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Abstract. The increasing reliance on global models to ad-
dress climate and human stresses on hydrology and water re-
sources underlines the necessity for assessing the reliability
of these models. In river basins where availability of gaug-
ing information from terrestrial networks is poor, models are
increasingly proving to be a powerful tool to support hy-
drological studies and water resources assessments (WRA).
However, the lack of in situ data hampers rigorous perfor-
mance assessment, particularly in tropical basins where dis-
cordance between global models is considerable. Remotely
sensed data of the terrestrial water storage obtained from the
Gravity Recovery and Climate Experiment (GRACE) satel-
lite mission can provide independent data against which the
performance of such global models can be evaluated. How-
ever, how well GRACE data represents the dynamics of ter-
restrial water storage depends on basin scale and hydrologi-
cal characteristics. Here we assess the reliability of six global
hydrological models (GHMs) and four land surface models
(LSMs) available at two resolutions. We compare the dynam-
ics of modelled Total Water Storage (TWS) with TWS de-
rived from GRACE data over the Magdalena–Cauca basin
in Colombia. This medium-sized tropical basin has a well-
developed gauging network when compared to other basins
at similar latitudes, providing unique opportunity to contrast
modelled TWS and GRACE data across a range of scales. We
benchmark monthly TWS changes from each model against
GRACE data for 2002–2014, evaluating monthly variabil-
ity, seasonality, and long-term variability trends. The TWS
changes are evaluated at basin level, as well as for selected

sub-basins with decreasing basin size. We find that the mod-
els poorly represent TWS for the monthly time series, but
they improve in representing seasonality and long-term vari-
ability trends. The high-resolution GHM World-Wide Re-
sources Assessment (W3RA) model forced by the Multi-
Source Weighted Ensemble Precipitation (MSWEP) is most
consistent in providing the best performance at almost all
basin scales, with higher-resolution models generally out-
performing lower-resolution counterparts. This is, however,
not the case for all models. Results highlight the importance
of basin scale in the representation of TWS by the models,
as with decreasing basin area, we note a commensurate de-
crease in the model performance. A marked reduction in per-
formance is found for basins smaller than 60 000 km2. Al-
though uncertainties in the GRACE measurement increase
for smaller catchments, the models are clearly challenged in
representing the complex hydrological processes of this trop-
ical basin, as well as human influences. We conclude that
GRACE provides a valuable dataset to benchmark global
simulations of TWS change, in particular for those models
with explicit representation of the internal dynamics of hy-
drological stocks, offering useful information for continued
model improvement in the representation of the hydrological
dynamics in tropical basins.
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1 Introduction

Total Water Storage (TWS) is a fundamental variable of the
global hydrological cycle, representing the sum of all wa-
ter storage components including water in rivers, lakes and
reservoirs, wetlands, soil, and aquifers. The TWS plays a key
role in the Earth’s water, energy, and biogeochemical cycles
(Syed et al., 2008). It reflects the partitioning of precipita-
tion into evaporation and runoff as well as the partitioning
of available energy of the surface between sensible and la-
tent heat (Kleidon et al., 2014). Current interest in TWS is
not only in the knowledge of the redistribution of the current
body of water in the hydrological cycle, but is also essential
for forecasting and gaining insight into the impacts of ex-
treme events such as droughts and floods (Zhang, 2017). As
an integrated measure of water availability, both surface and
groundwater, the dynamics of TWS have significant implica-
tions for water resources management (Syed et al., 2008). For
this reason, the monitoring of changes in TWS is critical for
characterising water resources variability, and for improving
the prediction of regional and global water cycles and inter-
actions with the Earth’s climate system (Famiglietti, 2004).
A better representation of the basin’s initial state contributes
to improved forecasts, particularly in basins where there are
significant internal storage and persistence of initial states.
Liu et al. (2022) and Getirana et al. (2020) show the specific
contribution of the Gravity Recovery and Climate Experi-
ment’s (GRACE) TWS in improving streamflow and ground-
water forecasts, respectively. Despite the acknowledged im-
portance of this variable, prior to the availability of data from
GRACE, integrated observations of water stocks at the basin
scale, as represented by TWS, were unavailable. Previously,
only partial state variables were available from in situ and
remotely sensed observations, such as groundwater levels,
soil moisture, river and lake levels, and snow water equiva-
lent. Given the heterogeneity of the hydrology of river basins,
comprehensive observations of these are, however, very dif-
ficult due to insufficient in situ observations of these partial
variables, further confounded by the global decline in gaug-
ing networks (Hassan and Jin, 2016). Estimation of TWS
and its change at the basin scale is therefore commonly done
through water balances and the use of models. Given the dif-
ficulty to measure TWS (Tang et al., 2010), many traditional
analyses assume that at longer timescales and over large re-
gions, change in TWS can be approximated as zero. This im-
plies that it is common to ignore the long-term trends of TWS
in water balance studies (Reager and Famiglietti, 2013).

At the global scale, there are two categories of hydro-
logical models: land surface models (LSMs) and global hy-
drological models (GHMs). The LSMs focus on describing
the vertical exchange of heat and water by solving the sur-
face energy and water balance. These were originally devel-
oped by the atmospheric modelling community to simulate
fluxes from the land to the atmosphere because of the cru-
cial linkages between the land surface and climate. As the

focus of LSMs is on simulation of energy fluxes, these may
not provide accurate simulation of water storage changes
(Scanlon et al., 2018). In contrast, GHMs focus on solving
the water balance equation and simulating catchment outlet
streamflow. One of the primary differences between LSMs
and GHMs is the more physical basis of LSMs, including
water and energy balances, compared to the more empiri-
cal water budget approaches included in most GHMs. Addi-
tionally, GHMs are increasingly modelling human interven-
tions, including water use and water resources infrastructure
(Veldkamp et al., 2018), which most LSMs do not (Scan-
lon et al., 2018). Such differences may, however, gradually
reduce as the resolution and physical basis of GHMs im-
prove (Clark et al., 2017), with GHMs and LSMs converg-
ing into Earth system models (Bierkens, 2015). The perfor-
mance of these GHMs and LSMs varies because of the differ-
ent physical representations of land-surface processes, differ-
ences in model structure and physics, parameterisation, and
atmospheric forcing data (Zhang et al., 2017).

The GHMs and LSMs are increasingly applied in assess-
ing global water resources availability (Schellekens et al.,
2017) and change (Sperna Weiland et al., 2012), as well as
for supporting specific applications including flood forecast-
ing (Gudmundsson et al., 2012; Alfieri et al., 2013), hydro-
logical drought modelling (Pozzi et al., 2013), water scarcity
(Veldkamp et al., 2017) and assessments of socio-economic
dependencies on water resources in a changing climate (Vivi-
roli et al., 2020; Wijngaard et al., 2018). The increasing
use of these models to support water resources assessments
(WRA) and this increasing range of applications raises ques-
tions about the reliability of models, as reliable representa-
tion of short- and long-term variations of key hydrological
variables such as TWS is critical.

Benchmarking results from global models against stream-
flow observations shows that these are able to provide ad-
equate simulations despite a lack of calibration, and that
performance improves with improved resolution (Sutanud-
jaja et al., 2018). However, it also shows that performance
varies substantially across basins and observation sites, and
is influenced by catchment size as well as basin elevation
(Sutanudjaja et al., 2018). Moreover, performance of dif-
ferent LSMs and GHMs may vary substantially depending
on climatic and basin conditions, with particular differences
in snow-dominated as well as tropical, monsoonal climates
(Schellekens et al., 2017). Most performance assessments
focus on using observed discharge at basin outlets as the
benchmark, the availability of which is limited in most basins
with tropical and monsoonal climates (González-Zeas et al.,
2019). Additionally, Clark et al. (2017) call for the scrutiny
not only of the discharge at basin outlets in model inter-
comparisons, but also of internal states and fluxes. Due to
limitations in data, uncertainty, adequate parameterisations,
and computational constraints on model analysis, assessing
the models using only the outputs, in this case, discharge,
could result in a good model performance but a poor repre-
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sentation of the internal states. Therefore, a complementary
evaluation of how these models represent fundamental state
variables such as TWS across climatic conditions is neces-
sary, including in tropical basins.

