Articles | Volume 26, issue 13
https://doi.org/10.5194/hess-26-3691-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-26-3691-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Attribution of global evapotranspiration trends based on the Budyko framework
Shijie Li
Collaborative Innovation Center on Forecast and Evaluation of
Meteorological Disasters (CIC–FEMD), School of Geographical Sciences,
Nanjing University of Information Science and Technology, Nanjing 210044,
China
Guojie Wang
CORRESPONDING AUTHOR
Collaborative Innovation Center on Forecast and Evaluation of
Meteorological Disasters (CIC–FEMD), School of Geographical Sciences,
Nanjing University of Information Science and Technology, Nanjing 210044,
China
Chenxia Zhu
Collaborative Innovation Center on Forecast and Evaluation of
Meteorological Disasters (CIC–FEMD), School of Geographical Sciences,
Nanjing University of Information Science and Technology, Nanjing 210044,
China
Collaborative Innovation Center on Forecast and Evaluation of
Meteorological Disasters (CIC–FEMD), School of Geographical Sciences,
Nanjing University of Information Science and Technology, Nanjing 210044,
China
Waheed Ullah
Collaborative Innovation Center on Forecast and Evaluation of
Meteorological Disasters (CIC–FEMD), School of Geographical Sciences,
Nanjing University of Information Science and Technology, Nanjing 210044,
China
Daniel Fiifi Tawia Hagan
Collaborative Innovation Center on Forecast and Evaluation of
Meteorological Disasters (CIC–FEMD), School of Geographical Sciences,
Nanjing University of Information Science and Technology, Nanjing 210044,
China
Giri Kattel
Collaborative Innovation Center on Forecast and Evaluation of
Meteorological Disasters (CIC–FEMD), School of Geographical Sciences,
Nanjing University of Information Science and Technology, Nanjing 210044,
China
Department of Infrastructure Engineering, The University of Melbourne, Melbourne 3010, Australia
Department of Hydraulic Engineering, Tsinghua University, Beijing
100084, China
Jian Peng
Department of Remote Sensing, Helmholtz Centre for Environmental
Research-UFZ, Permoserstrasse 15, 04318, Leipzig, Germany
Remote Sensing Centre for Earth System Research, Leipzig University, Talstr. 35, 04103, Leipzig, Germany
Related authors
Jiao Lu, Guojie Wang, Tiexi Chen, Shijie Li, Daniel Fiifi Tawia Hagan, Giri Kattel, Jian Peng, Tong Jiang, and Buda Su
Earth Syst. Sci. Data, 13, 5879–5898, https://doi.org/10.5194/essd-13-5879-2021, https://doi.org/10.5194/essd-13-5879-2021, 2021
Short summary
Short summary
This study has combined three existing land evaporation (ET) products to obtain a single framework of a long-term (1980–2017) daily ET product at a spatial resolution of 0.25° to define the global proxy ET with lower uncertainties. The merged product is the best at capturing dynamics over different locations and times among all data sets. The merged product performed well over a range of vegetation cover scenarios and also captured the trend of land evaporation over different areas well.
Zanpin Xing, Xiaojun Li, Frédéric Frappart, Gabrielle De Lannoy, Thomas Jagdhuber, Jian Peng, Lei Fan, Hongliang Ma, Karthikeyan Lanka, Xiangzhuo Liu, Mengjia Wang, Lin Zhao, Yongqin Liu, and Jean-Pierre Wigneron
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-728, https://doi.org/10.5194/essd-2025-728, 2026
Preprint under review for ESSD
Short summary
Short summary
Satellite observations of Earth's land surface are important for tracking soil and vegetation water. We use data from the Soil Moisture and Ocean Salinity satellite to build a new product that cleans the raw microwave signal and yields more reliable estimates of soil moisture and vegetation water content. Tests against ground stations and other satellites show that the new record exceeds existing products and can support applications such as drought, freeze–thaw, and carbon monitoring.
Solomon H. Gebrechorkos, Jian Peng, Ellen Dyer, Diego G. Miralles, Sergio M. Vicente-Serrano, Chris Funk, Hylke E. Beck, Dagmawi T. Asfaw, Michael B. Singer, and Simon J. Dadson
Earth Syst. Sci. Data, 15, 5449–5466, https://doi.org/10.5194/essd-15-5449-2023, https://doi.org/10.5194/essd-15-5449-2023, 2023
Short summary
Short summary
Drought is undeniably one of the most intricate and significant natural hazards with far-reaching consequences for the environment, economy, water resources, agriculture, and societies across the globe. In response to this challenge, we have devised high-resolution drought indices. These indices serve as invaluable indicators for assessing shifts in drought patterns and their associated impacts on a global, regional, and local level facilitating the development of tailored adaptation strategies.
Francisco José Cuesta-Valero, Hugo Beltrami, Almudena García-García, Gerhard Krinner, Moritz Langer, Andrew H. MacDougall, Jan Nitzbon, Jian Peng, Karina von Schuckmann, Sonia I. Seneviratne, Wim Thiery, Inne Vanderkelen, and Tonghua Wu
Earth Syst. Dynam., 14, 609–627, https://doi.org/10.5194/esd-14-609-2023, https://doi.org/10.5194/esd-14-609-2023, 2023
Short summary
Short summary
Climate change is caused by the accumulated heat in the Earth system, with the land storing the second largest amount of this extra heat. Here, new estimates of continental heat storage are obtained, including changes in inland-water heat storage and permafrost heat storage in addition to changes in ground heat storage. We also argue that heat gains in all three components should be monitored independently of their magnitude due to heat-dependent processes affecting society and ecosystems.
