal vari-
ations in rainfall (Chen and Dirmeyer, 2017) and various
other applications (Beck et al., 2019). The product blends

gauge-, satellite-, and (re)analysis-based P estimates to im-
prove the accuracy of the estimates globally. MSWEP is a
global P product with a 3 h 0.1◦ resolution covering the pe-
riod 1979 to the present. It does not provide a forecast. How-
ever, MSWEP V280 is largely consistent with a newer prod-
uct, MSWX, that offers medium- and longer-term forecasts.
Here, we used past dates to build a forecasting tool, so using
the MSWEP V280 product was sufficient. For future soft-
ware development applications, we will use MSWEP com-
bined with MSWX to provide real-time forecasts (Beck et al.,
2022).

We used the data in Table 3 in the parsimonious NI model
of the FAO as follows:

NI≈
∑

PET−
∑

P −1SM, (1)

where NI is the volume of water needed to compensate for
the deficit between PET as a demand factor, P , and change
in soil moisture content (1SM or 1RZSM) as supply factors.
All units in Eq. (1) are in millimeters. To take care of the un-
seen delays among system components and to reduce errors,
we use 8 d composite periods in Eq. (1) and throughout this
study. The use of 8 d is also consistent with the MODIS out-
put data format.

To convert 1SM or 1RZSM volumetric values to depth
in Eq. (1), we multiplied their values by the correspond-
ing depth of the soil (mm; Pereira et al., 2015; Allen et al.,
1998). For example, a 0.2 m3 m−3 of the surface SM (in
the first 50 mm of the topsoil) is equivalent to 0.2× 50=
10 mm d−1, whereas the same volumetric soil moisture for
the root zone (with a consistent depth of 1000 mm) is equiv-
alent to 0.2× 1000= 200 mm d−1, meaning that 200 mm of
water can be drawn from 1 m deep soil. FarmCan uses 50 or
1000 mm depth, depending on the crop’s development stage.
When the crop is in stages 1 or 2, the algorithm uses the first
50 mm depth, and when the crop is in stages 3 or 4, 1000 mm
depth is used.

3 Model structure

Figure 2 summarizes the design of the main steps for the
FarmCan algorithm. The steps include the following:

1. The user inputs the coordinates of a farm, crop type,
planting date, and total growing days.

2. The algorithm locates the farm and calculates the dates
of each of the four phenological stages of crop growth.

3. From the farm coordinates, the farm center is calculated.
Gridded data (i.e., P , SM, RZSM, ET, and PET) are
clipped from the primary datasets using radii from the
farm center calculated in such a way that each radius
for each variable includes the closest gridded data sur-
rounding the farm perimeter. Calculations of the vari-
ables’ radii are based on trial and error and the vari-
able’s spatial resolution. The farm’s specific variable
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Table 3. Datasets and the periods used to train and run the model in this study. All input variables were clipped to the CPE domain.

Variable Dataset Source Depth Period Gridded Temporal Reference
(cm) res. res.

(km)

SM SMAP Level-3 RSa 5 31 Mar 2015– 36 Every 3–4 d Entekhabi et al. (2014)
(SPL3SMP) 30 Dec 2020

RZSM SMAP Level-4 Assimilated 100 31 Mar 2015– 9 Daily Reichle et al. (2019)
(SPL4MAU) model 31 Dec 2020

P MSWEP V280 Assimilated 5 1 Jan 1979– 5 Daily Beck et al. (2019)
in situ and model 30 Dec 2020

ET MODIS RS – 1 Jan 2010– 0.5 Every 8 db Running et al. (2019b)
30 Dec 2020

PET MODIS RS – 1 Jan 2010– 0.5 Every 8 db Running et al. (2019b)
30 Dec 2020

a RS is for remote sensing. b The 8 d composite values.

Figure 2. A chart description of the structure of FarmCan.

time series is filtered by interpolating the grids outside
the perimeter and any of the grids inside the farm. Time
series data are further processed for the 8 d composite
or changed (1) values.