Thanks to recent technological advances, remote-sensing
products provide an independent observation of TWS
changes, as is the case with GRACE satellite data (Tapley
et al., 2004). The GRACE set of satellites are able to detect
changes in the Earth’s gravity, which is influenced by large-
scale water storage variations and transport on Earth. Since
2002, the GRACE satellites have monitored monthly changes
in water mass as TWS increases or decreases resulting from
climate variability and human interventions. Through moni-
toring the time-variable gravity field, these satellites provide
a more direct estimate of global changes in TWS anomalies
than that which can be obtained from models (Tapley et al.,
2004; Scanlon et al., 2018). GRACE has been shown to pro-
vide the opportunity to observe water storage dynamics for
large river basins and can contribute to a better understand-
ing of hydrology at larger temporal and spatial scales, which
are important for climate studies (Lettenmaier and Famigli-
etti, 2006). Although GRACE has important limitations due
to its resolution (Chen et al., 2016), data from GRACE do
provide a uniquely independent estimate of the distributed
TWS in a river basin since water balance estimation based
on observed data and models require gauging data (which are
often deficient or insufficient) or data from reanalysis mod-
els, which are not direct observations. Advances in GRACE
processing from traditional spherical harmonics to more re-
cent mass concentration (mascon) solutions have increased
the signal-to-noise ratio and reduced uncertainties (Scanlon
et al., 2016), though the interpretation of results for basins
in the order of 40 000 km2 or smaller remains difficult due
to the inherent coarse resolution of GRACE data (Scanlon
et al., 2016; Vishwakarma et al., 2018).

Since these data have become available, GRACE data
have been used to validate global model outputs in several
studies (see Scanlon et al., 2018; Schellekens et al., 2017,
for an overview), though these comparisons have largely
been at a global scale. Assimilation of TWS variability from
GRACE has been shown to improve model results in semi-
arid basins (Tangdamrongsub et al., 2017; Schumacher et al.,
2018), and the success with which selected models represent
TWS fluxes has been assessed using GRACE data in tropical
basins such as the Amazon (Pokhrel et al., 2013), though a
comprehensive benchmarking of GHMs and LSMs in tropi-
cal basins has not previously been done.

In a previous study carried out in the Magdalena–Cauca
river basin (MC basin henceforth) in Colombia (Bolaños
et al., 2020), GRACE products were assessed through com-
parison with water balance-based estimates identifying the
mascon product from the Jet Propulsion Laboratory (JPL)
as the best in representing TWS dynamics in the study area.
They found the existence of long-term trends related to the
La Niña and El Niño extreme phases of El Niño–Southern

Oscillation (ENSO). Also, GRACE data revealed that these
trends are not uniform across the study area, but the water
depletion rate is more pronounced in the lower parts of the
basin than it is in the upper basin. According to Bolaños et al.
(2020), in the long-term analysis, the effect of climate change
on TWS is not conclusive due to the short time series. There-
fore, the observed trends may be mainly due to the climatic
variability present in the region. These long-term variabil-
ity trends found in water storage help to improve our under-
standing of the dynamics of water resources in response to
climatic and anthropic variability. Due to the limited period
of record of the GRACE database, and following Bolaños
et al. (2020), we consider that long-term trends are at the
ENSO time scales (i.e. multi-annual to decadal time scales)
and not longer than that (e.g. climate time scales). Hence,
hereafter long-term trends refer to long-term variability re-
lated to the ENSO phenomenon. The importance of under-
standing these long-term variability trends lies in providing
tools for adequate management of the water resource in terms
of sustainability. Consequently, it is necessary that models
adequately represent these dynamics in TWS as these have
important implications for present and future water sustain-
ability.

Through the comparison of averaged TWS from mod-
els with GRACE-based estimates for a medium-sized trop-
ical basin, we identify both the potential as well as possible
deficiencies of a set of 10 models comprising both GHMs
and LSMs, and analyse the reasons for different model be-
haviours. We investigate the performance of this set of mod-
els for the MC basin in Colombia, which offers the unique
opportunity as a tropical basin with a dominant monsoonal
climate, but that also has an observation network that is
reasonably extensive, despite the recent decline (Rodríguez
et al., 2019). We benchmark these 10 models for the basin as
a whole, as well as for selected sub-basins with progressively
decreasing catchment sizes, using GRACE data from the JPL
mascon solution.

With the purpose of contributing to the understanding of
the dynamic nature of TWS as well as contributing to future
LSM and GHM development and improvement, this study
highlights the value of using water storage from GRACE,
in addition to traditional water fluxes, as a benchmark for as-
sessing global models in tropical basins. The MC basin offers
an opportunity to compare global models in tropical basins;
it has a dominant monsoon climate and a pronounced ENSO
influence in some parts of the basin, and it also has a reason-
ably extensive and publicly available observed hydrometeo-
rological dataset, despite the recent decline (Rodríguez et al.,
2019). Assessing models using these recently available data
of an important state variable such as TWS, can contribute
to a better understanding of hydrological processes, with the
improvement in the modelling and forecasting of hydrologi-
cal variables in tropical basins, thus being conducive to bet-
ter tools for decision-making around water management and
sustainability. This study complements other detailed basin
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studies using GRACE data by evaluating model structures of
LSMs and GHMs, and also provides insights into improv-
ing these for basins in other tropical areas of the world that
are not as well endowed with observational data. The rela-
tively large set of LSMs and GHMs considered in this study
are obtained through the open-access global Water Resources
Reanalysis (WRR) dataset developed in the eartH2Observe
(E2O) research project, a collaborative project funded under
the European Union’s Seventh Framework Programme (EU–
FP7) (Schellekens et al., 2017).

2 Data and methods

2.1 Study area

The MC basin is the primary river basin system in Colom-
bia. It occupies a major portion of the country in the tropical
Andes, draining an area of ∼ 276000 km2, which is about
25 % of the total territory of Colombia (Fig. 1). It has its
headwaters high up in the Colombian Andes at an eleva-
tion of about 3700 m above sea level and runs for some
1612 km before flowing into the Western Caribbean, in the
Atlantic Ocean (López-López et al., 2018; Restrepo and
Kjerfve, 2000). The main tributary of the Magdalena River
is the Cauca River, which flows along the western part of
the basin and joins the main Magdalena River in a wet-
land area called La Mojana, which is found in the Mom-
pós Depression region. The mean annual river discharge at
the gauge station closest to the mouth (Calamar) is approxi-
mately 7200 m3 s−1 with mean maximum discharges occur-
ring in November (10 200 m3 s−1), and minimum average
flows in March (4050 m3 s−1) (Camacho et al., 2008).

Due to the seasonal migration of the Intertropical Conver-
gence Zone (ITCZ) around the Equator, the climate in the
basin is on average bimodal, characterised by two wet pe-
riods (March–May and September–November) interspersed
with two dry periods. However, this is a basin with high vari-
ability, and we can observe that the lower MC basin tends to
have a more unimodal behaviour (Urrea et al., 2019), with a
continuous wet period from May to November (Fig. S1 in the
Supplement). The average annual precipitation in the basin
is around 2150 mm, while the annual average potential evap-
otranspiration is estimated at 1630 mm. The hydroclimatol-
ogy of the basin is profoundly influenced by the ENSO phe-
nomenon (Poveda and Mesa, 1996). Widespread flood events
caused by the La Niña event of 2010–2011 affected some 4
million Colombians and caused economic losses estimated
at USD 7.8 billion (Hoyos et al., 2013; Vargas et al., 2018),
while the severe droughts caused by the El Niño event of
2015–2016 had quite severe consequences, including water
shortages in more than 25 % of the towns, the highest tem-
peratures on record, and numerous fires that impacted several
regions in the country (Hoyos et al., 2017).

