Articles | Volume 26, issue 16
https://doi.org/10.5194/hess-26-4323-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-26-4323-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Benchmarking global hydrological and land surface models against GRACE in a medium-sized tropical basin
Silvana Bolaños Chavarría
CORRESPONDING AUTHOR
Grupo de Ingeniería y Gestión Ambiental (GIGA), Escuela Ambiental, Facultad de Ingeniería, Universidad de Antioquia, Medellín, Colombia
Grupo de Investigación en Ingeniería Sostenible (GIS), Facultad de Ingeniería, Politécnico Colombiano Jaime Isaza Cadavid, Medellín, Colombia
Micha Werner
Water Resources and Ecosystems Department, IHE Delft Institute for Water Education, Delft, the Netherlands
Juan Fernando Salazar
Grupo de Ingeniería y Gestión Ambiental (GIGA), Escuela Ambiental, Facultad de Ingeniería, Universidad de Antioquia, Medellín, Colombia
Teresita Betancur Vargas
Grupo de Ingeniería y Gestión Ambiental (GIGA), Escuela Ambiental, Facultad de Ingeniería, Universidad de Antioquia, Medellín, Colombia
Publisher's note: Teresita Betancur Vargas was added as co-author to this paper on 19 October 2022. They originally contributed to the manuscript but were missing in the author list upon publication.
Related authors
No articles found.
Anne F. Van Loon, Sarra Kchouk, Alessia Matanó, Faranak Tootoonchi, Camila Alvarez-Garreton, Khalid E. A. Hassaballah, Minchao Wu, Marthe L. K. Wens, Anastasiya Shyrokaya, Elena Ridolfi, Riccardo Biella, Viorica Nagavciuc, Marlies H. Barendrecht, Ana Bastos, Louise Cavalcante, Franciska T. de Vries, Margaret Garcia, Johanna Mård, Ileen N. Streefkerk, Claudia Teutschbein, Roshanak Tootoonchi, Ruben Weesie, Valentin Aich, Juan P. Boisier, Giuliano Di Baldassarre, Yiheng Du, Mauricio Galleguillos, René Garreaud, Monica Ionita, Sina Khatami, Johanna K. L. Koehler, Charles H. Luce, Shreedhar Maskey, Heidi D. Mendoza, Moses N. Mwangi, Ilias G. Pechlivanidis, Germano G. Ribeiro Neto, Tirthankar Roy, Robert Stefanski, Patricia Trambauer, Elizabeth A. Koebele, Giulia Vico, and Micha Werner
Nat. Hazards Earth Syst. Sci., 24, 3173–3205, https://doi.org/10.5194/nhess-24-3173-2024, https://doi.org/10.5194/nhess-24-3173-2024, 2024
Short summary
Short summary
Drought is a creeping phenomenon but is often still analysed and managed like an isolated event, without taking into account what happened before and after. Here, we review the literature and analyse five cases to discuss how droughts and their impacts develop over time. We find that the responses of hydrological, ecological, and social systems can be classified into four types and that the systems interact. We provide suggestions for further research and monitoring, modelling, and management.
Juan F. Salazar, Ruben D. Molina, Jorge I. Zuluaga, and Jesus D. Gomez-Velez
Hydrol. Earth Syst. Sci., 28, 2919–2947, https://doi.org/10.5194/hess-28-2919-2024, https://doi.org/10.5194/hess-28-2919-2024, 2024
Short summary
Short summary
Global change is altering river basins and their discharge worldwide. We introduce the land–atmosphere reservoir (LAR) concept to investigate these changes in six of the world's largest basins. We found that low-latitude basins (Amazon, Paraná, and Congo) are getting wetter, whereas high-latitude basins (Mississippi, Ob, and Yenisei) are drying. If this continues, these long-term trends will disrupt the discharge regime and compromise the sustainability of these basins with widespread impacts.