4. The variable with the highest correlation with the 8 d P

would be the first predictand used to train a random
forest (RF) algorithm. RF then forecasts that variable
for up to 2 weeks. The predicted variable would then
be fed jointly with the 8 d P as predictors in the next
step to predict the next highly correlated variable on the
list. The process repeats in a feeding loop, and in every
round, a new variable is first predicted and then used as
a predictand.

5. Using Eq. (1), the 8 d NI (NItotal) is calculated. If there
was no precipitation over the past 8 d, for every an-
tecedent day i, NIi is NItotal/8, where i ∈ [1, 2, . . . , 8].

However, for any amount of P in an antecedent day i,
NItotal should be adjusted, as less supplementary water
is needed to compensate for moisture deficit for the days
with Pi > 0. We calculate daily adjusted weights as fol-
lows:

wi
adj =


800−

8∑
i=1

P i
deficit

8
+P i

deficit

/100, (2)

where P i
deficit is

P i
deficit = 100− (100 · (Pi/Ptotal)) . (3)

For example, day i with no precipitation has P i
deficit =

100 % of the Ptotal, and a day with 45 % of Ptotal has a
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P i
deficit = 55 %. The value of 800 is the total deficit per-

centage in the absence of no rain. The daily distributed
amount of NI over 8 d is then calculated as follows:

NIiadj = wi
adj ·NIi . (4)

To check the correctness of the calculations above, the

relationship
8∑

i=1
NIiadj = NItotal should hold true.

3.1 Random forest (RF) algorithm

RF (Breiman, 2001) is an ML method that has shown high
accuracy in the function estimation and nonparametric re-
gression of geospatial hydroclimatic and spaceborne data
(Clewley et al., 2017; Vergopolan et al., 2021). The RF algo-
rithm aggregates the predictions made by multiple decision
trees of varying subsets called the bagged or bootstrapped
datasets. Showing trees different training sets is a way of de-
correlating them (Sonth et al., 2020). It also decreases the
variance in the model without increasing the bias, ultimately
leading to better model performance. Furthermore, while the
predictions of a single tree are highly sensitive to noise in
its training set, the average of many trees is not, as long as
the trees are not correlated. The FarmCan model uses RF in
two stages, i.e. (1) to fill in the gaps of missing 1SM and
1RZSM, based on 8 d P from 2010 to 2020, and (2) to pre-
dict 1RZSM, 1SM, 8 d ET, and 8 d PET up to 14 d in ad-
vance. We divided the datasets from 2010 to 2020 into train-
ing and testing in a 0.7 to 0.3 ratio.

f̂ =
1
B

B∑
b=1

fb(x
′). (5)

The first round of running RF uses 500 decision trees. The
optimum number of trees is the one that minimizes the mean
square error (MSE) between the training and testing datasets.
The second round of running RF involves dictating the opti-
mum number of trees. If a training set X = x1, . . . xn (n being
the number of training samples) has responses Y = y1, . . . yn,
then the algorithm selects random samples with the replace-
ment of the training set for B times. In Eq. (5), for b =

1, . . . B training samples from X and Y , called Xb and Yb,
we produce a regression tree fb. After training, predictions
for unseen samples x′ can be made by averaging the predic-
tions from all the individual regression trees.

4 Results

4.1 Spatial comparison of hydrological variables

Figure 3 shows the key variables’ 20th, 50th, and 80th per-
centiles from 2015 to 2020 during the growing season (April
to October). Comparing P with the ET and PET map shows
that, region-wide, crops do not receive the water needed from

rain to reach an optimal yield. The growing season’s P is
typical of sub-humid and semi-arid climates (Pereira et al.,
2015), i.e., the amount of rainfall is often not sufficient to
satisfy the water needs of crops. Except for portions of the
province of AB, most CPE farming relies on rainfall and,
therefore, is vulnerable to agricultural drought (Maybank
et al., 1995; McGinn and Shepherd, 2003; White et al., 2020).