To analyse the effect of basin size on model performance
and GRACE data, we subdivide the macro-basin into several
sub-basins (Fig. 1). While the overall basin at Calamar sta-
tion has an area of ∼ 276000 km2, the Upper-Middle Mag-
dalena (UMM) has an area of ∼ 140754 km2; the Cauca (C)
∼ 60657 km2; the Upper Magdalena (UM) ∼ 56992,km2;
and the Upper Cauca (UC)∼ 17930 km2. The smaller Upper
Magdalena–Páez basin (UMP) has an area of ∼ 14450 km2

and the Saldaña basin (S) ∼ 6645 km2.

2.1.1 GRACE data

The TWS anomalies from GRACE satellites are processed
by three centres: the Center for Space Research (CSR) at
the University of Texas, the Jet Propulsion Laboratory (JPL)
in California, and GeoforschungsZentrum (GFZ, Research
Centre for Geosciences) in Potsdam, using two different
schemes, spherical harmonic (SH) and mass concentration
(mascon) solutions. The similarities and differences between
the SH and mascon data are well explained by Scanlon et al.
(2016) and Shamsudduha et al. (2017). Bolaños et al. (2020)
evaluate the different products of GRACE for the MC basin
through the comparison with water balances based on ob-
served data. They conclude that the best representation of
TWS in the MC basin is the GRACE TWS product derived
from JPL mascon. In this analysis we use the TWS anoma-
lies data available from April 2002 to December 2014 from
GRACE RL05 level-3 land JPL mascon solution gridded at
0.5◦ (∼ 55 km), based on an alternative processing approach
which involves parameterising the gravity field with regional
mascon functions. This product has only recently become op-
erational (Save et al., 2016; Watkins et al., 2015; Wiese et al.,
2016).

All reported data are anomalies relative to the 2004–
2009 time-averaged baseline as presented in the original
GRACE data. For consistency, all other data series used in
this study are calculated as anomalies over their average
values for the same period. The missing data due to bat-
tery management in GRACE were directly remedied by lin-
ear interpolation (Ouma et al., 2015; Xiao et al., 2015; Li-
esch and Ohmer, 2016; Shamsudduha et al., 2012). Varia-
tions in water mass or storage are expressed as an equiv-
alent water thickness (EWT; cm water). The JPL mascon
data were retrieved from the Tellus website https://grace.
jpl.nasa.gov/data/get-data/jpl_global_mascons/ (last access:
11 February 2019).

2.2 Earth2Observe (E2O) global water resources
reanalysis (WRR) data

In the analysis, input data were provided by the E2O project,
which takes advantage of various global reanalyses and de-
rived datasets to develop a global WRR (Arduini et al., 2017;
Dutra et al., 2015, 2017; Schellekens et al., 2017). This
dataset includes the outputs of 10 different GHMs and LSMs,
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Figure 1. Location of the MC Basin in Colombia, as well as the sub-basins considered in this study. The triangles represent the locations of
gauge stations measuring streamflow at the outlets of each (sub) basin.

which are available at two resolutions and time ranges, de-
noted as WRR1 and WRR2. In WRR1, models were forced
by the WATer and global CHange (WATCH) Forcing Data
applied to the ERA Interim data (WFDEI) meteorological re-
analysis dataset (Weedon et al., 2014) at a resolution of 0.5◦

(∼ 55 km at the Equator) from 1979 to 2012. The WRR2
model runs were forced by the Multi-Source Weighted En-
semble Precipitation (MSWEP) dataset (Beck et al., 2017b)
at a resolution of 0.25◦ (∼ 27 km at the Equator) from 1980
to 2014. Selected models in WRR1 and WRR2 have been
calibrated against streamflow data, including LISLFOOD,
WaterGAP, HBV-SIMREG and SWBM (Beck et al., 2017a).
Model algorithms were also improved between WRR1 and
WRR2, i.e. by a better representation of hydrological pro-
cesses, incorporation of anthropogenic influence, and by in-
tegrating Earth observation data (Gründemann et al., 2018).
Arduini et al. (2017), Dutra et al. (2015), Dutra et al. (2017),
and Schellekens et al. (2017) provide a detailed description
of the two datasets and the model improvements. Table 1
provides an overview of models considered in this study, as
well as the main changes in the models between WRR1 and
WRR2 for those models that have been run using both forc-
ing datasets and at both resolutions. The performance of sev-
eral of these models has been compared over the MC basin,
finding that key water resources management indicators de-

rived using these models compare well against those derived
using in situ data (Rodríguez et al., 2019).

In order to compare the different models and the WRR
with TWS obtained from GRACE JPL mascon, data for the
period from 2002 to 2012 were used in this study as a com-
mon period for WRR1 and GRACE, and 2002 to 2014 for
WRR2 and GRACE. Data were downloaded from the E2O
Water Cycle Integrator portal for the required period and for
the required spatial domain (https://wci.earth2observe.eu/,
last access: 20 November 2018).

2.3 Assessment of model performance

Monthly changes in TWS can be calculated as the result of
water balance estimates as presented in Eq. (1), where S is
the terrestrial water storage, P and E are the basin-wide to-
tals of precipitation and actual evapotranspiration, and R rep-
resents total basin outflow, or the net surface and ground-
water outflow. Changes in TWS can also be computed as
the sum of the monthly changes in component storages, pre-
sented in Eq. (2), where 1GWS is the change in groundwa-
ter storage, 1SMS is the change in soil moisture storage, and
1SWS is the change in surface water storage. The 1CWS is
the change in canopy water storage and 1SWE represents the
change in snow water equivalent, which is not considered in
this study because the area under snow influence represents
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Table 1. Overview of models and main changes from WRR1 to WRR2. Note that not all models included in WRR1 were run for WRR2, in
which case no changes are noted in the table. Models that have been calibrated against publicly available streamflow data are indicated.

Model Provider organisation Model type Model changes in WRR2 Reference

HBV–SIMREG
(calibrated)

Joint Research Centre (JRC) GHM n/a (Lindström et al., 1997)
(Beck et al., 2016)

LISFLOOD (calibrated) Joint Research Centre (JRC) GHM Increased number of
soil layers, groundwater
abstraction.

(Van Der Knijff et al.,
2010)

PCR–GLOBWB Universiteit Utrecht (UU) GHM Water use included.
Improvements to river-
routing reservoir schemes
and water withdrawal and
consumption.

(Van Beek et al., 2011)

SWBM (calibrated) Eidgenössische Technische
Hochschule (ETH)

GHM n/a (Orth and Seneviratne,
2013)

W3RA Eidgenössische Technische
Hochschule (ETH)

GHM Modified soil and ground-
water hydrology equations,
improved parameter esti-
mates, dynamic data assim-
ilation, evaporation of wa-
ter not derived from rain-
fall.

(Van Dijk et al., 2014)

WaterGAP3 (calibrated) Universitat Kassel GHM Assimilation of soil water
estimates, reservoir man-
agement.

(Flörke et al., 2013)

HTESSEL European Centre for Medium-
Range Weather Forecasts
(ECMWF)

LSM Multi-layer snow scheme,
increased number of soil
layers.

(Balsamo et al., 2009)

JULES Centre for Ecology and Hydrol-
ogy (CEH)

LSM Rainfal-runoff processes,
inclusion of a terrain
slope dependency in the
saturation-excess runoff
scheme.

(Best et al., 2011)
(Clark et al., 2011)

ORCHIDEE Le Centre National de la
Recherche Scientifique
(CNRS)

LSM Revision of the ancillary
data, surface roughness,
snow scheme, soil freezing
and routing.