Veit Blauhut, Michael Stoelzle, Lauri Ahopelto, Manuela I. Brunner, Claudia Teutschbein, Doris E. Wendt, Vytautas Akstinas, Sigrid J. Bakke, Lucy J. Barker, Lenka Bartošová, Agrita Briede, Carmelo Cammalleri, Ksenija Cindrić Kalin, Lucia De Stefano, Miriam Fendeková, David C. Finger, Marijke Huysmans, Mirjana Ivanov, Jaak Jaagus, Jiří Jakubínský, Svitlana Krakovska, Gregor Laaha, Monika Lakatos, Kiril Manevski, Mathias Neumann Andersen, Nina Nikolova, Marzena Osuch, Pieter van Oel, Kalina Radeva, Renata J. Romanowicz, Elena Toth, Mirek Trnka, Marko Urošev, Julia Urquijo Reguera, Eric Sauquet, Aleksandra Stevkov, Lena M. Tallaksen, Iryna Trofimova, Anne F. Van Loon, Michelle T. H. van Vliet, Jean-Philippe Vidal, Niko Wanders, Micha Werner, Patrick Willems, and Nenad Živković
Nat. Hazards Earth Syst. Sci., 22, 2201–2217, https://doi.org/10.5194/nhess-22-2201-2022, https://doi.org/10.5194/nhess-22-2201-2022, 2022
Short summary
Short summary
Recent drought events caused enormous damage in Europe. We therefore questioned the existence and effect of current drought management strategies on the actual impacts and how drought is perceived by relevant stakeholders. Over 700 participants from 28 European countries provided insights into drought hazard and impact perception and current management strategies. The study concludes with an urgent need to collectively combat drought risk via a European macro-level drought governance approach.
Agathe Bucherie, Micha Werner, Marc van den Homberg, and Simon Tembo
Nat. Hazards Earth Syst. Sci., 22, 461–480, https://doi.org/10.5194/nhess-22-461-2022, https://doi.org/10.5194/nhess-22-461-2022, 2022
Short summary
Short summary
Local communities in northern Malawi have well-developed knowledge of the conditions leading to flash floods, spatially and temporally. Scientific analysis of catchment geomorphology and global reanalysis datasets corroborates this local knowledge, underlining the potential of these large-scale scientific datasets. Combining local knowledge with contemporary scientific datasets provides a common understanding of flash flood events, contributing to a more people-centred warning to flash floods.
Cited articles
Alfieri, L., Burek, P., Dutra, E., Krzeminski, B., Muraro, D., Thielen, J., and Pappenberger, F.: GloFAS – global ensemble streamflow forecasting and flood early warning, Hydrol. Earth Syst. Sci., 17, 1161–1175, https://doi.org/10.5194/hess-17-1161-2013, 2013. a
Angarita, H., Wickel, A. J., Sieber, J., Chavarro, J., Maldonado-Ocampo, J. A., Herrera-R., G. A., Delgado, J., and Purkey, D.: Basin-scale impacts of hydropower development on the Mompós Depression wetlands, Colombia, Hydrol. Earth Syst. Sci., 22, 2839–2865, https://doi.org/10.5194/hess-22-2839-2018, 2018. a
Arduini, G., Fink, G., Martinez de la Torre, A., Nikolopoulos, E., Anagnostou,
E., Balsamo, G., and Boussetta, S.: End-user-focused improvements and
descriptions of the advances introduced between the WRR tier1 and WRR tier2, http://www.earth2observe.eu/?page_id=4704 (last access: 20 November 2018), 2017. a, b
Balsamo, G., Beljaars, A., Scipal, K., Viterbo, P., van den Hurk, B., Hirschi,
M., and Betts, A. K.: A revised hydrology for the ECMWF model: Verification
from field site to terrestrial water storage and impact in the Integrated
Forecast System, J. Hydrometeorol., 10, 623–643, 2009. a
Beck, H. E., van Dijk, A. I., De Roo, A., Miralles, D. G., McVicar, T. R.,
Schellekens, J., and Bruijnzeel, L. A.: Global-scale regionalization of
hydrologic model parameters, Water Resour. Res., 52, 3599–3622, 2016. a
Beck, H. E., van Dijk, A. I. J. M., de Roo, A., Dutra, E., Fink, G., Orth, R., and Schellekens, J.: Global evaluation of runoff from 10 state-of-the-art hydrological models, Hydrol. Earth Syst. Sci., 21, 2881–2903, https://doi.org/10.5194/hess-21-2881-2017, 2017a. a, b, c, d
Beck, H. E., van Dijk, A. I. J. M., Levizzani, V., Schellekens, J., Miralles, D. G., Martens, B., and de Roo, A.: MSWEP: 3-hourly 0.25° global gridded precipitation (1979–2015) by merging gauge, satellite, and reanalysis data, Hydrol. Earth Syst. Sci., 21, 589–615, https://doi.org/10.5194/hess-21-589-2017, 2017b. a
Bedoya-Soto, J. M., Poveda, G., Trenberth, K. E., and Vélez-Upegui, J. J.:
Interannual hydroclimatic variability and the 2009–2011 extreme ENSO phases
in Colombia: from Andean glaciers to Caribbean lowlands, Theor.
