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Abstract. Actual evapotranspiration (ET) is an essential vari-
able in the hydrological process, linking carbon, water, and
energy cycles. Global ET has significantly changed in the
warming climate. Although the increasing vapor pressure
deficit (VPD) enhances atmospheric water demand due to
global warming, it remains unclear how the dynamics of ET
are affected. In this study, using multiple datasets, we dis-
entangled the relative contributions of precipitation, net ra-
diation, air temperature (T1), VPD, and wind speed on the
annual ET linear trend using an advanced separation method
that considers the Budyko framework. We found that the pre-
cipitation variability dominantly controls global ET in the
dry climates, while the net radiation has substantial control
over ET in the tropical regions, and VPD impacts ET trends
in the boreal mid-latitude climate. The critical role of VPD
in controlling ET trends is particularly emphasized due to its
influence in controlling the carbon–water–energy cycle.

1 Introduction

Actual evapotranspiration (ET) is when water transforms
from a liquid to a gaseous state. Such transformation syn-
chronously absorbs the air’s energy, making ET the largest
terrestrial water flux component, accounting for >60 % of
global land precipitation (Trenberth et al., 2007). The ET di-

rectly affects hydrological processes at regional and global
scales (Zhang et al., 2016) by linking water, energy, and
carbon cycles. As a result, ET plays a crucial role in land–
atmosphere interactions amongst various climatic variables,
including precipitation, air temperature, humidity, solar ra-
diation, and wind speed (Koster et al., 2006; Wang et al.,
2011; Miralles et al., 2018), which consequently influence
the climate at regional and global scales. An accurately es-
timated ET can therefore provide a comprehensive contribu-
tion to understanding the changes in hydrological cycles and
the associated extreme events, such as droughts and floods,
as well as their impacts on ecosystem productivity, water-use
efficiency, and irrigation (Sheffield et al., 2012; Sun et al.,
2017; Jalilvand et al., 2019).

However, the available ground ET measurements from
traditional methods (e.g., eddy covariance, porometry and
lysimeters, and scintillometry) have shortcomings such as
sparse observational sites and short time span (Allen et al.,
1991; Everson et al., 2009; Monteith and Unsworth, 1990).
To overcome these limitations, various spatially distributed
ET products have been developed and widely used, including
those from remote sensing, land surface models, and reanaly-
sis, such as the Global Land Evaporation Amsterdam Model
(GLEAM) and the Global Land Data Assimilation System
(GLDAS; Miralles et al., 2011a, b; Mu et al., 2011; Reichle
et al., 2017; Loew et al., 2016; Peng et al., 2020).
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Studies of climate warming intensification on the global
water cycle have indicated the increasing importance of un-
derstanding ET changes in space and time (e.g., Allen and
Ingram, 2002; Wu et al., 2013; Pan et al., 2015). In re-
cent decades, ET has shown sudden increasing or decreasing
trends across the globe (Miralles et al., 2013), so an accurate
attribution of the ET changes is urgently needed. The chang-
ing ET over the longer time scale is jointly determined by cli-
matic modes (e.g., El Niño–Southern Oscillation) (Martens
et al., 2018; Miralles et al., 2013) and the long-term changes
of climatic variables (Pan et al., 2020; Zeng and Cai, 2016;
Rigden and Salvucci, 2016). For example, the upward trend
of the global ET from 1982 to late 1990 was attributed to in-
creased radiation and air temperature (Douville et al., 2013;
Jung et al., 2010). Similarly, the change of global ET dur-
ing 1998–2008 lapsed due to limited soil moisture supply
in the Southern Hemisphere and transitions to the El Niño
condition (Jung et al., 2010; Miralles et al., 2013). Zhang
et al. (2015) demonstrated how the water supply, available
energy, and atmospheric water demand jointly affected the
global ET changes from 1982 to 2013, accounting for 49 %,
32 %, and 19 % of global ET changes, respectively.

However, different evapotranspiration algorithms, param-
eterizations, and input climate forcing datasets can cause un-
certainties when attributing global ET changes (Vinukollu
et al., 2011; Michel et al., 2016). For example, Miralles et
al. (2016) evaluated the performances of three models us-
ing the same forcing data, finding that the GLEAM product
was relatively better than the other global ET products over
most wet and dry conditions. Similarly, Badgley et al. (2015)
used 19 different combinations of input forcing datasets to
run the Priestly–Taylor Jet Propulsion Laboratory (PT-JPL)
ET model, indicating that the choice of forcing datasets ac-
counted for an average 20 % error. Those results have indi-
cated that the inappropriate choice of ET models and forcing
data may add significant uncertainties to the ET attributions.