(Krinner et al., 2005)

SURFEX-Trip Meteo France LSM Improvements in ground
water, flood plains, land
use, plant growth, surface
energy and snow.

(Decharme et al., 2010)

Source: (Schellekens et al., 2017; Dutra et al., 2017).
n/a: not applicable.

less than 0.1 % of the total area of the basin.

1TWS=
dS

dt
= P −E−R, (1)

1TWS=1GWS+1SMS+1SWS

+1CWS+1SWE. (2)

Not all of the models contained in the E2O dataset explicitly
represent groundwater storage (GWS). For those models that

explicitly represent GWS as well as surface and soil moisture
components, we apply both equations for evaluating simu-
lated TWS. For models that include only surface water and
soil moisture components, we cannot apply the second equa-
tion (Eq. 2), which allows a more representative evaluation
of TWS since GWS is the largest water component of TWS
on land.
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For TWS calculated both from models and JPL GRACE
data, the values of all cells were averaged for each corre-
sponding monthly time step and (sub) basin extent to con-
struct a time series for each data source and each (sub) basin.
This does limit sensitivity to extreme values and the averag-
ing of biases.

Table 2 shows the variables for each model available in the
E2O Water Cycle Integrator portal. The table also details if
Eq. (1) or Eq. (2) is used to derive simulated TWS changes
for each of the two available model resolutions. The symbols
in the last four columns identify the datasets and equations
considered given their availability, and are used throughout
the paper. Also, in all further figures, the blue colour is used
to represent GHMs in WRR1, the green colour is used for
GHMs in WRR2, the red colour represents LSMs in WRR1,
and the yellow colour is for LSMs in WRR2.

In order to understand the variation between TWS changes
from GRACE JPL mascon and simulated TWS from models
at the basin scale, both model and GRACE time series were
disaggregated using the Seasonal-Trend decomposition using
Loess (STL) proposed by Cleveland et al. (1990) to estimate
the relative magnitudes of water storage variance of different
time series components (Eq. 3):

1TWS=1TWSlong−term+1TWSseasonal

+1TWSresiduals. (3)

The hydrological performance of the monthly simulated
TWS changes from all models was assessed using commonly
used model evaluation statistics. We consider Pearson’s cor-
relation coefficient (r), root mean square error (RMSE), ra-
tio of RMSE to the standard deviation of the observations
(RSR), and the Kling–Gupta efficiency (KGE; Gupta et al.,
2009). Pearson’s correlation coefficient (r) provides an indi-
cation of the linear relationship between the simulated TWS
and the benchmark TWS derived from GRACE. The RMSE
indicates how close model-predicted values are to observed
data, estimating the square root of the variance of the resid-
uals. Lower values of RMSE indicate a better fit. The RSR
standardises RMSE using the standard deviation of the ob-
servations, and is calculated as the ratio of the RMSE and
standard deviation of the observed data. The RSR varies from
the optimal value of 0, which indicates zero RMSE or resid-
ual variation, and therefore perfect model simulation to an
infinitely large positive value. The lower the RSR, the lower
the RMSE, and the better model performance (Moriasi et al.,
2007). Finally, the KGE index facilitates analysis of the rela-
tive importance of different components in the context of hy-
drological modelling. In the computation of this index, there
are three main components involved: the Pearson’s correla-
tion, the ratio between the standard deviation of the simulated
values and the standard deviation of the observed ones, and
the ratio between the mean of the simulated values and the
mean of the observed ones. The KGE ranges between −∞
and 1, where 1 indicates a perfect representation of TWS.

3 Results

3.1 TWS evaluation for the whole MC basin

In order to evaluate the success with which the models repre-
sent TWS for the whole basin, we apply Eq. (3) to analyse
the monthly time series, seasonality, and long-term trends
of TWS for each of the model datasets against the GRACE
data. Results are shown in the Taylor diagrams in Fig. 2,
which provide a 2D graphical representation of three statis-
tics to indicate how well the simulated pattern matches that
of the observations. Similarity is quantified in terms of the
correlation(s), the ratio(s) of the normalised RMSE differ-
ences between simulated and observed, and the amplitude of
their variations represented by the ratio of the standard de-
viations of simulated and observed (Taylor, 2001). Best per-
formances are for values of a correlation close to 1, with a
low RMSE, and a ratio of standard deviations close to 1. Fig-
ure 2 shows Taylor diagrams for the complete monthly time
series (a), the seasonality (b), and the long-term trends (c).
In all cases the corresponding constituents of the GRACE
JPL mascon dataset are used as reference. In this figure, as
in all further figures, a blue colour is used to represent the
GHMs in WRR1 and a green colour is used for the GHMs
in WRR2. The LSMs in WRR1 are represented with a red
colour, while LSMs in WRR2 are shown in yellow (see also
Table 2). Model runs derived from WRR1 are denoted as
“R1” for brevity, while those derived from WRR2 are de-
noted as “R2”, as well as models denoted “Eq1” or “Eq2”
refer to the Equation used to estimate TWS.

From Fig. 2 it is not possible to clearly distinguish which
of the models in the total 23 datasets from GHM WRR1,
GHM WRR2, LSM WRR1, and LSM WRR2 better repre-
sents TWS when compared to GRACE. It is noteworthy that
correlations are better for almost all models when consider-
ing seasonality and long-term trends. For the monthly series,
the correlations of the models range between 0.36 and 0.68,
with the highest correlation corresponding to the W3RA
R2Eq2 and the lowest to LISFLOOD R1Eq1. However, for
almost all models (except Surfex-Trip R1Eq2) smaller stan-
dard deviations are found than those observed by GRACE.
For the representation of seasonality, we observe that cor-
relations increase in all models, with the highest correlation
found for PCR-GLOBWB R2Eq2 (r = 0.96) and the low-
est for LISFLOOD R1Eq1 model (r = 0.65). We also ob-
serve that GHMs are the models with good correlation and
whose standard deviations are closer to those observed, par-
ticularly PCR-GLOBWB R1Eq1, PCR-GLOBWB R1Eq2,
W3ERA R1Eq1, and W3RA R1Eq2 models. For long-term
trends, an increase in correlations is also observed. The high-
est correlation is now found for the HTESSEL R2Eq1 model
(r = 0.91) and the lowest for WaterGAP3 R2Eq1 (r = 0.23).
Standard deviations for most models are lower than those
observed, indicating a variability that is too low. The Wa-
terGAP3 R2Eq1, PCR-GLOBWB R1Eq1 and Eq2, and Sur-
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Table 2. Components used in the TWS change estimation for each model. The last four columns include the symbols and legends used to
identify the model resolution and equation used to derive simulated TWS changes. These are used throughout the paper.