Appl. Climatol., 135, 1531–1544, 2019. a
Best, M. J., Pryor, M., Clark, D. B., Rooney, G. G., Essery, R. L. H., Ménard, C. B., Edwards, J. M., Hendry, M. A., Porson, A., Gedney, N., Mercado, L. M., Sitch, S., Blyth, E., Boucher, O., Cox, P. M., Grimmond, C. S. B., and Harding, R. J.: The Joint UK Land Environment Simulator (JULES), model description – Part 1: Energy and water fluxes, Geosci. Model Dev., 4, 677–699, https://doi.org/10.5194/gmd-4-677-2011, 2011. a
Bierkens, M. F.: Global hydrology 2015: State, trends, and directions, Water Resour. Res., 51, 4923–4947, 2015. a
Bolaños, S., Salazar, J. F., Betancur, T., and Werner, M.: GRACE reveals
depletion of water storage in northwestern South America between ENSO
extremes, J. Hydrol., 596, 125687, https://doi.org/10.1016/j.jhydrol.2020.125687, 2020. a, b, c, d
Buytaert, W. and Beven, K.: Models as multiple working hypotheses: hydrological
simulation of tropical alpine wetlands, Hydrol. Process., 25,
1784–1799, 2011. a
Camacho, L., Rodríguez, E., and Pinilla, G.: Modelación dinámica
integrada de cantidad y calidad del agua del Canal del Dique y su sistema
lagunar, Colombia, in: XXIII Latinamerican Congress on Hydraulic (IARH), The International Association for Hydro-Environment
Engineering and Research (IAHR), ISBN 9789597160175, 2008. a
Casson, D. R., Werner, M., Weerts, A., and Solomatine, D.: Global re-analysis datasets to improve hydrological assessment and snow water equivalent estimation in a sub-Arctic watershed, Hydrol. Earth Syst. Sci., 22, 4685–4697, https://doi.org/10.5194/hess-22-4685-2018, 2018. a
Chen, J., Famigliett, J. S., Scanlon, B. R., and Rodell, M.: Groundwater storage changes: present status from GRACE observa15 tions, in: Remote Sens. and Water Resources, edited by: Cazenave A., Champollion, N., Benveniste, J., and Chen, J., Springer, Switzerland, 207–227, https://doi.org/10.1007/978-3-319-32449-4, 2016. a
Clark, D. B., Mercado, L. M., Sitch, S., Jones, C. D., Gedney, N., Best, M. J., Pryor, M., Rooney, G. G., Essery, R. L. H., Blyth, E., Boucher, O., Harding, R. J., Huntingford, C., and Cox, P. M.: The Joint UK Land Environment Simulator (JULES), model description – Part 2: Carbon fluxes and vegetation dynamics, Geosci. Model Dev., 4, 701–722, https://doi.org/10.5194/gmd-4-701-2011, 2011. a
Clark, M. P., Bierkens, M. F. P., Samaniego, L., Woods, R. A., Uijlenhoet, R., Bennett, K. E., Pauwels, V. R. N., Cai, X., Wood, A. W., and Peters-Lidard, C. D.: The evolution of process-based hydrologic models: historical challenges and the collective quest for physical realism, Hydrol. Earth Syst. Sci., 21, 3427–3440, https://doi.org/10.5194/hess-21-3427-2017, 2017. a, b
Cleveland, R. B., Cleveland, W. S., McRae, J. E., and Terpenning, I.: STL: a
seasonal-trend decomposition, J. Off. Stat., 6, 3–73, 1990. a
Decharme, B., Alkama, R., Douville, H., Becker, M., and Cazenave, A.: Global
evaluation of the ISBA-TRIP continental hydrological system, Part II:
Uncertainties in river routing simulation related to flow velocity and
groundwater storage, J. Hydrometeorol., 11, 601–617, 2010. a
Dutra, E., Balsamo, G., Calvet, J., Minvielle, M., Eisner, S., Fink, G.,
Pessenteiner, S., Orth, R., Burke, S., van Dijk, A., Polcher, J., Beck, H., Martinez de la Torre, A., and Sterk, G.: Report on the current state-of-the-art Water
Resources Reanalysis, http://www.earth2observe.eu/?page_id=4704 (last access: 20 November 2018), 2015. a, b