Potential ET (PET) is determined by radiation, air temper-
ature, vapor pressure deficit (VPD), and wind speed, and it
reflects the magnitude of atmospheric demand on land ET.
Against the backdrop of a warming climate, rising air tem-
perature has an increased atmospheric water demand, i.e., in-
creased PET (Fu and Feng, 2014; Feng and Fu, 2013; Dai et
al., 2004). Studies have indicated that increased VPD primar-
ily determines the recent PET increase, which is a function
of air temperature and humidity (Dai and Zhao, 2017; Ficklin
and Novick, 2017). However increased VPD tends to make
plants close their stomata to avoid water loss and thus restrain
transpiration (Novick et al., 2016; McAdam and Brodribb,
2015). A high atmospheric water demand induced by VPD
promotes PET, while the increased surface resistance limits
ET. Therefore, it is very important to clarify how VPD affects
long-term ET changes. Li et al. (2021) have found that VPD
has dominated the increase of annual ET in energy-limited
regions such as southeastern China. However, it’s not clear
how VPD affects global long-term ET changes.

Furthermore, the above studies focused on the influences
of climatic variables on long-term ET changes. However, a
distinct shortcoming in these studies is that they only demon-
strated the responses of long-term ET changes (variance) on
certain factors (e.g., climatic variables and surface conduc-
tance). A few studies disentangle the contributions of rel-
atively complete climatic factors (mainly atmospheric), in-
cluding precipitation, net radiation, air temperature, VPD,
and wind speed, to the annual ET linear trend. Along these
lines, Li et al. (2021) attempted to quantify the contribu-
tion of those forcing variables to ET trends over China with
the Budyko theory. However, there are still unclear ques-
tions about the global land ET mechanism. For example, how
differently would the conclusions of dominating ET factors
over water-limited regions be for global dry lands? The vari-
able that controls ET over the global tropical zone is un-
clear, despite the results of VPD controlling ET over the
energy-limited region of China. The variable that controls
ET over the boreal region is unclear. For example, precipi-
tation, air temperature, and radiation control Amazon’s ET
changes (Pan et al., 2020), while significantly increased ET
in the humid region mostly results from increasing air tem-
perature (Wang et al., 2022). For the boreal region, increas-
ing air temperature is significantly correlated with ET (Wang
et al., 2022), while increasing VPD contributes to ET pro-
cess (Helbig et al., 2020). Therefore, it is necessary to assess
global ET mechanisms using the same attribution method for
solving these problems.

In this study, we have adopted the Budyko theory to ad-
vance our understanding of the response of global ET trends
to climatic variables, including precipitation (P ), net radia-
tion (Rn), air temperature (T1), VPD, and wind speed (u).
The Budyko theory investigates the interactions between
ET, PET, and P (Yokoo et al., 2008; Yang et al., 2008;
Liu et al., 2011). For example, Teuling et al. (2019) ex-
plored the dynamics of ET in Europe at high resolution
(1 km2) with the Budyko model and key meteorological vari-
ables. Here we use multiple datasets such as GLEAM3.0a,
EartH2Observe ensemble (EartH2Observe-En), GLDAS2.0-
Noah, and Modern Era Retrospective-Analysis for Re-
search and Application-Land (MERRA-Land). Using multi-
ple datasets can reduce uncertainties of the forcing data to ac-
curately attribute global ET changes over different land cov-
ers and climate regimes (S. J. Li et al., 2018).

2 Data and methods

2.1 Data

We use multiple ET products and their respective forc-
ing data, including the remote sensing-based GLEAM
product, the land surface model’s ensembled prod-
uct (EartH2Observe-En), and two reanalysis products
(GLDAS2.0-Noah and MERRA-Land). These products have
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different temporal lengths, and we have used their overlap-
ping period from 1980 to 2010. In the attribution method
with the Budyko framework, we use respective forcing data
of each product (please see detailed description in Sect. 2.2
“Forcing data”). To study the ET mechanism within dif-
ferent climatic conditions, we have divided the global land
into tropical, dry, mild temperate, snow, and polar zones,
respectively, using the Köppen climate classification (Kottek
et al., 2006; Fig. 1). The Köppen climate classification is
produced according to the empirical relationship between
climatic variables and vegetation.

ET products

– GLEAM3.0a ET. The GLEAM3.0a is arguably the
longest of various ET products, mainly determined from
remote sensing observations. It consists of soil evapora-
tion, canopy transpiration, interception loss, snow sub-
limation, and open-water evaporation. A key feature of
this product is the use of the Gash analytical model to
estimate interception loss. The other components in this
product are calculated according to the Priestley–Taylor
equation (Miralles et al., 2011b; Martens et al., 2017).

– EartH2Observe-En ET. The EartH2Observe product
uses 10 models, including 5 hydrological models, 4
land surface models, and a simple water-balance model,
which are forced by the same state-of-the-art meteoro-
logical reanalysis (Dutra et al., 2022). Schellekens et
al. (2017) indicated that the model ensemble outper-
forms the individual models’ outputs, and thus we have
used the ensembled mean data from the 10 models here
(regarded as EartH2Observe-En). The EartH2Observe-
En product is demonstrated to be an accurate reanalysis
data and has been used for multiscale water resource
evaluation (Schellekens et al., 2017).