Karina von Schuckmann, Audrey Minière, Flora Gues, Francisco José Cuesta-Valero, Gottfried Kirchengast, Susheel Adusumilli, Fiammetta Straneo, Michaël Ablain, Richard P. Allan, Paul M. Barker, Hugo Beltrami, Alejandro Blazquez, Tim Boyer, Lijing Cheng, John Church, Damien Desbruyeres, Han Dolman, Catia M. Domingues, Almudena García-García, Donata Giglio, John E. Gilson, Maximilian Gorfer, Leopold Haimberger, Maria Z. Hakuba, Stefan Hendricks, Shigeki Hosoda, Gregory C. Johnson, Rachel Killick, Brian King, Nicolas Kolodziejczyk, Anton Korosov, Gerhard Krinner, Mikael Kuusela, Felix W. Landerer, Moritz Langer, Thomas Lavergne, Isobel Lawrence, Yuehua Li, John Lyman, Florence Marti, Ben Marzeion, Michael Mayer, Andrew H. MacDougall, Trevor McDougall, Didier Paolo Monselesan, Jan Nitzbon, Inès Otosaka, Jian Peng, Sarah Purkey, Dean Roemmich, Kanako Sato, Katsunari Sato, Abhishek Savita, Axel Schweiger, Andrew Shepherd, Sonia I. Seneviratne, Leon Simons, Donald A. Slater, Thomas Slater, Andrea K. Steiner, Toshio Suga, Tanguy Szekely, Wim Thiery, Mary-Louise Timmermans, Inne Vanderkelen, Susan E. Wjiffels, Tonghua Wu, and Michael Zemp
Earth Syst. Sci. Data, 15, 1675–1709, https://doi.org/10.5194/essd-15-1675-2023, https://doi.org/10.5194/essd-15-1675-2023, 2023
Short summary
Short summary
Earth's climate is out of energy balance, and this study quantifies how much heat has consequently accumulated over the past decades (ocean: 89 %, land: 6 %, cryosphere: 4 %, atmosphere: 1 %). Since 1971, this accumulated heat reached record values at an increasing pace. The Earth heat inventory provides a comprehensive view on the status and expectation of global warming, and we call for an implementation of this global climate indicator into the Paris Agreement’s Global Stocktake.
Zhen Yu, Jing Liu, and Giri Kattel
Earth Syst. Sci. Data, 14, 5179–5194, https://doi.org/10.5194/essd-14-5179-2022, https://doi.org/10.5194/essd-14-5179-2022, 2022
Short summary
Short summary
We developed a 5 km annual nitrogen (N) fertilizer use dataset in China, covering the period from 1952 to 2018. We found that previous FAO-data-based N fertilizer products overestimated the N use in low, but underestimated in high, cropland coverage areas in China. The new dataset has improved the spatial distribution and corrected the existing biases, which is beneficial for biogeochemical cycle simulations in China, such as the assessment of greenhouse gas emissions and food production.
Jiao Lu, Guojie Wang, Tiexi Chen, Shijie Li, Daniel Fiifi Tawia Hagan, Giri Kattel, Jian Peng, Tong Jiang, and Buda Su
Earth Syst. Sci. Data, 13, 5879–5898, https://doi.org/10.5194/essd-13-5879-2021, https://doi.org/10.5194/essd-13-5879-2021, 2021
Short summary
Short summary
This study has combined three existing land evaporation (ET) products to obtain a single framework of a long-term (1980–2017) daily ET product at a spatial resolution of 0.25° to define the global proxy ET with lower uncertainties. The merged product is the best at capturing dynamics over different locations and times among all data sets. The merged product performed well over a range of vegetation cover scenarios and also captured the trend of land evaporation over different areas well.
Xikun Wei, Guojie Wang, Donghan Feng, Zheng Duan, Daniel Fiifi Tawia Hagan, Liangliang Tao, Lijuan Miao, Buda Su, and Tong Jiang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2021-418, https://doi.org/10.5194/essd-2021-418, 2021
Preprint withdrawn
Short summary
Short summary
In this study, we use the deep learning (DL) method to generate the temperature data for the global land (except Antartica) at higher spatial resolution (0.5 degree) based on 31 different CMIP6 Earth system model(ESM). Our methods can perform bias correction, spatial downscaling and data merging simultaneously. The merged data have a remarkably better quality compared with the individual ESMs in terms of both spatial dimension and time dimension.
Xiaolu Ling, Ying Huang, Weidong Guo, Yixin Wang, Chaorong Chen, Bo Qiu, Jun Ge, Kai Qin, Yong Xue, and Jian Peng
Hydrol. Earth Syst. Sci., 25, 4209–4229, https://doi.org/10.5194/hess-25-4209-2021, https://doi.org/10.5194/hess-25-4209-2021, 2021
Short summary
Short summary
Soil moisture (SM) plays a critical role in the water and energy cycles of the Earth system, for which a long-term SM product with high quality is urgently needed. In situ observations are generally treated as the true value to systematically evaluate five SM products, including one remote sensing product and four reanalysis data sets during 1981–2013. This long-term intercomparison study provides clues for SM product enhancement and further hydrological applications.
Ewan Pinnington, Javier Amezcua, Elizabeth Cooper, Simon Dadson, Rich Ellis, Jian Peng, Emma Robinson, Ross Morrison, Simon Osborne, and Tristan Quaife
Hydrol. Earth Syst. Sci., 25, 1617–1641, https://doi.org/10.5194/hess-25-1617-2021, https://doi.org/10.5194/hess-25-1617-2021, 2021
Short summary
Short summary
Land surface models are important tools for translating meteorological forecasts and reanalyses into real-world impacts at the Earth's surface. We show that the hydrological predictions, in particular soil moisture, of these models can be improved by combining them with satellite observations from the NASA SMAP mission to update uncertain parameters. We find a 22 % reduction in error at a network of in situ soil moisture sensors after combining model predictions with satellite observations.