Model Evaporation∗ Runoff∗ Variables WRR1 WRR2

WRR1 WRR2 Eq. 1 Eq. 2 Eq. 1 Eq. 2

HBV-SIMREG Penman 1948 Beta function P , ET,
R, SMS,
GWS

– N (blue)
R1Eq1

4 (blue)
R1Eq2

– –

LISFLOOD Penman–
Monteith

Saturation and
infiltration excess

P , ET,
R, SMS,
GWS

– H (blue)
R1Eq1

O (blue)
R1Eq2

– –

PCR-GLOBWB Hamon (tier 1)
or imposed as
forcing

Saturation and
infiltration excess

P , ET,
R, SMS,
GWS,
CWS,
SWS

P , ET,
R, SMS,
GWS,
SWS

• (blue)
R1Eq1

◦ (blue)
R1Eq2

• (green)
R2Eq1

◦ (green)
R2Eq2

SWBM Inferred from
net radiation

Inferred from
precipitation and
soil moisture

P , ET,
R, SMS

– ∗ (blue)
R1Eq1

– – –

W3RA Penman–
Monteith

Saturation and
infiltration excess

P , ET,
R, SMS,
GWS

ET, R,
SMS,
GWS

� (blue)
R1Eq1

� (blue)
R1Eq2

– � (green)
R2Eq2

WaterGAP3 Priestley–
Taylor

Beta function P , ET,
R, CWS,
SWS

P , ET,
R, CWS,
SWS

+ (blue)
R1Eq1

– + (green)
R2Eq1

–

HTESSEL Penman–
Monteith

Saturation excess P , ET,
R, SMS,
CWS

P , ET,
R, SMS

N (red)
R1Eq1

– 4 (yellow)
R2Eq1

–

JULES Penman–
Monteith

Saturation and
infiltration excess

P , ET,
R, SMS,
CWS

P , ET,
R

� (red)
R1Eq1

– � (yellow)
R2Eq1

–

ORCHIDEE Bulk PET Green-Ampt
infiltration

P , ET,
R, SMS,
SWS

– X (red)
R1Eq1

– – –

SURFEX-Trip Penman–
Monteith

Saturation and
infiltration excess

P , ET,
R, SMS,
GWS,
CWS,
SWS

P , ET,
R, SMS,
CWS,
SWS

• (red)
R1Eq1

◦ (red)
R1Eq2

• (yellow)
R2Eq1

–

∗ (Schellekens et al., 2017)

fexTrip R1Eq2 models differ in that these show very high
standard deviations compared to those observed in GRACE
TWS.

We additionally analyse the residuals in Eq. (3), finding
that these residuals are normally distributed at the 95 % con-
fidence level and are poorly auto-correlated. We therefore
consider these residuals as noise, with the greater part of the
variability of the time series that we observe explained by the
seasonality and long-term variability (see Figs. S4 and S5 in
the Supplement).

3.2 TWS monthly values evaluation

To provide an overview of the range in performance metrics
comparing TWS at the sub-basin scale to GRACE-derived
TWS, Fig. 3 groups the correlation, RMSE, and RSR by
model type (GHM and LSM) and reanalysis (WRR1 and
WRR2). We observe an improvement in the performance of
the WRR2 models over the WRR1 models, with an increase
in correlation values and decrease for both RMSE and RSR.
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Figure 2. Taylor diagrams between each model output and GRACE data for the Magdalena river basin for (a) monthly time series, (b)
seasonality, and (c) long-term trends. Models from the first reanalysis WRR1 are denoted as R1, and R2 denotes the second reanalysis
WRR2.

Figure 3. Distribution of model performance for the three metrics considered, grouped by model type (GHM or LSM) and forcing/resolution
(WRR1 and WRR2). Three performance metrics are shown: (a) Pearson’s r , (b) RMSE, and (c) RSR.
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This is further explored in Fig. 4, showing the relationship
between TWS of the sub-basin area within the MC basin and
the error statistics for the models in WRR1 and WRR2. To
allow comparison, error statistics are normalised and stan-
dardised. These results clearly demonstrate the detriment in
model performance as basin size decreases. This is best ob-
served in the KGE statistic (Fig. 4a). It is evident that the
models are generally able to better capture the hydrology
for the main basins in both WRR1 and WRR2. For the UM
sub-basin (56 992 km2) and the smaller sub-basins, there is a
marked decrease in performance, although the only slightly
larger C basin (60 657 km2) shows much better performance.
This provides an indication of the basin size at which the
models are capable of capturing TWS. It also illustrates the
difference in forcing, resolution, and the model’s improve-
ments made in WRR2 over WRR1. For WRR1, the best
performance for the MC and UM basins is found with the
HBV-SIMREG R1Eq2 model; the W3RA R1Eq2 model per-
forms reasonably well for the UMM and C basins; and the
SWBMExp1 R1Eq1 model has the best performance for UC,
UMP and S basins. All three of these models are GHMs. For
WRR2, the best performance in almost all basins is found
with the W3RA R2Eq2 model, though for the smaller basins
(UMP and S) it is found to be the JULES R2Eq1 model. The
first of these is a GHM and the second an LSM. The mod-
els with the lowest KGE values are LISFLOOD R1Eq1 for
MC, UMM, and UM basins, WaterGAP3 R2Eq1 for C, and
PCR-GLOBWB R1Eq2 for the last three basins. For models
that have been run for both WRR1 and WRR2, it is not con-
sistently found that the WRR2 runs have improved perfor-
mance for all basins. For instance, PCR-GLOBWB WRR1
is better than WRR2 for only the C basin, while HTES-
SEL WRR1 is better than WRR2 for the C and UC basins.
Furthermore, WaterGAP3 presents better performance for
WRR1 in all basins, while Surfex-Trip has the highest val-
ues for WRR1 than for WRR2 for all basins, except for the
two smaller basins. For W3RA, the best performance is con-
sistently found for WRR2 across all basins.

In Fig. 4b we display the Pearson’s correlation coeffi-
cient r for each model. For both WRR1 and WRR2, the
best performances are consistent with the KGE index. With
some exceptions, the WRR2 models show improved per-
formance over WRR1. The model with the highest corre-
lation in all basins is W3RA R2Eq2. Models with the low-
est RMSE alternate between W3RA R2Eq2, WaterGAP3
R1Eq1, and JULES R2Eq1. The opposite case is Water-
GAP3, and SURFEX-Trip only has an improvement in
WRR2 over WRR1 within the UMP and S basins. The RMSE
in Fig. 4c shows consistency with the other statistics. The
lowest values again correspond to W3RA R2Eq2 and JULES
R2Eq1 showing the best performance.

Even though some models perform relatively well, the
overall performance of the models is generally poor. Aver-
age KGE remains negative for all models and sub-basins,
and the average Pearson’s r value does not exceed 0.5 in

most cases. We highlight the decrease in the performance of
all models for the smaller basins. The shift between the C
and UM basins, with areas of ∼ 60657 and ∼ 56992 km2,
respectively, is interesting, and although the specific catch-
ment conditions in these two basins may lead to an apparent
step change, the reduction of performance of the models for
the smaller basins is clear. It is worth noting that GRACE
resolution will start having more limitations in these smaller
basins.

The spatial relationship between TWS monthly values of
GRACE, models with both reanalysis WRR1 and WRR2,
and the models with only WRR1, respectively, are presented
in the supplementary material (Figs. S2 and S3). In these fig-
ures we rescale the GRACE TWS and the models from 0.5 to
0.25◦ using bilinear interpolation to interpolate from one rec-
tilinear grid to another, to be consistent with the finest resolu-
tion WRR2 models. The model with the highest correlation
values is W3RA Eq2 WRR2. The maximum values presented
in the maps are close to 0.8 and are located mainly towards
the north of the macro-basin, with the minimum values to-
wards the south. This is coherent with Fig. 4, in which we
observe a reduction in performance of all models upstream
of the UM basin. This suggests that not only basin size is
relevant to the performance of each model. The prevailing
pattern could suggest that it is related to hydrological pro-
cess, or more likely to the presence of storages in these areas
that the models are not simulating properly. In Fig. S2 it is
also clear that there is an improvement in the spatial correla-
tions of models when forced with WRR2 rather than WRR1,
except for WaterGAP3.

3.3 TWS seasonality and evaluation of long-term
trends

To assess the seasonal signals and long-term trends of the
models against GRACE TWS, we show the Pearson’s r co-
efficient and RMSE statistic for all sub-basins in Fig. 5. We
observe a similar pattern as displayed in the Taylor diagrams
presented in Fig. 2 for the macro-basin, but now highlighting
model performance with decreasing basin size. We observe
the same shift in the performance of models for basins with
the size of the UM basin and smaller for both seasonality
(Fig. 5a, b) and long-term trend (Fig. 5c, d). The Pearson’s r

values for both is better than in the analysis of monthly values
(Fig. 5a, c). For seasonality, the highest r coefficient is found
in PCR-GLOBWB R2Eq2 for the MC and UMM basins, and
in W3RA R2Eq2 for the remaining sub-basins, which coin-
cides with the lowest RMSE in Fig. 5b. For long-term trends,
the highest r coefficient is presented in HTESSEL R2Eq1 for
MC, in JULES R2Eq1 for UMP, and in W3RA R2Eq2 for
the remaining sub-basins, which coincides with the lowest
RMSE in Fig. 5d. The WaterGAP3 R2Eq1 presents the low-
est performance for all sub-basins in the long-term trends.