– GLDAS2.0-Noah ET. The GLDAS was initially de-
veloped by the National Aeronautics and Space Ad-
ministration’s (NASA) Goddard Space Flight Center
(GSFC) of America, based on the North American Land
Data Assimilation System (NLDAS). The GLDAS is a
global, high-resolution, offline terrestrial modeling sys-
tem and produces the outputs of land surface states and
fluxes in near-real time, such as ET, soil moisture, latent,
sensible, and ground heat flux. Satellite and ground-
based observations are used to constrain the forcing and
parameterization of used land surface models (i.e., Mo-
saic, Noah, the Community Land Model, and the Vari-
able Infiltration Capacity model) (Rodell et al., 2004).
Here, the ET product derived from GLDAS2.0-Noah is
used in our study.

– MERRA-Land ET. The MERRA reanalysis is devel-
oped by NASA’s Global Modeling and Assimilation Of-
fice (GMAO). It was produced by the Goddard Earth

Observing System model version 5 (GEOS-5) along
with its associated data assimilation system (DAS) ver-
sion 5.2.0 (Rienecker et al., 2011). Since there are sig-
nificant errors in values and timing of precipitation in
the original MERRA product (Reichle et al., 2011), we
have used the offline MERRA-Land product forced by
corrected precipitation. Studies have shown that the hy-
drological performance in MERRA-Land has been im-
proved significantly more than in the original MERRA
product (Reichle et al., 2011).

2.2 Atmospheric forcing datasets

The atmospheric forcing data in four ET products mainly
include precipitation, net radiation, air temperature, specific
humidity, and wind speed. The forcing data of the respective
ET product and their references are listed in Table 1 (Li et al.,
2021). To reduce the uncertainties associated with inconsis-
tent forcing data sources, the trends of each ET product are
attributed using its own forcing data. The GLEAM algorithm
does not use specific humidity and wind speed as inputs, un-
like the other three products. Since the other forcing data of
the GLEAM product (e.g., radiation and air temperature) are
derived from the ERA-Interim reanalysis, specific humidity
and wind speed from the same reanalysis are used for its at-
tribution.

2.3 Method

2.3.1 Determining trends

We have used Theil-Sen’s slope method to determine the
trends of annual ET and climatic variables during 1980–
2010. This method is nonparametric and can provide a more
accurate trend estimation for skewed data when compared to
the linear regression approach (Wilcox, 2010). To detect the
significance level of these data, we used the nonparametric
Mann–Kendall test to determine the significance level of the
linear trends (Mann, 1945 and Kendall, 1975). Both methods
have been widely used in climate change studies (Su et al.,
2015; Wang et al., 2018a; Shan et al., 2015; Shi et al., 2016).

2.3.2 Attribution method

The attribution method consists of two steps: firstly, build-
ing the relationship between ET and the abovementioned five
climatic variables with Budyko and modified FAO Penman–
Monteith equations; secondly, conducting a sensitivity exper-
iment analysis to quantify the contribution of each climatic
variable to the long-term ET trends of 1980–2010.

– Budyko relationship. The Budyko equation (Eq. 1) is
usually regarded as a common way to study how cli-
matic factors influence the annual ET changes, based
on the mathematical relationships between precipita-
tion, PET, and ET (Yokoo et al., 2008; Yang et al., 2009;
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Figure 1. Spatial distribution of five climatic zones using the Köppen climate classification, including tropical, dry, mild temperate, snow,
and polar zone (Kottek et al., 2006).

Table 1. The main forcing data in four ET products.

ET Products Precipitation Radiation Air temperature Specific humidity Wind speed References

GLEAM3.0a MSWEP ERA-Interim ERA-Interim ERA-Interim ERA-Interim Martens et al. (2017)
EartH2Observe-En WFDEI WFDEI WFDEI WFDEI WFDEI Schellekens et al. (2017)
GLDAS2.0-Noah PUMFD PUMFD PUMFD PUMFD PUMFD Rodell et al. (2004)
MERRA-Land CPC-U MERRA MERRA MERRA MERRA Reichle et al. (2011)

Note: MSWEP indicates the Multi-Source Weighted-Ensemble Precipitation product; WFDEI is the Water and Global Change FP7 project forcing dataset ERA-Interim (Weedon et
al., 2015; Dee et al., 2011); PUMFD indicates the meteorological forcing data of Princeton University (Sheffield et al., 2006); CPC-U is Climate Prediction Center Unified.

Liu et al., 2011):

ET
P
= 1+

PET
P
−

[
1+

(
PET
P

)ω] 1
ω

, (1)

where ET, PET, and P reflect evapotranspiration, poten-
tial ET, and precipitation, respectively; ω indicates the
landscape properties, such as vegetation cover, soil, and
topography. For a particular product, pixel-wise ω can
be fitted using the least-square regression method be-
cause other variables during 1980–2010 are known (i.e.,
ET, P , and PET). The PET reflects the atmospheric wa-
ter demand, which can be determined by solar radiation,
air temperature, actual vapor pressure, wind speed etc.