Dutra, E., Balsamo, G., Calvet, J.-C., Munier, S., Burke, S., Fink, G., van Dijk, A., Martinez de la Torre, A., van Beek, R., de Roo, A., and Polcher, J.: Report on the
improved Water Resources Reanalysis (WRR2), EartH2Observe, Report, p. 94, https://doi.org/10.13140/RG.2.2.14523.67369, 2017. a, b, c, d, e, f
Famiglietti, J.: Remote sensing of terrestrial water storage, soil moisture and surface waters, Washington DC American Geophysical Union Geophysical
Monograph Series, 150, 197–207, 2004. a
Flörke, M., Kynast, E., Bärlund, I., Eisner, S., Wimmer, F., and
Alcamo, J.: Domestic and industrial water uses of the past 60 years as a
mirror of socio-economic development: A global simulation study, Global
Environ. Chang., 23, 144–156, 2013. a
Getirana, A., Rodell, M., Kumar, S., Beaudoing, H. K., Arsenault, K., Zaitchik,
B., Save, H., and Bettadpur, S.: GRACE improves seasonal groundwater forecast
initialization over the United States, J. Hydrometeorol., 21, 59–71, 2020. a
González-Zeas, D., Erazo, B., Lloret, P., De Bièvre, B.,
Steinschneider, S., and Dangles, O.: Linking global climate change to local
water availability: Limitations and prospects for a tropical mountain
watershed, Sci. Total Environ., 650, 2577–2586, 2019. a
Gründemann, G. J., Werner, M., and Veldkamp, T. I. E.: The potential of global reanalysis datasets in identifying flood events in Southern Africa, Hydrol. Earth Syst. Sci., 22, 4667–4683, https://doi.org/10.5194/hess-22-4667-2018, 2018. a, b, c, d
Gudmundsson, L., Wagener, T., Tallaksen, L., and Engeland, K.: Evaluation of
nine large-scale hydrological models with respect to the seasonal runoff
climatology in Europe, Water Resour. Res., 48, W11504, https://doi.org/10.1029/2011WR01091, 2012. a
Gupta, H. V., Kling, H., Yilmaz, K. K., and Martinez, G. F.: Decomposition of
the mean squared error and NSE performance criteria: Implications for
improving hydrological modelling, J. Hydrol., 377, 80–91, 2009. a
Hassan, A. and Jin, S.: Water storage changes and balances in Africa observed
by GRACE and hydrologic models, Geodesy and Geodynamics, 7, 39–49, 2016. a
Hoyos, N., Escobar, J., Restrepo, J., Arango, A., and Ortiz, J.: Impact of the
2010–2011 La Niña phenomenon in Colombia, South America: the human toll
of an extreme weather event, Appl. Geogr., 39, 16–25, 2013. a
Hoyos, N., Correa-Metrio, A., Sisa, A., Ramos-Fabiel, M., Espinosa, J.,
Restrepo, J., and Escobar, J.: The environmental envelope of fires in the
Colombian Caribbean, Appl. Geogr., 84, 42–54, 2017. a
Kleidon, A., Renner, M., and Porada, P.: Estimates of the climatological land surface energy and water balance derived from maximum convective power, Hydrol. Earth Syst. Sci., 18, 2201–2218, https://doi.org/10.5194/hess-18-2201-2014, 2014. a
Krinner, G., Viovy, N., de Noblet-Ducoudré, N., Ogée, J., Polcher, J.,
Friedlingstein, P., Ciais, P., Sitch, S., and Prentice, I. C.: A dynamic
global vegetation model for studies of the coupled atmosphere-biosphere
system, Global Biogeochem. Cy., 19, GB1015, https://doi.org/10.1029/2003GB002199, 2005. a
Lettenmaier, D. P. and Famiglietti, J. S.: Hydrology: Water from on high,
Nature, 444, 562–563, https://doi.org/10.1038/444562a, 2006. a
Liesch, T. and Ohmer, M.: Comparison of GRACE data and groundwater levels for
the assessment of groundwater depletion in Jordan, Hydrogeol. J., 24, 1547–1563, 2016. a
Lindström, G., Johansson, B., Persson, M., Gardelin, M., and Bergström,