The seasonality found for the GRACE data, as well as
for each group of models and each sub-basin, is presented
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Figure 4. Performance statistics between GRACE and the GHM (blue and green points for WRR1 and WRR2, respectively) and LSM (red
and yellow points for WRR1 and WRR2, respectively) at different scales in (a) the KGE index, (b) Pearson’s r , and (c) the RMSE. The
basins are ordered by size (largest to the left), and the data are standardised and normalised.

in Fig. 6. In general, we observe good agreement between
TWS from the models and GRACE for the main basins. The
bimodal behaviour in all models and GRACE data is con-
sistently represented as a consequence of the dominant bi-
modality of precipitation in the whole MC basin (Poveda,
2004). However, for the UM basin and smaller basins, the

models tend to overestimate the second peak during the
SON (September–October–November) season. The maxi-
mum peak in GRACE for all sub-basins occurs in the month
of May, while in the models it varies.

Figure 7 compares the seasonal maps of TWS estimated
for GRACE, the models with the highest correlations (see
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Figure 5. Performance statistics for the seasonality (a–b) and long-term trends (c–d) of GRACE and the GHMs (blue and green points
for WRR1 and WRR2, respectively) and LSMs (red and yellow points for WRR1 and WRR2, respectively) at different scales in (a, c) the
Pearson’s r coefficient and in (b, d) the RMSE.

Figs. S2 and S3), and models that perform similarly. The
seasonal maps of TWS for the other models are shown in
the supplementary material (Figs. S6 and S7). Here, we ob-
serve that the amplitudes for most models are smaller than
for the GRACE data. This implies that the models tend to
underestimate seasonal variation. For DJF (dry season), the
models tend to be consistent with GRACE, with the lowest
biases found in the north. In general, for the basins, the val-
ues of TWS are negative or near zero. On the other hand,
MAM (the first wet season) shows the opposite case with
positive values throughout the macro-basin, with some ex-
ceptions towards the north (W3RA R2Eq2). In JJA (dry pe-
riod), we again observe consistency. There is a transition be-
tween the two rain periods, with positive bias in the north
and negative bias in the south of the basin. In SON the mod-
els differ spatially with GRACE. The highest values of TWS
from GRACE are found in the north of the basin in SON.
This part of the basin is dominated by the La Mojana wet-
lands. In contrast, the models mostly present biases in the
area of La Mojana close to 0 and higher TWS values towards
the south of the basin. These higher values in the south cor-
respond with the peaks observed in Fig. 6. This behaviour
is likely due to the poor representation of the wetlands in the
models. The buffering capacity in the models is poorly repre-
sented, which means that these dry out too much in the drier

DJF period and cannot represent the increased storage in the
wet period during SON in the La Mojana area, which can
be observed by GRACE. For the second dry season, the fact
that the climate becomes more unimodal to the north (see
Fig. S1) may also contribute. Both drying and wetting may
also be overestimated by the models as observed in the south,
especially, during JJA and SON, and SURFEX-Trip R1Eq2
during DJF.

Finally, we explore the agreement between the models and
GRACE for the long-term component. Figure 8 shows the
time series for GRACE JPL (black line) as well as for each
model group: GHM WRR1, GHM WRR2, LSM WRR1,
and LSM WRR2 (blue, green, red, and yellow lines, respec-
tively). We present the graphs for MC, C, UM, and S basins,
as the other sub-basins are similar to these and are shown in
the supplementary material (Fig. S8). The MC and S basins
are the largest and smallest basins, respectively, while the
change in model performance occurs between the C and UM
basins. Large discrepancies between models and GRACE can
be seen, with these increasing as basin size decreases. We ob-
serve that WaterGAP3 R2Eq1, PCR-GLOBWB R1Eq1 and
Eq2, and SURFEX-Trip R1Eq2 (the first two are GHMs and
the last one is LSM) overestimate both high and low peaks. In
contrast, LISFLOOD R1Eq1 and SWBM R1Eq1 outputs are
relatively flat, underestimating both the high and low peaks.
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Figure 6. Comparative boxplots between the climatology of GHMs and LSMs, and GRACE JPL for each sub-basin.
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Figure 7. Seasonal maps for GRACE JPL, GHM, and LSM.

However, all models are able to capture the increase in TWS
during the 2010–2011 ENSO event (La Niña), likely due to
the (common) precipitation forcing. Better performance is
shown for the LSMs than for GHMs in general, although the
results for W3RA R2Eq2 are closest to observations.

4 Discussion

4.1 Evaluation of the performance of the models

To summarise the performance results of the models with re-
spect to GRACE, we present the performance metrics for
each model and WRR in Fig. 9. Higher score values (blue
boxes) correspond to a better performance in representing
TWS, while lower score values (red boxes) indicate a poor
representation for monthly time series, seasonality, and long-
term trends. This shows that the WRR2 models tend to ex-
hibit better performance than the lower-resolution WRR1
models. This is coherent with the results of Gründemann
et al. (2018), who assessed simulated discharges from 7 of
the 10 models studied here, as well as the ensemble mean
of those models, focusing on the occurrence of floods in the
Limpopo River basin in southern Africa. The exception of
this improved performance is found for WaterGAP3, which

shows much poorer performance for WRR2, particularly in
the representation of long-term trends.

Since the models have the same input/forcing for each
WRR, differences in simulation results can only be attributed
to the model structure and internal model dynamics. A num-
ber of factors could contribute to the notably poor perfor-
mance of WaterGAP3 in WRR2 for the study area. These
include modifications made to the simulation of hydrolog-
ical processes, the way in which reservoir management is
represented, and its calibration. However, Dutra et al. (2017)
note that the modifications made to WRR2 primarily affect
the water stored in the reservoirs and not the surface runoff,
evapotranspiration, or other surface fluxes. While there are
a large number of reservoirs in the basin, these are primar-
ily used for hydropower generation and, to a lesser extent,
to serve irrigation, flood control, or other purposes. As a
result, the degree of regulation of these reservoirs is found
to be quite low (Angarita et al., 2018). The reservoir re-
lease scheme in the WaterGAP model follows a more generic
concept, independent of the primary purpose of the reser-
voir (Müller Schmied et al., 2021), and thus may misrep-
resent the dynamics of the reservoir storage in this basin.
The WaterGAP3 model was also found to perform poorly
with respect to other GHMs in a snowmelt-driven catchment
in northern Canada. The latter also includes extensive reg-
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Figure 8. Long-term trends of time series for the models and
GRACE for (a) MC, (b) C, (c) UM, and (d) S basins. The black
lines indicate the GRACE JPL, the blue and green lines represent
the GHM WRR1 and WRR2, respectively, the red lines represent
the LSM WRR1, and the yellow lines show the LSM WRR2.

ulation for hydropower production (Casson et al., 2018). In
contrast, however, for the Limpopo River basin in southern
Africa, the WaterGAP3 model in WRR2 demonstrated the
best performance in simulating flood events among the same
models considered here (Gründemann et al., 2018). This is
also an extensively regulated basin, though reservoirs in the
Limpopo River basin primarily serve irrigation and flood
control, the operation of which may be better captured by the
generic reservoir operation rules. This underlines the chal-
lenge of simulating reservoirs and their sector-specific oper-
ation in (global) hydrological models (Rougé et al., 2021).
Beck et al. (2017a) show that WaterGAP performs well in
reproducing streamflow, but also suggest that the WaterGap
baseflow index is not good. This could point to an unbalance

between internal hydrological processes, which may have
been induced by the calibration. Similarly, for LISFLOOD
R1Eq1 we observe relatively poor performance in reproduc-
ing TWS anomalies. In contrast, the same model, but us-
ing different equations (LISFLOOD R1Eq2), performs bet-
ter, which suggests that although the precipitation forcing is
common, the calibration against streamflow would primarily
affect the fluxes of evapotranspiration and runoff. Another
reason could be that LISFLOOD is reported to underestimate
quick-flow response (see Beck et al., 2017a), which could
lead to less-pronounced seasonality than the other models (as
shown in Fig. 5). The calibration of models against observed
discharges may improve model results at basin outlets, but
may be detrimental to the representation of internal states
and fluxes. This may be particularly true where there are bi-
ases in the forcing data due to the complex topography of the
basin.