There are various methods for calculating PET, includ-
ing Penman–Monteith (Allen et al., 1998), Hargreaves
(Hargreaves and Samani, 1985), and Priestly–Taylor
(Priestley and Taylor, 1972) methods. Generally, the
modified FAO Penman–Monteith equation is a univer-
sal method for estimating PET with meteorological data
(Allen et al., 1998). In this study, annual PET is obtained
with the modified Penman–Monteith equation:

PET=
0.4081(Rn−G)+ γ

900
T 1+273uVPD

1+ γ (1+ 0.34u)
, (2)

where Rn represents net radiation, calculated by net in-
coming short-wave radiation minus net outgoing long-

wave radiation (unit: MJ m−2 yr−1); G is the soil heat
flux density (unit: MJ m−2 yr−1), and can be neglected
on monthly or longer time scales; γ and 1 reflect the
psychometric constant and slope of the vapor pressure
curve, respectively (unit: kPa ◦C−1); T1 indicates aver-
age 2 m air temperature (unit: ◦C), and is used to calcu-
late 1; u indicates 2 m wind speed (unit: m s−1); VPD
(kPa) is the saturation vapor pressure deficit, as a func-
tion of air temperature T2 and specific humidity (i.e.,
VPD= f (T2, specific humidity)). In Eq. (2), the effect
of air temperature T on PET is separated into two parts:
T1 and T2. The T1 reflects the effect of air density and
slope of the vapor pressure curve, and T2 indicates the
partial effect of VPD. For further details on the calcula-
tion of VPD and the difference between T1 and T2, refer
to Allen et al. (1998).

By putting Eq. (2) into Eq. (1), we can obtain the direct
relationship between ET and P , Rn, T1, VPD, and u, as
indicated in Eq. (3):

ET= P +
0.4081(Rn−G)+ γ

900
T 1+273uVPD

1+ γ (1+ 0.34u)

−P

[
1+

(
0.4081(Rn−G)+ γ

900
T 1+273uVPD

P(1+ γ (1+ 0.34u))

)ω] 1
ω

. (3)
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– Attribution experiments. The trends of annual ET dur-
ing 1980–2010 are determined by compound influences
of the main climatic factors (i.e., P , Rn, T1, VPD,
and u). To disentangle the impact of each climatic
factor, six experiments have been designed based on
Eq. (3), including one control experiment (sim_CTL
) and five individual factor sensitivity experiments
(sim_P, sim_Rn, sim_T1, sim_VPD, and sim_u, respec-
tively). The sim_CTL experiment provides the control
ET changes for each product by using all the factors of
1980–2010, while the ET change controlled by a par-
ticular factor is simulated by the sensitivity experiment
with the factor only in 1980, and the other factors be-
tween 1980 and 2010. The multiyear average can also
replace a factor in 1980 during 1980–2010. Figure S1
shows that precipitation and PET values between 1980
and the multiyear average are very close. For exam-
ple, the ET change of 1980–2010 impacted by P (i.e.,
sim_P) can be computed by using the constant value
of P in 1980 and Rn, T1, VPD, and u of 1980–2010.
The contributions of the other climatic factors (sim_Rn,
sim_T1, sim_VPD, and sim_u) can be determined sim-
ilarly for each product. The contribution of each factor
to the ET change in each product is obtained (Sun et al.,
2016 and 2017):

Ci =

∑n
k 6=iEsim_k− (n− 2) ·Esim_i

n− 1
, (4)

where n shows the number of sensitivity experiments,
and n is equal to 5 here; andEsim_i indicates the ith sen-
sitivity experiment. We should note that the total con-
tribution of air temperature T to ET changes here is
separated into two sensitivity experiments: sim_T1 and
sim_VPD. The sim_T1 denotes the effect of air temper-
ature T1 in Eq. (2) on ET; the sim_VPD, controlled by
air temperature T2 and specific humidity, contains the
contribution of air temperature T2.

3 Results

3.1 Trends of the ET products

The spatial distribution of long-term trends in annual ET is
depicted in Fig. 2, with evident differences and similarities
among the four selected products in different regions. Com-
pared to the other products, the MERRA-Land shows more
significant ET changes, for example, the declining trend with
a rate of about −6.0 mm yr−1 in Africa and South America.
In most regions of the Eurasian continent, the ET changes for
all products mainly amount to −2.0–2.0 mm yr−1. A signif-
icant increase in ET is observed in western Europe, south-
eastern China, and northern Australia. In contrast, a declin-
ing ET trend is observed in northeast China and Arabian
Peninsula, despite differences among the used ET products.

These products show quite different trends in Africa; while
the MERRA-Land indicates significantly declining ET, the
trends in the other products are opposite.

3.2 Attributions of ET trends

The influence of each driving factor on the long-term an-
nual ET linear trend is quantified by the attribution method
in Sect. 2.3.2. Figure 3 shows the trends in each variable
and its respective contribution to ET changes across different
climate zones. Precipitation (P ) appears to make the largest
contribution, while air temperature (T1) and wind speed (u)
make the smallest (except u in MERRA-Land) contributions,
and moderate contributions are evident for net radiation (Rn)
and VPD.