Cited articles
Allen, M. R. and Ingram, W. J.: Constraints on future changes in climate and
the hydrologic cycle, Nature, 419, 224–232, https://doi.org/10.1038/nature01092, 2002.
Allen, R. G., Howell, T. A., Pruitt, W. O., Walter, I. A., Jensen, M. E. (Eds.): Lysimeters for Evapotranspiration and Environmental Measurements, American Society of Civil Engineers Publication, Reston, VA, USA, p. 444, ISBN 9780872628137; 0872628132, 1991.
Allen, R. G., Pereira, L. S., Raes, D., and Smith, M. (Eds.): Crop Evapotranspiration: Guidelines for Computing Crop Requirements, Irrigation and Drainage Paper 56, FAO, Roma, Italia, ISBN 9251042195, 1998.
Ashraf, B., AghaKouchak, A., Alizadeh, A., Baygi, M. M., Moftakhari, H. R., Mirchi, A., Anjileli, H., and Madani, K.: Quantifying Anthropogenic Stress on Groundwater Resources, Scientific Reports, 7, 12910, https://doi.org/10.1038/s41598-017-12877-4, 2017.
Badgley, G., Fisher, J. B., Jiménez, C., Tu, K. P., and Vinukollu, R.: On
Uncertainty in Global Terrestrial Evapotranspiration Estimates from Choice
of Input Forcing Datasets, J. Hydrometeorol., 16, 1449–1455,
https://doi.org/10.1175/JHM-D-14-0040.1, 2015.
Bai, P., Liu, X., Zhang, D., and Liu, C.: Estimation of the Budyko model parameter for small basins in China, Hydrol. Process., 34, 125–138, https://doi.org/10.1002/hyp.13577, 2019.
Dai, A. and Zhao, T.: Uncertainties in historical changes and future projections
of drought. Part I: estimates of historical drought changes, Climatic
Change, 144, 519–533, https://doi.org/10.1007/s10584-016-1705-2, 2017.
Dai, A., Trenberth, K. E., andQian, T.: A global dataset of Palmer Drought
Severity Index for 1870–2002: relationship with soil moisture and effects of
surface warming, J. Hydrometeorol., 5, 1117–1130, https://doi.org/10.1175/JHM-386.1, 2004.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J. J., Park, B. K., Peubey, C., de Rosnay, Tavolato, P. C., Thépaut, J. N., and Vitart, F. : The
ERA-Interim reanalysis: Configuration and performance of the data
assimilation system, Q. J. Roy. Meteor. Soc., 137, 553–597, https://doi.org/10.1002/qj.828,
2011.
Douville, H., Ribes, A., Decharme, B., Alkama, R., and Sheffield, J.:
Anthropogenic influence on multidecadal changes in reconstructed global
evapotranspiration, Nat. Clim. Change, 3, 59–62, https://doi.org/10.1038/nclimate1632,
2013.
Dutra, E., Balsamo, G., Calvet, J.-C., Minvielle, M., Eisner, S., Fink, G., Pessenteiner, S., Orth, R., Burke, S., van Dijk, A. I. J. M., Polcher, J., Beck, H. E., and de la Torre, A. M.: Report on
the current state-of-the-art Water Resources Reanalysis, http://earth2observe.eu/files/Public Deliverables/D5.1_Report on the WRR1 tier1.pdf, last access: 11 July 2022.
Everson, C. S., Clulow, A., and Mengitsu, M.: Feasibility Study on the
Determination of Riparian Evaporation in Non-Perennial Systems; WRC Report
No. TT 424/09, Water Research Commission, Pretoria, South Africa, ISBN 978-1-77005-905-4, 2009.
Feng, S. and Fu, Q.: Expansion of global drylands under a warming climate, Atmos. Chem. Phys., 13, 10081–10094, https://doi.org/10.5194/acp-13-10081-2013, 2013.
Ficklin, D. L. and Novick, K. A.: Historic and projected changes in vapor
pressure deficit suggest a continental-scale drying of the United States
atmosphere, J. Geophys. Res.-Atmos., 122, 2061–2079, https://doi.org/10.1002/2016JD025855,
2017.
Forzieri, G., Miralles, D. G., Ciais, P., Alkama, R.,
Ryu, Y., Duveiller, G., Zhang, K., Robertson, E., Kautz,
M., Martens, B., Jiang, C., Arneth, A., Georgievski, G.,
Li, W., Ceccherini, G., Anthoni, P., Lawrence, P., Wiltshire,
A., Pongratz, J., Piao, S., Sitch, S., Goll, D. S.,
Arora, V. K., Lienert, S., Lombardozzi, D., Kato, E.,
Nabel, J. E. M. S., Tian, H., Friedlingstein, P., and Cescatti,
A.: Increased control of vegetation on global terrestrial energy
fluxes, Nat. Clim. Change, 10, 356–362, https://doi.org/10.1038/s41558-020-0717-0, 2020.
Fu, B.: On the calculation of the evaporation from land surface, Sci. Atmos.
Sin., 5, 23–31, 1981 (in Chinese).
Fu, Q. and Feng, S.: Responses of terrestrial aridity to global warming, J.
Geophys. Res.-Atmos., 119, 7863–7875, https://doi.org/10.1002/2015JD024100, 2014.
Gentine, P., Green, J. K., Guerin, M., Humphrey, V., Seneviratne, S. I., Zhang, Y., and Zhou, S.: Coupling between the terrestrial carbon and water cycles – a review, Environ. Res. Lett., 14, 083003, https://doi.org/10.1088/1748-9326/ab22d6, 2019.
Greve, P., Orlowsky, B., Mueller, B., Sheffield, J., Reichstein, M., and
Seneviratne, S. I.: Global Assessment of Trends in Wetting and Drying over
Land, Nat. Geosci., 7, 716–721, https://doi.org/10.1038/ngeo2247, 2014.