Figure 9 shows that over the MC basin as a whole, the
TWS change computed from W3RA WRR2 using Eq2 best
represents the signal of the GRACE data; including the
monthly time series, seasonality, and long-term trends. The
performance metrics do demonstrate, however, that for the
different sub-basins, the best performing models include both
GHMs and LSMs. Although the W3RA model is among the
best performing models in all basins, for the monthly time
series, JULES R2Eq1 performs best in the smaller basins.
Besides W3RA, the seasonality is captured equally well by
PCR-GLOBWB R2Eq2, while for long-term trends, HTES-
SEL R2Eq1 and JULES R2Eq1 (both LSMs) also show good
agreement to the GRACE data. Each of these models per-
formed well with similar statistics throughout the basin, de-
spite their differences in structure.

Zhang et al. (2017) evaluate the TWS estimates from 4 hy-
drological models (2 GHMs and 2 LSMs) and GRACE in 31
of the world’s largest river basins. Although the MC basin is
not included in their study, they similarly find that the perfor-
mance of the models varies from basin to basin, even within
the same climate zone. They conclude that the variation in
performance could be due to model structure, parameterisa-
tion, the different water storage components included in the
calculation of TWS, as well as being connected to the differ-
ences in runoff simulation and evaporation schemes (Zhang
et al., 2017; Ramillien et al., 2006). In our case, the best
performing models (W3RA, HTESSEL, and JULES) calcu-
late evapotranspiration using the Penman–Monteith method,
and saturation- and infiltration-excess for calculating runoff.
However, the worst performing models (LISFLOOD and
SURFEX-Trip) use these same schemes, while WaterGAP3
uses the Priestley–Taylor method for evapotranspiration and
beta function for runoff. The routing scheme, whether human
water use is incorporated, and time step can also cause sig-
nificant differences between the models. Within the ensem-
ble of models considered here, there are, however, multiple
differences between models structures, making it difficult to
uniquely identify model structures that singularly contribute
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Figure 9. Summary figure of the performance among models with respect to GRACE data. Statistics of KGE, Pearson’s r , and RMSE
were rescaled between 0 and 1, with 0 being the worst performance among the models and 1 being the best performance. The evaluation is
presented for (a) the monthly time series, (b) the seasonality, and (c) the long-term trends.

to improved performance. This would imply that the rela-
tionship between model performance and model structures
that best represents the processes in a tropical basin such as
the MC is as yet inconclusive.

However, Schellekens et al. (2017) note that the W3RA
model applies a Gash event-based model to simulate inter-
ception, an important hydrological process in tropical basins
(Miralles et al., 2010), and this could contribute to its rel-
atively good performance. Most models tested here follow a
single reservoir and potential evaporation process to compute
interception, while other models do not include an intercep-
tion scheme. Additionally, models that include a groundwa-
ter component, and for which the performance can be eval-
uated using Eq. (2), show better performance over the same
models when using Eq. (1) to compute TWS (Fig. 9). Nev-
ertheless, further analysis is required in which the represen-
tation of internal processes, evapotranspiration, and runoff
approaches is evaluated in depth. Moreover, it is important
to note that the ranking of model performance may be quite
different in different basins, and also depends on the aim of
the research. However, we underline the importance of using
a fundamental variable such as TWS as a proxy to inquire
internal model states to benchmark model performance.

4.2 Performance in representing seasonality and
long-term trends

The differences between models in representing TWS
changes for seasonality and long-term trends may be due
to various reasons. Following Scanlon et al. (2019), differ-
ences in seasonal amplitudes of TWS between models and
GRACE can result from uncertainties in models, in GRACE,
or in both. These uncertainties may come from the scheme
of modelled storage capacity and storage compartments in-
cluded in each model (Table 2), uncertainties in modelled
inflows/outflows, and uncertainties in modelled human in-
terventions in the case of GHMs, or lack thereof in LSMs.
Storage capacity and compartments such SWS and GWS are
critical in tropical basins, where the magnitudes of the TWS
seasonal amplitudes are high, driven by seasonal precipita-
tion (Scanlon et al., 2019). The average bimodal behaviour
is evident in the seasonal signal of TWS from GRACE and
models, but the peak during the SON season in the models
is greater in the smaller basins. The peak during the SON
season logically follows the precipitation used to force the
models, but in GRACE this peak is generally lower than the
MAM peak. The overestimation (underestimation) of mod-
elled seasonality of TWS changes relative to GRACE in the
study area could result from underestimation (overestima-
tion) of the storage capacity. A possible explanation of the
differences in the peaks observed during these two wet sea-
sons as observed in GRACE is that the MAM wet season
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is preceded by a strong dry season. As the soil receives a
large amount of water, this infiltrates and recharges ground-
water, and thus adds to TWS in the basin; the soil becomes
saturated; and the remainder becomes surface runoff. For the
second wet season (SON), which is generally stronger and
with greater precipitation quantity (Poveda, 2004), the soil is
not as dry as in the first wet season, and therefore soil satu-
rates more rapidly, generating more runoff that quickly leave
the basins, with smaller changes in TWS (e.g. in groundwa-
ter) as consequence.

Due to the poor representation of the storage capacity in
the models, these may be overestimating changes of TWS in
SON, especially in the south where the topography is more
complex. The heterogeneity of climate in the basin may also
be important since there is a tendency towards a unimodal cli-
mate to the north of the basin with a much less pronounced
JJA dry season (Urrea et al., 2019). Pokhrel et al. (2013) es-
tablish similar conclusions in the Amazon basin where model
representation of the groundwater – vadose zone – surface
water dynamics is important in representing seasonal dynam-
ics.

Similarly, discrepancies in long-term trends in TWS may
be related to uncertainties in models and/or GRACE. Scan-
lon et al. (2018) evaluate seven different global models
against GRACE. Considering initial conditions, water stor-
age compartments and capacity related to model structure,
precipitation uncertainty, and model calibration, they con-
clude that the models considered underestimate large decadal
water storage trends relative to GRACE data. In this study,
the models have the same input/forcing for each WRR and
the majority of models have not been calibrated, while for
those models that have been calibrated (Table 1), the calibra-
tion was not specific to the MC basin (Beck et al., 2017a).
This implies that differences must largely be due to model
structure (e.g. representation of water storage compartments)
and parameterisation (e.g. capacity of compartments) (Dutra
et al., 2017). The way each model computes the storage ca-
pacity could be related to the lack of storage compartments,
soil profiles (thickness and number of layers), or exclusion of
processes such as river flooding (Scanlon et al., 2018). One
of the clear factors is that most LSMs do not model SWS
and GWS compartments, with the exception of Surfex-Trip.
However, the inclusion of SWS and GWS is not conclusive
for a good agreement with GRACE in our study since Surfex-
Trip overestimates long-term trends and the LSMs in general
have a better performance than most GHMs (Figs. 5c, d and
9c). Models also differ in how storage compartments such as
the soil layer are discretised (Schellekens et al., 2017). While
W3RA has 3 soil layers and shows good agreement, Water-
GAP only has 1, and SurfexTrip has 14 soil layers. More
than the number of soil layers, the thickness and total soil
depth could be important variables for the calculation of stor-
age capacity. Swenson and Lawrence (2015) report that the
thickness of the profile required to replicate GRACE TWS
variability is up to 8–10 m in tropical regions (e.g. Amazon,

Congo) and in South Africa, while most models considered
here have a soil thickness of between 1 and 4 m (Schellekens
et al., 2017; Dutra et al., 2017), thus limiting the storage dy-
namics.