Compared to other products, a sharp decreasing u in
MERRA-Land leads to a decreasing ET trend. The grid num-
ber of P in the first and third quadrants is more than 85 %
of the sum in Fig. 3a, indicating that P is positively corre-
lated with ET. The ET in the Dry zones is more sensitive to
changes in P , while in Tropical zones, the effect of P is not
obvious. Such a relationship also exists in Rn (Fig. 3b), VPD
(Fig. 3d), and u (Fig. 3e). Different contributions among cli-
matic zones are also observed for Rn (Fig. 3b) and VPD
(Fig. 3d). For example, the Rn contribution in the Tropical
zone exceeds that in the Mild Temperate zone, while the VPD
contribution in the Mild Temperate zone is larger than that
in the Tropical zone. Limited grids, mostly from the water-
limited region (Dry), fall in the fourth quadrant, amounting
to 25.26 %–41.96 % of the sum, suggesting that increasing T1
hinders ET. From the spatial scale, P , Rn, VPD also provide
the biggest contributions to the ET trend (Fig. S3), which
positively correlate with their respective trends (Fig. S2).

To further show the spatial distribution of these driving
factors affecting ET, we compare the consistency of domi-
nant climatic factors across these ET products in Fig. 4. The
dominant climatic factor is identified with the absolute value
of maximum contribution to ET trends. The results indicate
that precipitation is the dominant factor of ET trends in the
entire Dry zone and some regions of the other climate zones
in all models, such as northeastern and southern parts of the
Snow zone and the Mild Temperate zone in South Amer-
ica. The net radiation dominates the ET trends in most of
the Tropical zone; and VPD dominates the ET trends in the
entire Mild Temperate zone, Eastern Europe, and Northeast
Asia in the Snow zone. In Table 2, we can see that precipita-
tion, net radiation, and VPD are the dominant factors of ET
changes in most global land. For example, precipitation con-
tributes to either positive or negative ET trends in 55.41 % of
the global grids.
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Figure 2. The spatial distribution of pixel-wise linear trends of annual ET for (a) GLEAM3.0a, (b) EartH2Observe-En, (c) GLDAS2.0-Noah,
and (d) MERRA-Land products during 1980–2010. The trend is estimated with Theil–Sen’s slope method, and the significance level is tested
with the Mann–Kendall method. The dotted area indicates that the trend has passed the significance test at 5 % level.

Table 2. The percentage of grids in each dominant factor controlling annual ET linear trends for GLEAM3.0a, EartH2Observe-En,
GLDAS2.0-Noah, and MERRA-Land. The “+” and “−” represent positive, and negative contributions to ET, respectively.

P Rn T1 VPD u

GLEAM3.0a + 30.34 % 4.03 % 0.79 % 27.32 % 0.06 %
− 25.07 % 7.27 % 0.08 % 4.87 % 0.18 %

EartH2Observe-En + 42.70 % 4.65 % 0.44 % 24.88 % 0.06 %
− 19.94 % 4.90 % 0.02 % 2.30 % 0.10 %

GLDAS2.0-Noah + 31.27 % 4.17 % 0.93 % 20.88 % 0.10 %
− 23.67 % 13.73 % 0.01 % 5.17 % 0.07 %

MERRA-Land + 26.77 % 5.60 % 0.08 % 29.09 % 0.06 %
− 30.43 % 6.46 % 0.22 % 0.87 % 0.42 %

4 Discussions

4.1 Results comparison

In this study, we have found that the global ET trends
during 1980–2010 in GLEAM3.0a, EartH2Observe-En,
GLDAS2.0-Noah, and MERRA-Land products are relatively
consistent. Different ET trends are observed among these
products in Africa and South America, where the MERRA-
Land shows a significant decrease of about−5.0 mm yr−1. A
significantly increasing ET pattern is found in some regions
of western Europe and southern Asia, the central parts of
northern Australia, while a declining ET pattern is observed
in western North America and South America. Similar global
ET patterns are also found in Pan et al. (2020) based on multi-

source products. As shown in Fig. 2, there are divergences
in the ET trends of the products over some regions. Differ-
ent ET trends among the products result from different forc-
ing data. For example, MERRA-Land has abnormal negative
ET trends over South America and the central part of Africa.
This is due to abnormally decreased precipitation providing
a negative contribution to ET trends.