Most of Saskatchewan is identified by the lowest amount
of SM, P , and ET throughout the growing season. Sur-
face SM is generally lower than RZSM across all three
provinces. This is expected as soil at the surface is affected
directly by transpiration and wind. In contrast, the soil at the
root zone holds onto the water longer, especially as brown-
black Chernozemic clay, a typical type of soil in the CPE.

4.2 Relative importance of FarmCan inputs

We ran a two-by-two Pearson correlation analysis with a
99 % significance level for the four selected farms and during
the 7-month growing seasons from 2015 to 2020 (Fig. 4).

The four farms’ results show that the correlation be-
tween P and 1RZSM and P and 1SM is quite similar in M1
and M2. However, the correlation between P and 1RZSM
is slightly higher in S1 and considerably higher in S2. Al-
though it is generally expected that instantaneous surface
soil moisture shows more variability with P , this study is
based on the 8 d cumulative P and changes in 8 d SM and
not a direct measure of P vs. SM. For example, if the total
amount of P over 8 d is 20 mm, the RZSM can change from
0.2 to 0.9 m3 m−3, which gives a higher 1RZSM than 1SM,
which might have fluctuated instantaneously but essentially
changed from 0.3 to 0.5 over 8 d. However, more studies in
different regions must confirm such correlations. We specu-
late that soil type plays a role in how soil maintains moisture
at different depths.

There is also no evidence of significant feedback from ET
to SM, and vice versa. This can be because the relationship
between SM and ET, in terms of feedback, mainly depends
on the climate (Seneviratne et al., 2010). During the growing
season, the condition in CPE is either too wet, which makes
the total energy for ET independent of SM, or too dry, which
makes ET show little impact on fluxes because it is little or
no moisture available.

Generally, a significant impact of SM on ET should be
more noticeable in a transitional regime where soil water sup-
ply is available and sufficient (Yang et al., 2020; Running
et al., 2019b; Seneviratne et al., 2010; Famiglietti and Wood,
1994). More studies from different regions are required to
understand such interactions in SM and ET fluxes.

All four farms show a significant negative correlation be-
tween soil moisture values with 8 d NI within 99 % confi-
dence.

https://doi.org/10.5194/hess-26-5373-2022 Hydrol. Earth Syst. Sci., 26, 5373–5390, 2022



5380 S. Sadri et al.: FarmCan: a physical, statistical, and machine learning model to forecast crop water deficit

Figure 3. Spatial patterns of variables used for the CPE. Data collected from 2015 to 2020 for the agricultural months (April–October). AB
is Alberta, SK is Saskatchewan, and MB is Manitoba.

4.3 Feedback from a supply–demand mechanism

To study the relationship between water supply and de-
mand in the CPE, we conducted a three-way comparison
of changes in 8 d P supply with variability in 1SM and
1RZSM (supply). We also included changes in 8 d ET and
8 d PET (demand factors) in a correlation plot shown in
Fig. 5. Each row represents a province with the supply vari-
ables on the XY axes. For each region, the two left-hand
plots show the relationship between 8 d P and 1SM. Color
changes correspond with 8 d PET and 8 d ET. The two right-
hand plots are the same, except that the Y axis represents
1RZSM instead of 1SM.

Manitoba shows the most robust linear relationship be-
tween 8 d P and 1RZSM. In contrast, Alberta shows the
weakest linear relationship between 8 d P and 1RZSM,
likely because most Alberta farms are artificially irrigated.
1RZSM is more responsive to the amount of 8 d precipi-
tation, meaning that, over an 8 d increase in P , RZSM in-
creases. Such a linear relationship is weaker between 8 d P

and 1SM. This can be because surface SM is also affected

by exposure to other physiological elements such as wind,
elevation, transpiration, and land cover.