Grossiord, C., Buckley, T. N., Cernusak, L. A., Novick, K. A., Poulter, B., Siegwolf, R. T. W., Sperry, J. S., and McDowell, N. G.: Plant responses to rising
vapor pressure deficit, New Phytol., 226, 1550–1566, https://doi.org/10.1111/nph.16485,
2020.
Hargreaves, G. H. and Samani, Z. A.: Reference crop evapotranspiration from
temperature, Appl. Eng. Agric. 1, 96–99, https://doi.org/10.13031/2013.26773, 1985.
Helbig, M., Waddington, J. M., Alekseychik, P., Amiro, B. D., Aurela, M., Barr, A. G., Black, T. A., Blanken, P. D., Carey, S. K., Chen, J., Chi, J., Desai, A. R., Dunn, A., Euskirchen, E. S., Flanagan, L. B., Forbrich, I., Friborg, T., Grelle, A., Harder, S., Heliasz, M., Humphreys, E. R., Ikawa, H., Isabelle, P.-E., Iwata, H., Jassal, R., Korkiakoski, M., Kurbatova, J., Kutzbach, L., Lindroth, A., Löfvenius, M. O., Lohila, A., Mammarella, I., Marsh, P., Maximov, T., Melton, J. R., Moore, P. A., Nadeau, D. F., Nicholls, E. M., Nilsson, M. B., Ohta, T., Peichl, M., Petrone, R. M., Petrov, R., Prokushkin, A., Quinton, W. L., Reed, D. E., Roulet, N. T., Runkle, B. R. K., Sonnentag, O., Strachan, I. B., Taillardat, P., Tuittila, E.-S., Tuovinen, J.-P., Turner, J., Ueyama, M., Varlagin, A., Wilmking, M., Wofsy, S. C., and Zyrianov, V. : Increasing contribution of peatlands to boreal evapotranspiration in a warming climate, Nat. Clim. Change, 10, 555–560, https://doi.org/10.1038/s41558-020-0763-7, 2020.
Jalilvand, E., Tajrishy, M., Ghazi Zadeh Hashemi, S. A., and Brocca, L.:
Quantification of irrigation water using remote sensing of soil moisture in
a semi-arid region, Remote Sens. Environ., 231, 111226,
https://doi.org/10.1016/j.rse.2019.111226, 2019.
Jung, M., Reichstein, M., Ciais, P., Seneviratne, S. I., Sheffield, J., Goulden, M. L., Bonan, G., Cescatti, A., Chen, J., de Jeu, R., Dolman, A.J., Eugster, W., Gerten, D., Gianelle, D., Gobron, N., Heinke, J., Kimball, J., Law, B.E., Montagnani, L., Mu, Q., Mueller, B., Oleson, K., Papale, D., Richardson, A. D., Roupsard, O., Running, S., Tomelleri, E., Viovy, N., Weber, U., Williams, C., Wood, E., Zaehle, S., and Zhang, K.: Recent decline in the global land evapotranspiration
trend due to limited moisture supply, Nature, 467, 951–954,
https://doi.org/10.1038/nature09396, 2010.
Kendall, M. G.: Rank Correlation Methods, Griffin, London, England, pp. 1–202,
https://doi.org/10.2307/2333282, 1975.
Kochendorfer, J., Castillo, E. G., Haas, E., Oechel, W. C., and Paw U, K. T.:
Net ecosystem exchange, evapotranspiration and canopy conductance in a
riparian forest, Agric. For. Meteorol. 151, 544–553,
https://doi.org/10.1016/j.agrformet.2010.12.012, 2011.
Koster, R. D., Sud, Y. C., Guo, Z., Dirmeyer, P. A., Bonan, G., Oleson, K. W., Chan, E., Verseghy, D., Cox, P., Davies, H., Kowalczyk, E., Gordon, C. T., Kanae, S., Lawrence, D., Liu, P., Mocko, D., Lu, C.-H., Mitchell, K., Malyshev, S., McAvaney, B., Oki, T., Yamada, T., Pitman, A., Taylor, C. M., Vasic, R., and Xue, Y.: GLACE: the global land atmosphere coupling
experiment. Part I: overview, J. Hydrometeorol., 7, 590–610,
https://doi.org/10.1175/JHM510.1, 2006.
Kottek, M., Grieser, J., Beck, C., Rudolf, B., and Rubel, F.: World Map of the Köppen-Geiger climate classification updated, Meteorol. Z., 15,
259–263, https://doi.org/10.1127/0941-2948/2006/0130, 2006.
Li, S. J., Wang, G. J., Sun, S. L., Chen, H. S., Bai, P., Zhou, S.J., Huang, Y., Wang, J., and Deng, P.: Assessment of
Multi-Source Evapotranspiration Products over China Using Eddy Covariance
Observations, Remote Sensing, 210, 1692, https://doi.org/10.3390/rs10111692, 2018.
Li, S. J., Wang, G. J., Sun, S. L., Hagan, T. F. D., Chen, T. X., Dolman, H., and Liu, Y.: Long-term changes in evapotranspiration
over China and attribution to climatic drivers during 1980–2010, J.
Hydrol., 595, 126037, https://doi.org/10.1016/j.jhydrol.2021.126037, 2021.
Li, Y., Piao, S., Li, L. Z. X., Chen, A., Wang, X., Ciais, P., Huang, L., Lian, X.,
Peng, S., Zeng, Z., Wang, K., and Zhou, L.: Divergent hydrological response to
large-scale afforestation and vegetation greening in China, Sci. Adv., 4, eaar4182, https://doi.org/10.1126/sciadv.aar4182, 2018a.