4.3 Basin scale analysis

As basin size reduces, the performance of models is found to
decrease. Here it is important to highlight that GRACE mea-
surements and leakage uncertainties increase with decreasing
basin size (Scanlon et al., 2016). In Figs. 4 and 5, the shift
occurs between C (∼ 60657 km2) and UM (∼ 56992 km2).
Currently, basins with a size of ∼ 63000 km2 can be re-
solved to an error level of 2 cm in terms of equivalent water
height (Vishwakarma et al., 2018), which would agree to the
size smaller than that which we find for a marked decrease
of performance. Nevertheless, when we analyse the spatial
correlation maps (Figs. S2 and S3) and the seasonal maps
(Fig. 7), we observe that there are large discrepancies for the
south of the macro-basin.

The southern part of the basin corresponds to an area with
a more complex topography. While the global models gen-
erally provide a poor representation of the wetlands in the
north of the MC basin, the hydroclimatology of the moun-
tainous areas is more heterogenous as precipitation not only
depends on the macroclimatic phenomena such as the ENSO
and ITCZ migration, but is also influenced by other atmo-
spheric circulation mechanisms such as mesoscale convec-
tive systems, soil–atmosphere interaction processes, and lo-
cal circulation patterns (Poveda, 2004). Furthermore, the in-
terplay between the Orinoco and Amazon basins plays an im-
portant role in the moisture availability and precipitation for
the UM sub-basin, which would add complexity to the hydro-
climatological characteristics in this region, posing a chal-
lenge for models and their calibration (Bedoya-Soto et al.,
2019).

Additionally, it is important to highlight the presence of
high-altitude montane wetlands (Páramos). These are one of
the most important ecosystems in Colombia and provide an
important source of water supply for many of the big cities in
the Andean region (Rodríguez and Armenteras, 2005). The
hydrological processes in these Páramos are poorly under-
stood, making the simulation of the water balance and stor-
age dynamics difficult (Buytaert and Beven, 2011). More-
over, the upper basins are highly intervened by human activi-
ties, including several reservoirs, which challenge the models
by simulating flows and water storage compartments. Grün-
demann et al. (2018) point out that models that only capture
natural flow conditions, and do not take artificial reservoirs
and water usage into account, may be able to reasonably es-
timate runoff volumes, though they do tend to overestimate
the actual magnitude of discharges. Their results suggest that
GHMs would have better performance over LSMs, particu-
larly those that include human interventions. While we do
observe this to be the case for the general MC as well as se-
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lected sub-basins (UMM and C), when comparing monthly
time scales of TWS for the smaller basins, we find that the
LSM WRR2 have a better agreement over GHMs (Fig. 9).

Figure 9 also shows that the deterioration of model per-
formance for basins smaller than 60000 km2 is most clearly
seen for those models where GRACE TWS is used to bench-
mark models that represent internal model stocks, such as
groundwater, using Eq. (2). Benchmarking those same mod-
els using Eq. (1) results in a much more varied picture, which
is also seen in the results of Rodríguez et al. (2019), who
tested several of the global models used here as well as (cali-
brated) regional models against observed discharges from 88
gauges across the MC basin. This did not reveal a clear pat-
tern in model performance across the basin.

5 Conclusions

With the overall poor and decreasing availability of observed
hydrological data in tropical basins, there is an increasing in-
terest in the use of remote-sensing data and models to study
water resources, as well as the impact of climate change and
human influences on water resources. The recently devel-
oped eartH2Observe (E2O) global water resources reanalysis
(WRR) dataset provides hydrometeorological data of suffi-
cient length and coverage to complement observed data in
water resources assessments (WRA). However, insufficient
availability and poor spatial distribution of observed data
mean that independent evaluation of these reanalysis data
in representing key hydrological processes and storage dy-
namics in these basins is difficult. On the other hand, the
GRACE satellite dataset is a recent and powerful tool that
provides independent and distributed observations of Total
Water Storage (TWS) in river basins, giving insight into the
water storage dynamics that would not be possible through
conventional observations. These data provide an opportu-
nity to benchmark water storage dynamics of the models
used in WRR and explore the question of how well these
represent basin TWS dynamics.

We evaluate the representation of TWS changes from 10
models in the E2O dataset, including 6 global hydrolog-
ical models (GHMs) and 4 land surface models (LSMs).
We benchmark the performance of these models in the
Magdalena–Cauca basin in Colombia, a medium-sized trop-
ical basin that can be considered unique to tropical basins,
given its comparatively well-developed monitoring network.
We assess the potential of the two global WRRs (WRR1
and WRR2) available from the E2O dataset by studying the
performance of these models in simulating TWS changes
through commonly used statistics.

Performance statistics reveal that the variability of
GRACE TWS is better captured by the models in the larger
basins compared to performance in the smaller, nested,
basins. Basin sizes, at which both WRR1 and WRR2 models
are able to provide a better representation of the hydrological

behaviour, are observed for areas above around 60 000 km2,
with significantly poorer performance for smaller catch-
ment sizes. Although this could be attributed to the rela-
tively coarse resolution of the GRACE TWS data used as
a benchmark, and consequent uncertainty and signal leakage
in smaller basins, we observe that the inadequate ability of
the models to capture the hydrological process and storage
dynamics in the south of the basin contribute to this poor
performance. This part of the basin has a more complex to-
pography and a higher degree of human intervention, such
as reservoirs. Additionally, there are high montane wetlands
(Páramos) that have an essential role in regulating water re-
sources. Although our benchmark does not reveal specific
model structures that contribute to improved performance
of either GHMs or LSMs, our results do suggest that the
representation of processes such as interception and storage
dynamics in the soil column, including groundwater, con-
tributes to better model performance.

In general, models included in the higher-resolution
WRR2 dataset have better performance than the models
in the lower-resolution WRR1 dataset. This shows that the
continued efforts to improve global models, either through
improved and higher-resolution forcing or improved and
higher-resolution model structures and parameterisations,
can enhance the models’ ability to reproduce observed TWS
and simulate water resources variability. However, poor rep-
resentation of specific processes such as reservoir operation
through a scheme that is too generic, common to global mod-
els, may obscure these improvements.

Our comparison highlights the relevance of using indepen-
dent, remote-sensing data to benchmark large-scale models
in specific hydro-climatological settings, including tropical
basins. Our results suggest future directions for model devel-
opment, highlighting the appropriate representation of water
stocks and related processes. It is relevant that models that do
include explicit representation of the internal storage dynam-
ics allow for a more direct benchmarking of modelled TWS
against the TWS data from GRACE. This would improve the
assessment of model performance compared to benchmark-
ing models against indirectly calculated TWS variability, as
derived from the balance of precipitation, evaporation, and
observed basin outflow; thus helping to discriminate models
with better structures and process representation.

Although the disparity between GRACE and the models
is subject to uncertainties in both, the quality of GRACE
data will continue to improve in the foreseeable future. In
this study, we use the most recent GRACE release (RL5) be-
fore the constellation of satellites that provided these data
discontinued their service (Watkins et al., 2015). A GRACE
follow-on mission as a successor to the original GRACE mis-
sion was launched in May 2018, with data becoming avail-
able shortly for future research. These continued advances in
GRACE data and their use to independently benchmark in-
ternal states of hydrological models will improve our under-
standing of water resources and reduce uncertainties in using
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these models in water resources projections under climatic
change and increasing human interventions.
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