There are also visible linear relationships between the 8 d
PET and 8 d P , especially in Manitoba and Saskatchewan.
The 8 d PET (and less for 8 d ET) tend to increase with
higher 8 d P . The 8 d ET and 8 d PET do not show a lin-
ear correlation to the 1SM, although for periods for which
10 mm < 8 d P < 40 mm, 8 d PET values tend to have a pos-
itive trend when the 1SM is decreasing (negative). When
8 d P > 40 mm, Saskatchewan and Alberta showed more
mid-range PET (20–60 mm per 8 d). This can mean that SK
and AB are regularly in dry conditions when the water sup-
ply is less than optimum. MB is generally moist but can range
from adequate crop water availability to extreme water stress
periods. The atmospheric demand is typically low for periods
with 8 d P less than 10 mm. In all plots, the average 8 d PET
is higher than the 8 d ET, which shows that a higher-than-
supplied atmospheric demand exists throughout the growing
season at the CPE.
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Figure 4. Pearson correlation relationship between observed 8 d ET (mm per 8 d), PET (mm per 8 d), P (mm per 8 d), 1SM (m3 m−3),
1RZSM (m3 m−3), and NI (mm per 8 d) for farms S1, S2, M1, and M2 during agricultural years (2015–2020). Significance level of 99 %.

4.4 Time series of data and calibration period

Figure 6 is the variability plot of Farm S2 from 2015 to 2020.
Each year’s 7-month agricultural period is shown with a pink
background. A negative 1SM or 1RZSM means a decrease
in SM or RZSM, respectively, over the 8 d intervals, and vice
versa.

During every agricultural year, the SM reacts to P with
much higher variability and sensitivity than 1RZSM. Al-
though instantaneous rain is more correlated with the SM,
as previous results showed, 8 d P shows a higher correla-
tion with 1 RZSM. In the CPE, 1RZSM generally reverts
to zero, indicating a weakly stationary behavior. However,
the amount and timing of daily RZSM can still be insuffi-
cient to support effective crop growth. As for surface SM,
the changes do not seem stationary. The 8 d PET is consis-
tently higher than 8 d ET, confirming that crops receive less
than the optimal amount of their water demand throughout
the year. We plotted variability plots for the other three farms

(not shown here), and the patterns were consistent with those
from Farm S2.

4.5 FarmCan prediction process

To illustrate the FarmCan real-time forecast process, we de-
scribe an example in which 2 July 2020 is “today’s date”, the
crop type is barley, the planting date is 1 April 2020, and the
whole growing season is 150 d. The FarmCan algorithm uses
these inputs and the FAO guidelines to provide the expected
dates of stages 1 to 4, as shown in Table 4.

The observed variables are plotted for the assumed date
in Fig. 7a. The total period shown in the plot is 21 d, from
22 June to 12 July 2020. The green bars are the daily precipi-
tation from MSWEP, including the forecast values. The hind-
cast NI, shown by the gray bars, is distributed by calculat-
ing wadju. Because 2 July 2020 corresponds to the third stage
of crop development, FarmCan predicts 1RZSM (instead of
1SM) and 8 d PET using the RF algorithm. The algorithm
then calculates 8 d NI (in mm) for the remaining days shown
in Fig. 7b. Note that the information in Fig. 7a is repeated in
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Figure 5. Changes in 8 d P , 1SM, and 1RZSM (supply) with 8 d ET and 8 d PET (demand). Each row shows one province. Data were
collected from 2015 to 2020 for the agricultural year (April–October).

Figure 6. An 8 d variability analysis for Farm S2 (2015–2020). The pink background indicates the agricultural period. Green is PET, red
is ET, purple is 1SM, black is 1RZSM, and teal is 8 d P .

Hydrol. Earth Syst. Sci., 26, 5373–5390, 2022 https://doi.org/10.5194/hess-26-5373-2022



S. Sadri et al.: FarmCan: a physical, statistical, and machine learning model to forecast crop water deficit 5383

Figure 7. Farm S2 before and after prediction relative to the date 2 July 2020. Over the next 10 d, the total predicted PET is 67 mm, total
predicted ET is 32 mm, total P is 30 mm, and NI is 71 mm.

Table 4. Key dates relevant to barley planted on 1 April 2020 (from
FAO guidelines; Pereira et al., 2015).

Stage Stage ending date

1 Initial 15 Apr 2020
2 Crop development 15 May 2020
3 Mid season 17 Jul 2020
4 Late season 25 Aug 2020

Fig. 7b. Figure 8 shows only the predictions for Farms S2,
M1, and M2.