Li, Y., Zeng, Z., Huang, L., Lian, X., and Piao, S.:
Comment on “Satellites reveal contrasting responses of regional climate to
the widespread greening of Earth”, Science, 360, eaap7950, https://doi.org/10.1126/science.aap7950, 2018b.
Lian, X., Piao, S., Huntingford, C., Li, Y., Zeng, Z., Wang, X., and Wang, T.:
Partitioning global land evapotranspiration using CMIP5 models
constrained by observations, Nat. Clim. Change, 8, 640–646, 2018.
Liu, X. M., Liu, C. M., Luo, Y. Z., Zhang, M. H., and Xia, J.: Dramatic
decreasing streamflow from the headwater source in the central route of
China's water diversion project: Climatic variation or human influence?, J.
Geophys. Res.-Atmos., 117, D06113, https://doi.org/10.1029/2011JD016879, 2011.
Loew, A., Peng, J., and Borsche, M.: High-resolution land surface fluxes from satellite and reanalysis data (HOLAPS v1.0): evaluation and uncertainty assessment, Geosci. Model Dev., 9, 2499–2532, https://doi.org/10.5194/gmd-9-2499-2016, 2016.
Long, D., Pan, Y., Zhou, J., Chen, Y., Hou, X. Y., Hong, Y., Scanlon, B. R., and Longuevergne, L.: Global analysis of spatiotemporal variability
in merged total water storage changes using multiple GRACE products and
global hydrological models, Remote Sens. Environ., 192, 198–216, 2017.
Lu, J., Wang, G., Gong, T., Hagan, D. F. T., Wang, Y., Jiang, T., and Su,
B.: Changes of actual evapotranspiration and its components in the Yangtze
River valley during 1980–2014 from satellite assimilation product,
Theor. Appl. Climatol., 138, 1493–1510,
https://doi.org/10.1007/s00704-019-02913-w, 2019.
Lu, J., Wang, G. J., Li, S. J., Feng, A. Q., Zhan, M. Y., Jiang, T., Su, B. D., and Wang, Y. J.: Projected land evaporation and its response to vegetation greening over
China under multiple scenarios in the CMIP6 models, J. Geophys.
Res.-Biogeo., 126, e2021JG006327, https://doi.org/10.1029/2021JG006327, 2021.
Lv, M., Ma, Z., Yuan, X., Lv, M., Li, M., and Zheng, Z.: Water budget closure based on GRACE
measurements and reconstructed evapotranspiration using GLDAS and wateruse
data for two large densely-populated mid-latitude basins, J. Hydrol., 547,
585–599, https://doi.org/10.1016/j.jhydrol.2017.02.027, 2017.
Mann, H. B.: Nonparametric tests against trend, Econometrica, 13,
245–259, 1945.
Martens, B., Miralles, D. G., Lievens, H., van der Schalie, R., de Jeu, R. A. M., Fernández-Prieto, D., Beck, H. E., Dorigo, W. A., and Verhoest, N. E. C.: GLEAM v3: satellite-based land evaporation and root-zone soil moisture, Geosci. Model Dev., 10, 1903–1925, https://doi.org/10.5194/gmd-10-1903-2017, 2017 (data available at: https://www.gleam.eu/, last access: 9 July 2022).
Martens, B., Waegeman, W., Dorigo, W. A., Verhoest, N. E. C., and Miralles,
D. G.: Terrestrial evaporation response to modes of climate variability, Npj
Climate and Atmospheric Science, 1, 43, https://doi.org/10.1038/s41612-018-0053-5, 2018.
Massmann, A., Gentine, P., and Lin, C.: When does vapor pressure deficit
drive or reduce evapotranspiration?, J. Adv. Model. Earth
Sy., 11, 3305–3320, https://doi.org/10.1029/2019MS001790, 2019.
McAdam, S. A. and Brodribb, T. J.: The evolution of mechanisms driving the
stomatal response to vapor pressure deficit, Plant Physiol., 167, 833–843,
https://doi.org/10.1104/pp.114.252940, 2015.
Michel, D., Jiménez, C., Miralles, D. G., Jung, M., Hirschi, M., Ershadi, A., Martens, B., McCabe, M. F., Fisher, J. B., Mu, Q., Seneviratne, S. I., Wood, E. F., and Fernández-Prieto, D.: The WACMOS-ET project – Part 1: Tower-scale evaluation of four remote-sensing-based evapotranspiration algorithms, Hydrol. Earth Syst. Sci., 20, 803–822, https://doi.org/10.5194/hess-20-803-2016, 2016.
Miralles, D. G., De Jeu, R. A. M., Gash, J. H., Holmes, T. R. H., and Dolman, A. J.: Magnitude and variability of land evaporation and its components at the global scale, Hydrol. Earth Syst. Sci., 15, 967–981, https://doi.org/10.5194/hess-15-967-2011, 2011a.
Miralles, D. G., Holmes, T. R. H., De Jeu, R. A. M., Gash, J. H., Meesters, A. G. C. A., and Dolman, A. J.: Global land-surface evaporation estimated from satellite-based observations, Hydrol. Earth Syst. Sci., 15, 453–469, https://doi.org/10.5194/hess-15-453-2011, 2011b.
Miralles, D. G., van den Berg, M. J., Gash, J. H., Parinussa, R.M., de Jeu, R. A. M., Beck, H. E., Holmes, T. R. H., Jiménez, C., Verhoest, N. E. C., Dorigo, W. A., Teuling, A. J., and Johannes Dolman, A.: El Niño–La Niña cycle and recent trends in
continental evaporation, Nat. Clim. Change, 4, 122–126,
https://doi.org/10.1038/nclimate2068, 2013.