S.: Development and test of the distributed HBV-96 hydrological model,
J. Hydrol., 201, 272–288, 1997. a
Liu, L., Xie, J., Gu, H., and Xu, Y.-P.: Estimating the added value of GRACE
total water storage and uncertainty quantification in seasonal streamflow
forecasting, Hydrol. Sci. J., 67, 304–318,
doi10.1080/02626667.2021.1998510, 2022. a
López López, P., Immerzeel, W. W., Rodríguez Sandoval, E. A.,
Sterk, G., and Schellekens, J.: Spatial downscaling of satellite-based
precipitation and its impact on discharge simulations in the Magdalena River
basin in Colombia, Front. Earth Sci., 6, ISSN 2296-6463, https://doi.org/10.3389/feart.2018.00068, 2018. a
Miralles, D. G., Gash, J. H., Holmes, T. R., de Jeu, R. A., and Dolman, A.:
Global canopy interception from satellite observations, J.
Geophys. Res.-Atmos., 115, D16122, https://doi.org/10.1029/2009JD013530, 2010. a
Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D.,
and Veith, T. L.: Model evaluation guidelines for systematic quantification
of accuracy in watershed simulations, T. ASABE, 50, 885–900, 2007. a
Müller Schmied, H., Cáceres, D., Eisner, S., Flörke, M., Herbert, C., Niemann, C., Peiris, T. A., Popat, E., Portmann, F. T., Reinecke, R., Schumacher, M., Shadkam, S., Telteu, C.-E., Trautmann, T., and Döll, P.: The global water resources and use model WaterGAP v2.2d: model description and evaluation, Geosci. Model Dev., 14, 1037–1079, https://doi.org/10.5194/gmd-14-1037-2021, 2021. a
Orth, R. and Seneviratne, S. I.: Predictability of soil moisture and streamflow
on subseasonal timescales: A case study, J. Geophys. Res.-Atmos., 118, 10963–10979, https://doi.org/10.1002/jgrd.50846, 2013. a
Ouma, Y. O., Aballa, D., Marinda, D., Tateishi, R., and Hahn, M.: Use of GRACE
time-variable data and GLDAS-LSM for estimating groundwater storage
variability at small basin scales: a case study of the Nzoia River Basin,
Int. J. Remote Sens., 36, 5707–5736, 2015. a
Poveda, G. and Mesa, O.: Extreme phases of the ENSO phenomenon(El Nino and La
Nina) and its effects on the hydrology of Colombia, Ing. Hidral. Mexico, 11, 21–37, 1996. a
Pozzi, W., Sheffield, J., Stefanski, R., Cripe, D., Pulwarty, R., Vogt, J. V.,
Heim, R. R., Brewer, M. J., Svoboda, M., Westerhoff, R., van Dijk, A., Lloyd-Hughes, B.,
Pappenberger, F., Werner, M., Dutra, E., Wetterhall, F., Wagner, W., Schubert, S.,
Mo, K., Nicholson, M., Bettio, L., Nunez, L., van Beek, R., Bierkens, M., Goncalves
de Goncalves, L., Zell de Mattos, J., and Lawford, R.: Toward
global drought early warning capability: Expanding international cooperation
for the development of a framework for monitoring and forecasting, Bull. Am. Meteorol. Soc., 94, 776–785, https://doi.org/10.1175/BAMS-D-11-00176.1, 2013. a
Ramillien, G., Frappart, F., Güntner, A., Ngo-Duc, T., Cazenave, A., and
Laval, K.: Time variations of the regional evapotranspiration rate from
Gravity Recovery and Climate Experiment (GRACE) satellite gravimetry, Water
Resour. Res., 42, W10403, https://doi.org/10.1029/2005WR004331, 2006. a
Reager, J. and Famiglietti, J. S.: Characteristic mega-basin water storage
behavior using GRACE, Water Resour. Res., 49, 3314–3329, 2013. a
Restrepo, J. and Kjerfve, B.: Magdalena river: interannual variability
(1975–1995) and revised water discharge and sediment load estimates, J. Hydrol., 235, 137–149, 2000. a
Rodríguez, E., Sánchez, I., Duque, N., Arboleda, P., Vega, C., Zamora,
D., López, P., Kaune, A., Werner, M., García, C., and Burke, S.: Combined