4.6 Tool validation

For validation, we performed a spatial and temporal gener-
alization test to understand FarmCan’s ability to train and
predict all the days of crop planting in 2020 and for all of
the four study farms using R2, RMSE, and Kling–Gupta ef-
ficiency (KGE) parametric tests. The ability of the FarmCan
model to generalize the spatial regions (farms) was assessed
by comparing these values.

Table 5. KGE values of different covariates for different farms.

Farm ET PET NI

S1 0.70 0.52 0.59
S2 0.72 0.46 0.67
M1 0.72 0.54 0.63
M2 0.70 0.54 0.60

Figure 9 shows the R2 and RMSE values between the test-
ing and predicted values of NI in all the study farms dur-
ing the agricultural periods from 2015 to 2020. FarmCan
showed the highest R2 between observed and predicted val-
ues of 8 d ET, 8 d PET, and 8 d NI and the lowest RMSE
for 1RZSM and 1SM values. The high R2 and high RMSE
for 8 d NI values suggest that the amount of NI might be
underpredicted in FarmCan, although the model captured the
temporal patterns of water deficiency well. Table 5 shows the
KGE values of 8 d ET, 8 d PET, and 8 d NI for the four study
farms.

KGE test is the goodness of fit. Generally, values higher
than 0.41 are considered reasonable and with a satisfactory
model performance, but there has not been a direct reason
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Figure 8. Predictions from Farms S1, M1, and M2 for 2 July 2020. Total predicted values for the remaining 10 d are as follows. For Farm S1,
PET is 62 mm, ET is 33 mm, P is 36 mm, and NI is 52 mm. For Farm M1, PET is 70 mm, ET is 38 mm, P is 18 mm, and NI is 41 mm. For
Farm M2, PET is 76 mm, ET is 4 mm, P is 17 mm, and NI is 43 mm. The growth stage is the phenological stage of the crop.

to choose this benchmark across all models (Knoben et al.,
2019). We consider 0.5≤KGE satisfactory in this study. The
model’s goodness of fit is reasonable for ET, PET, and NI.
The KGE values of 1SM and 1RZSM (not shown) have
been zero or very close to zero. Here, the KGE negative
values do not necessarily indicate a model that performed
worse than the mean benchmark. The reason is that the range
of 1 values of SM and RZSM was relatively small (ap-
prox. [−0.87, 0.03] m3 m−3), making the values very sen-
sitive to the statistical tests. For the same reasons, it was ex-
pected that 1SM and 1RZSM did not show a good correla-
tion, although they showed the lowest RMSE values (Fig. 9).
Given the satisfactory performance in final NI calculations,
1SM and 1RZSM predictions did not negatively affect the
model and NI.

Generally, there is inherent uncertainty in FarmCan fore-
casts since we cannot know the actual value of the water de-
ficiency and other controlling factors that maximize the crop
yield. However, despite the unknowns, FarmCan showed an
effective prediction capability to improve our understanding
of NI and some of its main controlling factors in the CPE.

With the FarmCan model, we can select any number of
CPE farms from airborne imagery, retrieve their spaceborne
data, and forecast each farm’s crop-specific water supply
and demand to calculate water deficit. This tool is versatile
enough to allow access to any farm’s critical hydroclimatic
information for the best water-related decision-making with-
out stepping into the farm or setting up expensive monitoring
equipment.

5 Conclusions

In this study, we develop the FarmCan model to bridge
the gap between scientific modeling and practical, easy-to-
understand water management decisions. FarmCan is a parsi-
monious supply–demand crop water monitor and forecasting
mechanism. We demonstrated the potential of managing the
sustainable productivity of the land by the timing and tuning
of water available to the crops. The algorithm used NASA’s
NRT remote sensing data representing both atmospheric and
soil properties coupled with the farm-specific information,
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Figure 9. The 8 d correlation and RMSE plots for agricultural periods of Farms S1, S2, M1, and M2 (2015–2020). Horizontal axes show
observed values. Vertical axes are predicted. Note that the predicted NI is indirectly calculated from all the predicted variables. The crop is
barley for the duration of 150 d of planting each year. Gray shades aid the eye in seeing linear patterns using a lm smoothing function.

water balance, and ML information to generate crop NI up to
14 d in advance, as well as the historical graphs for the farm.