Miralles, D. G., Jiménez, C., Jung, M., Michel, D., Ershadi, A., McCabe, M. F., Hirschi, M., Martens, B., Dolman, A. J., Fisher, J. B., Mu, Q., Seneviratne, S. I., Wood, E. F., and Fernández-Prieto, D.: The WACMOS-ET project – Part 2: Evaluation of global terrestrial evaporation data sets, Hydrol. Earth Syst. Sci., 20, 823–842, https://doi.org/10.5194/hess-20-823-2016, 2016.
Miralles, D. G., Gentine, P., Seneviratne, S. I., and Teuling, A. J.:
Land-atmospheric feedbacks during droughts and heatwaves: state of the
science and current challenges, Ann. NY Acad. Sci.,
1436, 19–35, https://doi.org/10.1111/nyas.13912, 2018.
Monteith, J. and Unsworth, M.: Principles of Environmental Physics, 2nd edn.,
Edward Arnold, London, UK, ISBN 9780713129816, https://doi.org/10.1088/0031-9112/25/2/025, 1990.
Mu, Q., Zhao, M., and Running, S. W.: Improvements to a MODIS Global Terrestrial
Evapotranspiration Algorithm, Remote Sens. Environ., 115, 1781–1800,
https://doi.org/10.1016/j.rse.2011.02.019, 2011.
Nooni, I. K., Wang, G., Hagan, D. F. T., Lu, J., Ullah, W., and Li, S.:
Evapotranspiration and its Components in the Nile River Basin Based on
Long-Term Satellite Assimilation Product, Water 11, 1400, https://doi.org/10.3390/w11071400, 2019.
Novick, K. A., Ficklin, D. L., Stoy, P. C., Williams, C. A., Bohrer, G., Oishi, A. C., Papuga, S. A., Blanken, P. D., Noormets, A., Sulman, B. N., Scott, R. L., Wang, L., and Phillips, R. P.: The increasing
importance of atmospheric demand for ecosystem water and carbon fluxes,
Nat. Clim. Change, 6, 1023–1027, https://doi.org/10.1038/nclimate3114, 2016.
Pan, S., Tian, H., Dangal, S. R., Yang, Q., Yang, J., Lu, C., Tao, B., Ren,
W., and Ouyang, Z.: Responses of global terrestrial evapotranspiration to
climate change and increasing atmospheric CO2 in the 21st century, Earth's
Future, 3, 15–35, https://doi.org/10.1002/2014EF000263, 2015.
Pan, S., Pan, N., Tian, H., Friedlingstein, P., Sitch, S., Shi, H., Arora, V. K., Haverd, V., Jain, A. K., Kato, E., Lienert, S., Lombardozzi, D., Nabel, J. E. M. S., Ottlé, C., Poulter, B., Zaehle, S., and Running, S. W.: Evaluation of global terrestrial evapotranspiration using state-of-the-art approaches in remote sensing, machine learning and land surface modeling, Hydrol. Earth Syst. Sci., 24, 1485–1509, https://doi.org/10.5194/hess-24-1485-2020, 2020.
Peng, J., Kharbouche, S., Muller, J.-P., Danne, O., Blessing, S., Giering, R.,
Gobron, N., Ludwig, R., Muller, B., Leng, G., Lees, T., and Dadson, S.: Influences of
leaf area index and albedo on estimating energy fluxes with HOLAPS
framework, J. Hydrol., 580, 124245, https://doi.org/10.1016/j.jhydrol.2019.124245,
2020.
Priestley, C. and Taylor, R.: On the Assessment of Surface Heat Flux and
Evaporation Using Large Scale Parameters, Mon. Weather Rev.,
100, 81–92, https://doi.org/10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2, 1972.
Reichle, R. H., Koster, R. D., de Lannoy, G. J. M., Forman, B. A., Liu, Q.,
Mahanama, S. P. P., and Touré, A.: Assessment and enhancement of MERRA land
surface hydrology estimates, J. Climate 24, 6322–6338,
https://doi.org/10.1175/JCLI-D-10-05033.1, 2011 (data availble at: https://disc.gsfc.nasa.gov/datasets?keywords=merra-land&page=1, last access: 12 May 2020).
Reichle, R. H., Draper, C. S., Liu, Q., Girotto, M., Mahanama, S. P. P., Koster,
R. D., and de Lannoy, G. J. M.: Assessment of MERRA-2 land surface hydrology
estimates, J. Climate, 30, 2937–2960, https://doi.org/10.1175/JCLI-D-16-0720.1, 2017.
Rienecker, M. M., Suárez, M. J., Gelaro, R., Todling, R., Bacmeister, J., Liu, E., Bosilovich, M. G., Schubert, S. D., Takacs, L., Kim, G.-K., Bloom, S., Chen, J., Collins, D., Conaty, A., Silva, A. da, Gu, W., Joiner, J., Koster, R. D., Lucchesi, R., Molod, A., Owens, T., Pawson, S., Pegion, P., Redder, C. R., Reichle, R., Robertson, F. R., Ruddick, A. G., Sienkiewicz, M., and Woollen, J.: MERRA:
NASA's Modern-Era Retrospective Analysis for research and applications, J.
Climate, 24, 3624–3648, https://doi.org/10.1175/JCLI-D-11-00015.1, 2011.
Rigden, A. J. and Salvucci, G. D.: Stomatal response to humidity and CO2
implicated in recent decline in US evaporation, Glob. Change Biol.,
23, 1140–1151, https://doi.org/10.1111/gcb.13439, 2016.
Rodell, M., Houser, P. R., Jambor, U., Gottschalck, J., Mitchell, K., Meng, C.-J., Arsenault, K., Cosgrove, B., Radakovich, J., Bosilovich, M., Entin, J. K., Walker, J. P., Lohmann, D., and Toll, D.:
The global land data assimilation system, B. Am. Meteorol. Soc., 85,
381–394, https://doi.org/10.1175/BAMS-85-3-381, 2004 (data available at: https://disc.gsfc.nasa.gov/datasets?keywords=GLDAS, last access: 13 May 2020).