How the climatic variable controls the global ET trend is
one of the crucial questions we ask in this study. We have
designed sensitivity experiments to disentangle contributions
from each climatic driver (precipitation, net radiation, air
temperature, VPD, and wind speed) to answer this ques-
tion. Precipitation, net radiation, VPD, and wind speed con-
tribute the most to the changes in global ET with an inferred

Hydrol. Earth Syst. Sci., 26, 3691–3707, 2022 https://doi.org/10.5194/hess-26-3691-2022
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Figure 3. Pixel-wise scatterplots of (x axis) trends in each climatic variable against (y axis) the contribution of each climatic variable to
ET changes. Small letters (a–e) indicate precipitation, radiation, air temperature (T1), VPD and wind speed, respectively; and numbers (1–
4) indicate GLEAM3.0a, EartH2Observe-En, GLDAS2.0-Noah, and MERRA-Land, respectively. The percentage is the ratio between the
number of grid cells in each quadrant and the number of total grid cells; the sum of the percentage values in the four quadrants equals to
100 %. The color red, green, blue, black purple represents Tropical, Dry, Mild Temperate, Snow, Polar zones, respectively.
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Figure 4. The consistency of spatial distribution of dominant cli-
matic factors to global long-term ET trends between GLEAM3.0a,
EartH2Observe-En, GLDAS2.0-Noah, and MERRA-Land for pre-
cipitation (a), net radiation (b), and VPD (c). The land fraction of
air temperature (T1) and wind speed is limited, and the two fac-
tors’ results are not shown here. Numbers 1–4 represent the count
of these models with the same dominant factor in one pixel, and
indicate different confidence levels from low to high.

positive relationship. In contrast, an increase in temperature
shows the opposite in some regions. The positive relation-
ships between ET and precipitation, and net radiation have
been confirmed by Lu et al. (2019), Wang et al. (2018b),
Pan et al. (2020), and Soni and Syed (2021). Precipitation
supplies water, and net radiation provides energy for the ET
process. However, the increased temperature appears to have
influenced the mechanism of ET trend differences between
the water-limited region (Dry zone) and other regions. Rising
air temperature can lead to soil moisture depletion, followed
by suppressed vegetation growth in the water-limited regions
(Jung et al., 2010; Zhang et al., 2019).

Meanwhile, we found that an increased VPD promotes at-
mospheric processes followed by global ET changes. Even
if increased VPD reduces surface conductance, increased at-
mospheric water demand by VPD absorbs moisture from

soil and vegetation, thus increasing ET (Grossiord et al.,
2020). The positive influences are also verified by Kochen-
dorfer et al. (2011), Wang and Dickinson (2012), and Yang
et al. (2019). However, Novick et al. (2016) indicated that
increased VPD due to global warming increased surface
resistance, limiting ET over many biomes. Massmann et
al. (2019) suggested that the ET response to increased VPD
varied from decreasing to increasing, depending on plant
water regulation strategies determined by climatic environ-
ment and plant types. For example, when compared to bo-
real and arctic climates, VPD increased ET in tropical and
temperate climates; in terms of plant type, shrubs and gym-
nosperm trees decreased ET, while crops tended to increase
ET. Therefore, we consider that the contrasting influence
of VPD on ET should be addressed separately, emphasiz-
ing how the VPD affects the individual components of ET,
which are evaporation from the soil, and canopy intercep-
tion and transpiration. A more complex physical ET process
combined with soil and plant resistance models should be
used to do this. For example, Grossiord et al. (2020) admit-
ted that an increased VPD would lead to stomatal closure,
but transpiration would still increase under a certain thresh-
old across plants in different climate regions. Besides, they
found the positive response of surface resistance to VPD in-
creased from wetting to drying climate.

Most studies used the effect of VPD on ET as a surro-
gate of high air temperature as VPD is determined by air
temperature and specific humidity. However, specific humid-
ity changes are weak relative to rapid air warming, resulting
in increased VPD controlled by the rising air temperature.
Figure 5 shows the spatial pattern of the climatic variables
(i.e., air temperature T2 and specific humidity) that dominates
the global VPD changes following our proposed sensitivity
method. Our study concludes that the specific humidity con-
trols VPD only in some regions of North and South Asia,
northern Australia, southern Africa, and South America.
However, vegetation physiology controlled by VPD plays a
vital role in reshaping the hydrological cycle and global wa-
ter resources compared to air temperature (Grossiord et al.,
2020). Meanwhile, considering a close relationship between
temperature and VPD, we attempted to separate the contri-
bution to ET between VPD and air temperature by designing
sim_T1, sim_VPD in Sect. 2.3.2.

Figure 4 shows the spatial distribution of climatic drivers
controlling ET, implying that precipitation is the primary
driver that controls ET in the Dry zone. This includes north-
ern and southeastern Eurasia, most of Africa, midwestern
North America, southern parts of South America, and al-
most the entire Australia, while net radiation dominates the
Tropical zone. Why these two climatic drivers are impor-
tant for controlling ET changes has also attracted interest
among other scientists (Pan et al., 2020 and Zhang et al.,
2015). Interestingly, we find that the impact of VPD on ET is
quite significant in some high-latitude regions of the North-
ern Hemisphere, such as eastern North America, Europe, and
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Figure 5. Distribution of dominant factor in VPD changes in global land during 1980–2010 for GLEAM3.0a (a), EartH2Observe-En (b),
GLDAS2.0-Noah (c), and MERRA-Land (d). The T2 and H represent air temperature and specific humidity respectively. Dotted areas mean
that VPD is a dominant factor to ET trends.

northeastern Asia. Long-term ET changes in these regions
are controlled by air temperature (Pan et al., 2020; Zhang et
al., 2015). However, in our study, the increased VPD caused
by rising air temperature plays a significant role in control-
ling ET changes (Sottocornola and Kiely, 2010; Kochendor-
fer et al., 2011; Yang et al., 2019). The VPD, rather than air
temperature, controls ET in high-latitude regions. Precipita-
tion controls ET in water-deficit regions (Dry zone) by re-
plenishing the storage deficit, and ET in tropical rainforests
(i.e., energy-limited region) is determined by available en-
ergy (i.e., net radiation).