For daily predictions, we used RF using 3-week data from
1 week prior, the current week, and 1 week over, and the
data from the same days in the past years. This functionality
allowed the FarmCan algorithm to take care of the seasonal
variability automatically. In the next step, FarmCan will use
the MSWX product, which enables this tool to function in
real time and as a prediction tool.

We showed the relative importance of ET and SM in un-
derstanding the predictive value of NI in the CPE. Compared
to the daily data, we found that 8 d composite variables are
stronger calculators for predicting NI as the 8 d tempers the
inherent lags associated with P , soil, and atmospheric de-
mand interactions. In addition, the phenological stage of the
crop had a determinant factor in using 1SM or 1RZSM in
the model.

In all four study farms, RF was effectively applied to pre-
dict the variables. The correlation between observed and pre-
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dicted 8 d PET showed an average of 54 %, and the 8 d NI
forecast showed an average correlation of 68 %. On the other
hand, the correlation values between observed and predicted
1SM or 1RZSM were almost zero. Given the small range
of variability in 1 values, the correlation numbers cannot be
indicators of the lack of contribution of soil moisture in the
model.

The KGE values of RF predictions for the 8 d ET and 8 d
PET showed an average of 0.71 and 0.50, respectively. Over-
all, FarmCan could forecast 8 d NI for the four farms with an
average KGE of 0.62.

We saw a minimal impact on fluxes between ET and SM
in the CPE during the agricultural year. We speculate that
is due to the climate of the CPE. During the growing sea-
son, the condition in CPE is either too wet, which makes the
total energy for ET independent of SM, or too dry, which
makes ET show little impact on fluxes because it is little or
no moisture available. However, more studies are required to
understand the feedback between ET and SM in other en-
vironments. For example, in transitional environments, we
expect to see that the total energy of ET is more dependent
on SM.

We quantitatively showed that, in the rainfed farms in the
CPE, optimum crop production in the dry season should only
be possible with an extra water supply. Crop production in
some years may be possible but unreliable. Climate change
will further affect this situation, and farmers are encouraged
to move toward water management and adaptation strategies.
Future studies can focus on such water shortages’ social and
economic implications (crop loss, reduced yield, and water
costs).

Future developments will focus on the role of the water re-
tention capacity of the soil and crop type as two critical fac-
tors potentially affecting NI measurements. Plants in sandy
soils, for example, may undergo water stress quicker when
water is deficient. In contrast, plants in deep clay and fine
texture may have ample time to adjust to low moisture con-
ditions and remain unaffected by water deficiencies.

Future developments will also address how farmers can
access FarmCan data, how supplementary irrigation vs. rain-
only farming can help farm cost/benefit management, and
how the NI predictions and management advisory aid in bet-
ter on-farm water management and crop yield. Coupling the
fertilization timing and amount is another direction that can
benefit farmers. Receiving feedback data from the farm man-
agers will allow for yield and cost–benefit analyses.

Despite the inherent uncertainty in FarmCan forecasts,
FarmCan is a step toward providing knowledge that can assist
farm managers in making better decisions about excess wa-
ter needs, drainage requirements, timing, and fertilizer con-
sumption.

Appendix A: Abbreviations

CLSM Catchment Land Surface Model
ET Evapotranspiration
FAO Food and Agricultural Organization
GEOS Goddard Earth Observation System
LAI Leaf area index
ML Machine learning
MSWEP Multi-Source Weighted-Ensemble

Precipitation
MODIS Moderate Resolution Imaging

Spectroradiometer
NI Needed irrigation
NRT Near-real time
PET Potential evapotranspiration
P Precipitation
RF Random forest
RZSM Root zone soil moisture
SMAP Soil moisture active passive
SM (Surface) soil moisture
WUE Water use efficiency
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