Use of Local and Global Hydro Meteorological Data with Hydrological Models
for Water Resour. Manag. in the Magdalena-Cauca Macro Basin–Colombia,
Water Resour. Manag., 34, 2179-2199, https://doi.org/10.1007/s11269-019-02236-5, 2019. a, b, c, d
Rodríguez, N. and Armenteras, D.: Ecosistemas naturales de la cuenca del
río Magdalena, in: Los sedimentos del río Magdalena: reflejo de la
crisis ambiental, Universidad Eafit, edited by: Restrepo Ángel, J. D., 79–98, ISBN 9588173906, 2005. a
Rougé, C., Reed, P. M., Grogan, D. S., Zuidema, S., Prusevich, A., Glidden, S., Lamontagne, J. R., and Lammers, R. B.: Coordination and control – limits in standard representations of multi-reservoir operations in hydrological modeling, Hydrol. Earth Syst. Sci., 25, 1365–1388, https://doi.org/10.5194/hess-25-1365-2021, 2021. a
Save, H., Bettadpur, S., and Tapley, B. D.: High-resolution CSR GRACE RL05
mascons, J. Geophys. Res.-Solid Earth, 121, 7547–7569, 2016. a
Scanlon, B., Zhang, Z., Save, H., Sun, A., Schmied, H., van Beek, L., Wiese,
D., Wada, Y., Long, D., Reedy, R. C., Longuevergne, L., Döll, P., and Bierkens, M.: Global models underestimate
large decadal declining and rising water storage trends relative to GRACE
satellite data, Proc. Natl. Acad. Sci., 115, E1080–E1089, https://doi.org/10.1073/pnas.1704665115, 2018. a, b, c, d, e, f
Scanlon, B., Zhang, Z., Rateb, A., Sun, A., Wiese, D., Save, H., Beaudoing, H.,
Lo, M., Müller-Schmied, H., Döll, P., van Beek, R., Swenson, S., Lawrence, D., Croteau
M., and Reedy, R.: Tracking seasonal
fluctuations in land water storage using global models and GRACE satellites,
Geophys. Res. Lett., 46, 5254–5264, https://doi.org/10.1029/2018GL081836, 2019. a, b
Schellekens, J., Dutra, E., Balsamo, G., van Dijk, A., Sperna Weiland, F., Minvielle,
M., Calvet, C., Decharme, B., Eisner, S., Fink, G., Flörke, M., Peßenteiner, S., van
Beek, R., Polcher, J., Beck, H., Martínez-de la Torre, A., Orth, R., Calton, B., Burke,
S, and Weedon, G.: earth2observe/water-resource-reanalysis-v1: Revised
Release (1.02), Zenodo [data set], https://doi.org/10.5281/zenodo.167070, https://wci.earth2observe.eu/ (last access: 20 November 2018), 2016. a
Schellekens, J., Dutra, E., Martínez-de la Torre, A., Balsamo, G., van Dijk, A., Sperna Weiland, F., Minvielle, M., Calvet, J.-C., Decharme, B., Eisner, S., Fink, G., Flörke, M., Peßenteiner, S., van Beek, R., Polcher, J., Beck, H., Orth, R., Calton, B., Burke, S., Dorigo, W., and Weedon, G. P.: A global water resources ensemble of hydrological models: the eartH2Observe Tier-1 dataset, Earth Syst. Sci. Data, 9, 389–413, https://doi.org/10.5194/essd-9-389-2017, 2017. a, b, c, d, e, f, g, h, i, j, k
Schumacher, M., Forootan, E., van Dijk, A. I., Schmied, H. M., Crosbie, R. S.,
Kusche, J., and Döll, P.: Improving drought simulations within the
Murray-Darling Basin by combined calibration/assimilation of GRACE data into
the WaterGAP Global Hydrology Model, Remote Sens. Environ., 204,
212–228, 2018. a
Shamsudduha, M., Taylor, R., and Longuevergne, L.: Monitoring groundwater
storage changes in the highly seasonal humid tropics: Validation of GRACE
measurements in the Bengal Basin, Water Resour. Res., 48, W02508,
https://doi.org/10.1029/2011WR010993, 2012. a
Shamsudduha, M., Taylor, R. G., Jones, D., Longuevergne, L., Owor, M., and Tindimugaya, C.: Recent changes in terrestrial water storage in the Upper Nile Basin: an evaluation of commonly used gridded GRACE products, Hydrol. Earth Syst. Sci., 21, 4533–4549, https://doi.org/10.5194/hess-21-4533-2017, 2017. a