4.2 Uncertainties

The Budyko framework is the key component of the attri-
bution method used in our study. Based on this hypothesis,
Fu (1981) and Zhang et al. (2004) offered the best analyti-
cal solution (i.e., Sect. 2.3.2, Eq. 1) through a dimensional
mathematical analysis by providing the mathematical rea-
sons. The key part of the analytical solution is that the ra-
tio between PET and precipitation determines ET. The equa-
tion has been applied in numerous hydrological studies at
the catchment scale. When using the hypothesis at the catch-
ment scale, some details of the results related to the land
features are often missing or ignored. However, when test-
ing the same hypothesis at grid scales, the Budyko frame-
work performance is outstanding (Greve et al., 2014; Teul-
ing et al., 2019; Roderick et al., 2014). We have also vali-
dated the accuracy of the Budyko hypothesis by comparing
the ET values estimated by Budyko with actual ET values in

Fig. 6. The results with high R2 values for all products in-
dicate that the Budyko method can be successfully applied
in the attribution method. However, there are discrepancies
among different PET calculation methods that may introduce
some uncertainties into the attribution results. For example,
Zhou et al. (2020) compared four temperature-based mod-
els (Hamon, Hargreaves–Samani, Oudin, Thornthwaite), two
radiation-based models (Energy-Only and Priestley–Taylor),
and two synthesis models (Penman and Penman–Monteith)
of PET in China as an example, and pointed out that the
Penman–Monteith and Penman methods are almost similar
but better than the remaining methods. Based on the re-
sults, the Penman–Monteith method outperforms the Penman
method, thus used to calculate the standard values of PET in
our study.

4.2.1 Validations of attribution method

The fitted parameter ω in Eq. (3) includes landscape char-
acteristics, such as vegetation cover, soil properties, and to-
pography (Xu et al., 2013). The parameter contains each
model’s characteristic, leading to uncertainties of the attribu-
tion method from forcing data and information in each prod-
uct. The information consists of structure parameters of each
model, and surface factors (land cover types, soil properties,
and topography). The selected four products in the study use
static surface factors when simulating ET (Table S1). Given
the reason, the attribution method is limited to not consider-
ing the influences of the land surface on ET changes and only
focuses on quantifying several climatic variables’ influences
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Figure 6. Pixel-wise scatterplots of (x axis) annual ET in each product against (y axis) annual ET estimated by the Budyko framework.
Small letters (a)–(d) represent GLEAM3.0a, EartH2Observe-En, GLDAS2.0-Noah, and MERRA-Land, respectively.

here. We discuss the influences of vegetation and human ac-
tivities in next section.

A separation method in this study is used to obtain the re-
spective contribution of each driving factor to the long-term
annual ET linear trend, which inevitably is suspected to pro-
duce some uncertainties in the attribution results. Figure 7
shows the scatterplots of the pixel-wise ET trend in the four
products against those from the control experiment to vali-
date the accuracy of reproducing ET with the fitted relations
using Eq. (3) and the five selected climatic variables. The
resultant R2 values range from 0.48 to 0.76, indicating that
the trendCTL simulated by Eq. (3) can principally reproduce
the ET trends as in the four products. Meanwhile, scatter-
plots of the accumulative contributions of the driving factors
(
∑5
i=1Ci) in each product against the respectively simulated

trendCTL are shown in Fig. S4, in order to understand the
possible uncertainties of such an analysis. Strikingly, the R2

values are all higher than 0.99, indicating that the driving fac-
tors’ summed contributions are almost equal to the realistic
global ET trends in all products.

4.2.2 Influences of vegetation and human activities

Vegetation can alter water cycle and energy cycle by biophys-
ical and biochemical feedback to climate change (Forzieri et
al., 2020). For example, global surface greening increases ET
or transpiration (Lian et al., 2018; Lu et al., 2021), and re-
duces soil water content (Y. Li et al., 2018a). However, the
complex interaction between vegetation and surface makes
it difficult to simulate the influence of dynamic vegetation
change on ET (Gentine et al., 2019). Meanwhile, strictly dis-
engaging the contributions of climatic variables and vegeta-
tion to ET is very difficult due to the interaction between veg-
etation and climatic variables (Y. Li et al., 2018b). For water-
limited regions, precipitation as main water supply to vege-
tation controls interannual ET changes (Wang et al., 2021).
And, for humid regions, the dominating factor of interannual
ET changes is not vegetation, but rather atmospheric climate

variables (Zhang et al., 2020). Those studies indicate that
vegetation influences on ET already contain the signal of cli-
matic variables, which are essential for vegetation growth.