Roderick, M. L., Sun, F., Lim, W. H., and Farquhar, G. D.: A general framework for understanding the response of the water cycle to global warming over land and ocean, Hydrol. Earth Syst. Sci., 18, 1575–1589, https://doi.org/10.5194/hess-18-1575-2014, 2014.
Schellekens, J., Dutra, E., Martínez-de la Torre, A., Balsamo, G., van Dijk, A., Sperna Weiland, F., Minvielle, M., Calvet, J.-C., Decharme, B., Eisner, S., Fink, G., Flörke, M., Peßenteiner, S., van Beek, R., Polcher, J., Beck, H., Orth, R., Calton, B., Burke, S., Dorigo, W., and Weedon, G. P.: A global water resources ensemble of hydrological models: the eartH2Observe Tier-1 dataset, Earth Syst. Sci. Data, 9, 389–413, https://doi.org/10.5194/essd-9-389-2017, 2017 (data available at: http://www.earth2observe.eu/, last access: 9 July 2022).
Shan, N., Shi, Z. J., Yang, X. H., Gao, J. X., and Cai, D. W.: Spatio-temporal trends
of reference evapotranspiration and its driving factors in the
Beijing-Tianjin sand source control project Region, China, Agr.
Forest Meteorol., 200, 322–333, https://doi.org/10.1016/j.agrformet.2014.10.008, 2015.
Sheffield, J., Goteti, G., and Wood, E. F.: Development of a 50-year
high-resolution global dataset of meteorological forcings for land surface
modeling, J. Climate, 19, 3088–3111, https://doi.org/10.1175/JCLI3790.1, 2006.
Sheffield, J., Wood, E. F., and Roderick, M. L.: Little change in global
drought over the past 60 years, Nature, 491, 435–438, https://doi.org/10.1038/nature11575, 2012.
Shi, Z. J., Shan, N., Xu, L. H., Yang, X. H., Gao, J. X., Guo, H., Zhang,
X., Song, A. Y., and Dong, L. S.: Spatiotemporal variation of temperature
precipitation and wind trends in a desertification prone region of China
from 1960 to 2013, Int. J. Climatol., 36, 4327–4337,
https://doi.org/10.1002/joc.4635, 2016.
Soni, A. and Syed, T. H.: Analysis of variations and controls of
evapotranspiration over major Indian River Basins (1982–2014), Sci. Total Environ., 754, 141892, https://doi.org/10.1016/j.scitotenv.2020.141892, 2021.
Sottocornola, M. and Kiely, G.: Energy fluxes and evaporation mechanisms in an
Atlantic blanket bog in southwestern Ireland, Water Resour. Res., 46,
W11524, https://doi.org/10.1029/2010WR009078, 2010.
Su, B. D., Wang, A. Q., Wang, G. J., Wang, Y. J., and Jiang, T.: Spatiotemporal
variations of soil moisture in the Tarim River basin, China, Int.
J. Appl. Earth Obs., 48, 122–130,
https://doi.org/10.1016/j.jag.2015.06.012, 2015.
Sun, S. L., Chen, H. S., Wang, G. J., Li, J. J., Mu, M. Y., Yan, G. X., Xu, B., Huang, J., Wang, J., and Zhang, F. M.: Shift in potential
evapotranspiration and its implications for dryness/wetness over Southwest
China, J. Geophys. Res., 121, 9342–9355,
https://doi.org/10.1002/2016JD025276, 2016.
Sun, S. L., Chen, H. S., Ju, W. M., Wang, G. J., Sun, G., Huang, J., Ma, H. D., Gao, C. J., Hua, W. J., and Yan, G. X.: On the coupling between
precipitation and potential evapotranspiration: Contributions to decadal
drought anomalies in the Southwest China, Clim. Dynam., 48,
3779–3797, https://doi.org/10.1007/s00382-016-3302-5, 2017.
Teuling, A. J., de Badts, E. A. G., Jansen, F. A., Fuchs, R., Buitink, J., Hoek van Dijke, A. J., and Sterling, S. M.: Climate change, reforestation/afforestation, and urbanization impacts on evapotranspiration and streamflow in Europe, Hydrol. Earth Syst. Sci., 23, 3631–3652, https://doi.org/10.5194/hess-23-3631-2019, 2019.
Trenberth, K. E., Smith, L., Qian, T., Dai, A., and Fasullo, J.: Estimates of
the global water budget and its annual cycle using observational and model
data, J. Hydrometeorol., 8, 758–769, https://doi.org/10.1175/JHM600.1, 2007.
Vinukollu, R. K., Meynadier, R., Sheffield, J., and Wood, E. F.:
Multi-model, multi-sensor estimates of global evapotranspiration:
climatology, uncertainties and trends, Hydrol. Process., 25,
3993–4010, https://doi.org/10.1002/hyp.8393, 2011.
Wang, G. J., Pan, J., Shen, C. C., Li, S. J., Lu, J., Lou, D., and Hagan, T. F. D: Evaluation of Evapotranspiration Estimates in the Yellow River Basin
against the Water Balance Method, Water, 10, 1884, https://doi.org/10.3390/w10121884,
2018a.
Wang, G. J., Gong, T. T., Lu, J., Lou, D., Hagan, D. F. T., and Chen, T. X.: On
the long-term changes of drought over China (1948–2012) from different
methods of PET estimations, Int. J. Climatol., 38,
2954–2966, https://doi.org/10.1002/joc.5475, 2018b.