Sperna Weiland, F. C., van Beek, L. P. H., Kwadijk, J. C. J., and Bierkens, M. F. P.: Global patterns of change in discharge regimes for 2100, Hydrol. Earth Syst. Sci., 16, 1047–1062, https://doi.org/10.5194/hess-16-1047-2012, 2012. a
Sutanudjaja, E. H., van Beek, R., Wanders, N., Wada, Y., Bosmans, J. H. C., Drost, N., van der Ent, R. J., de Graaf, I. E. M., Hoch, J. M., de Jong, K., Karssenberg, D., López López, P., Peßenteiner, S., Schmitz, O., Straatsma, M. W., Vannametee, E., Wisser, D., and Bierkens, M. F. P.: PCR-GLOBWB 2: a 5 arcmin global hydrological and water resources model, Geosci. Model Dev., 11, 2429–2453, https://doi.org/10.5194/gmd-11-2429-2018, 2018. a, b
Swenson, S. and Lawrence, D.: A GRACE-based assessment of interannual
groundwater dynamics in the Community Land Model, Water Resour. Res.,
51, 8817–8833, 2015. a
Syed, T. H., Famiglietti, J. S., Rodell, M., Chen, J., and Wilson, C. R.:
Analysis of terrestrial water storage changes from GRACE and GLDAS, Water Resour. Res., 44, W02433, https://doi.org/10.1029/2006WR005779, 2008. a, b
Tang, Q., Gao, H., Yeh, P., Oki, T., Su, F., and Lettenmaier, D. P.: Dynamics
of terrestrial water storage change from satellite and surface observations
and modeling, J. Hydrometeorol., 11, 156–170, 2010. a
Tangdamrongsub, N., Steele-Dunne, S. C., Gunter, B. C., Ditmar, P. G., Sutanudjaja, E. H., Sun, Y., Xia, T., and Wang, Z.: Improving estimates of water resources in a semi-arid region by assimilating GRACE data into the PCR-GLOBWB hydrological model, Hydrol. Earth Syst. Sci., 21, 2053–2074, https://doi.org/10.5194/hess-21-2053-2017, 2017. a
Tapley, B. D., Bettadpur, S., Watkins, M., and Reigber, C.: The gravity
recovery and climate experiment: Mission overview and early results,
Geophys. Res. Lett., 31, L09607, https://doi.org/10.1029/2004GL019920, 2004. a, b
Taylor, K. E.: Summarizing multiple aspects of model performance in a single
diagram, Journal of Geophys. Res.-Atmos., 106, 7183–7192, 2001. a
Van Beek, L., Wada, Y., and Bierkens, M. F.: Global monthly water stress: 1.
Water balance and water availability, Water Resour. Res., 47, W07517,
https://doi.org/10.1029/2010WR009791, 2011. a
Van Der Knijff, J., Younis, J., and De Roo, A.: LISFLOOD: a GIS-based
distributed model for river basin scale water balance and flood simulation,
Int. J. Geogr. Inf. Sci., 24, 189–212, 2010. a
van Dijk, A. I. J. M., Renzullo, L. J., Wada, Y., and Tregoning, P.: A global water cycle reanalysis (2003–2012) merging satellite gravimetry and altimetry observations with a hydrological multi-model ensemble, Hydrol. Earth Syst. Sci., 18, 2955–2973, https://doi.org/10.5194/hess-18-2955-2014, 2014. a
Vargas, G., Hernández, Y., and Pabón, J. D.: La Niña event
2010–2011: hydroclimatic effects and socioeconomic impacts in Colombia, in: Climate Change, Extreme Events and Disaster Risk Reduction, edited by: Mal., S., Singh, R., and Huggel, C., Springer, 217–232, https://doi.org/10.1007/978-3-319-56469-2, 2018. a
Veldkamp, T., Wada, Y., Aerts, J., Döll, P., Gosling, S. N., Liu, J.,
Masaki, Y., Oki, T., Ostberg, S., Pokhrel, Y., Satoh, Y., Kim, H., and Ward, P.: Water scarcity
hotspots travel downstream due to human interventions in the 20th and 21st
century, Nat. Commun., 8, 15697, https://doi.org/10.1038/ncomms15697, 2017.