Wang, H. N., Lv, X. Z., and Zhang, M. Y.: Sensitivity and attribution
analysis of vegetation changes on evapotranspiration with the Budyko
framework in the Baiyangdian catchment, China. Ecol. Indic., 120, 106963, https://doi.org/10.1016/j.ecolind.2020.106963, 2021.
Wang, K. C. and Dickinson, R. E.: A review of global terrestrial
evapotranspiration: observation, modeling, climatology, and climatic
variability, Rev. Geophys., 50, RG2005, https://doi.org/10.1029/2011RG000373,
2012.
Wang, R., Li, L., Gentine, P., Zhang, Y., Chen, J., Chen, X., Chen, L., Ning, L., Yuan, L., and Lu, G.: Recent increase in the observation-derived land
evapotranspiration due to global warming, Environ. Res. Lett., 17,
024020, https://doi.org/10.1088/1748-9326/ac4291, 2022.
Wang, Y., Liu, B., Su, B., Zhai, J., and Gemmer, M.: Trends of Calculated
and Simulated Actual Evaporation in the Yangtze River Basin, J.
Climate, 24, 4494–4507, https://doi.org/10.1175/2011JCLI3933.1, 2011.
Weedon, G. P., Balsamo, G., Bellouin, N., Gomes, S., Best, M. J., and Viterbo, P.:
The WFDEI meteorological forcing data set: WATCH Forcing Data methodology
applied to ERA-Interim reanalysis data, Water Resour. Res. 50, 7505–7514,
https://doi.org/10.1002/2014WR015638, 2015.
Wilcox, R. R.: Fundamentals of Modern Statistical Methods: Substantially Improving Power and Accuracy, 2nd edn., Springer, New York 278 pp., ISBN 978-1441955241, 2010.
Wu, P., Christidis, N., and Stott, P.: Anthropogenic impact on Earth's
hydrological cycle, Nat. Clim. Change, 3, 807–810, https://doi.org/10.1038/nclimate1932,
2013.
Xu, X., Liu, W., Scanlon, B. R., Zhang, L., and Pan, M.: Local and global
factors controlling water-energy balances within the Budyko framework,
Geophys. Res. Lett., 40, 6123–6129, https://doi.org/10.1002/2013GL058324, 2013.
Yang, D., Shao, W., Yeh, P. J. F., Yang, H., Kanae, S., and Oki, T.: Impact of
vegetation coverage on regional water balance in the nonhumid regions of
China, Water Resour. Res., 45, W00A14, https://doi.org/10.1029/2008WR006948, 2009.
Yang, H., Yang, D., Lei, Z., and Sun, F.: New analytical derivation of the mean
annual water-energy balance equation, Water Resour. Res., 44, W03410,
https://doi.org/10.1029/2007WR006135, 2008.
Yang, Y., Roderick, M. L., Zhang, S., McVicar, T. R., and Donohue, R. J.:
Hydrologic implications of vegetation response to elevated CO2 in climate
projections, Nat. Clim. Change, 9, 44–48, https://doi.org/10.1038/s41558-018-0361-0,
2019.
Yokoo, Y., Sivapalan, M., and Oki, T.: Investigating the roles of climate
seasonality and landscape characteristics on mean annual and monthly water
balances, J. Hydrol. 357, 255–269, https://doi.org/10.1016/j.jhydrol.2008.05.010, 2008.
Zeng, R. and Cai, X.: Climatic and terrestrial storage control on
evapotranspiration temporal variability: Analysis of river basins around the
world, Geophys. Res. Lett., 43, 185–195, https://doi.org/10.1002/2015GL066470, 2016.
Zhang, D., Liu, X., Zhang, L., Zhang, Q., Gan, R., and Li, X.: Attribution
of evapotranspiration changes in humid regions of China from 1982 to 2016,
J. Geophys. Res.-Atmos., 125, e2020JD032404, https://doi.org/10.1029/2020JD032404, 2020.
Zhang, K., Kimball, J. S., Nemani, R. R., Running, S. W., Hong, Y., Gourley,
J. J., and Yu, Z.: Vegetation Greening and Climate Change Promote
Multidecadal Rises of Global Land Evapotranspiration, Scientific Reports, 5,
15956, https://doi.org/10.1038/srep15956, 2015.
Zhang, K., Kimball, J. S., and Running, S. W.: A review of remote sensing based
actual evapotranspiration estimation, WIRES Water, 3,
834–853, https://doi.org/10.1002/wat2.1168, 2016.
Zhang, L., Hickel, K., Dawes, W. R., Chiew, F. H. S., Western, A. W., and
Briggs, P. R.: A rational function approach for estimating mean annual
evapotranspiration, Water Resour. Res., 40, W02502, https://doi.org/10.1029/2003WR002710,
2004.
Zhang, Q., Yang, Z. S., Hao, X. C., and Yue, P.: Conversion features of
evapotranspiration responding to climate warming in transitional climate
regions in northern China, Clim. Dynam., 52, 3891–3903, https://doi.org/10.1007/s00382-018-4364-3,
2019.
Zhou, J., Wang, Y. J., Su, B. D., Wang, A. Q., Tao, H., Zhai, J. Q., Kundzewicz, Z. W., and Jiang, T.: Choice of
potential evapotranspiration formulas influences drought assessment: A case
study in China, Atmos. Res., 242, 104979,
https://doi.org/10.1016/j.atmosres.2020.104979, 2020.
Short summary
We found that the precipitation variability dominantly controls global evapotranspiration (ET) in dry climates, while the net radiation has substantial control over ET in the tropical regions, and vapor pressure deficit (VPD) impacts ET trends in boreal mid-latitude climate. The critical role of VPD in controlling ET trends is particularly emphasized due to its influence in controlling the carbon–water–energy cycle.
We found that the precipitation variability dominantly controls global evapotranspiration (ET)...