a
Veldkamp, T. I. E., Zhao, F., Ward, P. J., de Moel, H., Aerts, J. C., Schmied,
H. M., Portmann, F. T., Masaki, Y., Pokhrel, Y., Liu, X., Satoh, Y., Gerten, D., Gosling, S.,
Zaherpour, J., and Wada, J.: Human
impact parameterizations in global hydrological models improve estimates of
monthly discharges and hydrological extremes: a multi-model validation study, Environ. Res. Lett., 13, 055008, https://doi.org/10.1088/1748-9326/aab96f, 2018. a
Viviroli, D., Kummu, M., Meybeck, M., Kallio, M., and Wada, Y.: Increasing
dependence of lowland populations on mountain water resources, Nat.
Sustain., 3, 917–928, 2020. a
Watkins, M. M., Wiese, D. N., Yuan, D.-N., Boening, C., and Landerer, F. W.:
Improved methods for observing Earth's time variable mass distribution with
GRACE using spherical cap mascons, J. Geophys. Res.-Solid Earth, 120, 2648–2671, https://grace.jpl.nasa.gov/data/get-data/jpl_global_mascons/ (last access: 11 February 2019), 2015. a, b, c
Weedon, G. P., Balsamo, G., Bellouin, N., Gomes, S., Best, M. J., and Viterbo, P.: The WFDEI meteorological forcing data set: WATCH Forcing Data methodology
applied to ERA-Interim reanalysis data, Water Resour. Res., 50,
7505–7514, 2014. a
Wiese, D. N., Landerer, F. W., and Watkins, M. M.: Quantifying and reducing
leakage errors in the JPL RL05M GRACE mascon solution, Water Resour. Res., 52, 7490–7502, 2016. a
Wijngaard, R. R., Biemans, H., Lutz, A. F., Shrestha, A. B., Wester, P., and Immerzeel, W. W.: Climate change vs. socio-economic development: understanding the future South Asian water gap, Hydrol. Earth Syst. Sci., 22, 6297–6321, https://doi.org/10.5194/hess-22-6297-2018, 2018. a
Xiao, R., He, X., Zhang, Y., Ferreira, V., and Chang, L.: Monitoring
groundwater variations from satellite gravimetry and hydrological models: a
comparison with in-situ measurements in the Mid-Atlantic region of the United
States, Remote Sens., 7, 686–703, 2015. a
Zhang, L.: Terrestrial water storage from GRACE gravity data for
hydrometeorological applications, PhD thesis, Institut für Meteorologie
Freie Universität Berlin, urn:nbn:de:kobv:188-fudissthesis000000104220-7, 2017. a
Zhang, L., Dobslaw, H., Stacke, T., Güntner, A., Dill, R., and Thomas, M.: Validation of terrestrial water storage variations as simulated by different global numerical models with GRACE satellite observations, Hydrol. Earth Syst. Sci., 21, 821–837, https://doi.org/10.5194/hess-21-821-2017, 2017. a, b, c
Download
Please read the editorial note first before accessing the article.
- Article
(5565 KB) - Full-text XML
-
Supplement
(2302 KB) - BibTeX
- EndNote
Short summary
Using total water storage (TWS) from GRACE satellites, we assess the reliability of global hydrological and land surface models over a medium-sized tropical basin with a well-developed gauging network. We find the models poorly represent TWS for the monthly series, but they improve in representing seasonality and long-term trends. We conclude that GRACE provides a valuable dataset to benchmark global simulations of TWS change, offering a useful tool to improve global models in tropical basins.
Using total water storage (TWS) from GRACE satellites, we assess the reliability of global...