Given the reasons above, the ET products used in this
study do not consider the effect of land use/vegetation
changes on ET. When simulating ET, the model frameworks
assume no interannual land use changes, so they are regarded
as static conditions. Detailed land cover types in each prod-
uct are shown in Table S1.

Human activities (e.g., irrigation and reservoir construc-
tion) have been affecting the components (i.e., ET, runoff,
and groundwater storage) of water cycles (Ashraf et al.,
2017; Long et al., 2017). For example, the groundwater over
the North Plain in China, the High Plain in US, and north-
ern India is pumped for agricultural irrigation and contribute
to accelerating the ET process. Lv et al. (2017) indicate that
the estimated ET will be more accurate if irrigation water
affects hydrological cycles. Unfortunately, most ET prod-
ucts do not consider human activities due to the limited
factors of estimated algorithm and model parameters. The
GLDAS2.0-Noah and MERRA-Land in this study also do
not consider the effect of human activities. The GLEAM3.0a
partly contains the information of groundwater by consid-
ering the effect of soil moisture of the European Space
Agency’s Climate Change Initiative (ESA-CCI) on ET. As
for EartH2Observe-En, the six models consider one of either
groundwater, reservoir, or water use (see Table S1 from Li
et al., 2021). However, the attribution results of ET trends
in this study show that GLEAM3.0a and EartH2Observe-
En’s validation results are good, indicating that the effect of
human activities on ET may be contained in climatic vari-
ables. These ET products are produced with appropriate al-
gorithms, parameterizations of models and forcing datasets.
The accuracy of ET has been validated by the respective de-
velopers: S. J. Li et al. (2018) in China, Wang et al. (2018a)
in the Yellow River basin, and Nooni et al. (2019) in the Nile
River basin, suggesting good performances of these prod-
ucts. Therefore, our study only focuses on climatic factors
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Figure 7. The pixel-wise scatterplots of global long-term annual ET linear trend against the control trend (trendCTL) in ET for GLEAM3.0a
(a), EartH2Observe-En (b), GLDAS2.0-Noah (c), and MERRA-Land (d). The red line indicates a fitted line of the scatter points along with
the 1 : 1 blue dotted line.

affecting interannual ET changes. For future studies, the con-
tribution of land surface, such as human activities, to ET
should be investigated to understand the mechanism of the
global ET trend better. Additionally, we only consider lo-
cal contributions of ET here. In fact, large-scale modes of
climate variability (e.g., El Niño–Southern Oscillation, the
North Atlantic Oscillation) can also affect terrestrial evapo-
ration. For example, Martens et al. (2018) indicate that El
Niño–Southern Oscillation controls the overall dynamic of
global land ET, while some models dominate regional ET
change, such as East Pacific–North Pacific teleconnection
patterns.

4.2.3 The relationship between fitted parameter ω and
ET trend analysis, vegetation

Here, we compare ET trends in each product to climate
zones, which are represented by the aridity index. The arid-
ity index (PET/precipitation) in each product is calculated
with respective precipitation and PET data. Figure S5a1–
d1 show that the biggest ET trends of all products exit the
wettest regions (low aridity index). To study the influence
of fitted parameter ω on ET trend analysis, we compare the
control on ET trend (trendCTL) to the aridity index. The re-
sults in Fig. S5a2–d2 show similar results to the actual ET
trend, meaning the ET trend analysis in the attributed method

can capture actual ET change characteristics. Meanwhile, we
also quantify the relationship of parameter ω fitted by precip-
itation, PET, and actual ET in each product to multiyear aver-
age (GIMMS NDVI) during 1982–2010. Figure 8 shows the
linear relationship between the fitted parameter ω and NDVI
for all products with R2 values of 0.13–0.38. In general, the
parameter ω can be calculated according to the linear rela-
tionship between ω and NDVI (Bai et al., 2019; Greve et al.,
2014). The results show that our trend analysis keeps the re-
lationship, spatially. However, we admit that time-varying ω
(e.g., vegetation, soil property) will directly affect ET (Lu et
al., 2021). The impact of ω would vary as a function of the
chosen timescale which requires a more in-depth study be-
yond the scope of the current study.

5 Conclusions

We have estimated the linear ET trend globally during 1980–
2010 from GLEAM3.0a, EartH2Observe-En, GLDAS2.0-
Noah, and MERRA-Land. Secondly, we obtained the respec-
tive contribution of each factor to ET trends with multiple
sensitivity experiments as well as a separation method, and
identified which factor controls global ET changes across dif-
ferent climate zones. The major findings are summarized be-
low:
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Figure 8. Pixel-wise scatterplots of (x axis) multiyear average NDVI against (y axis) their fitted ω values in each product. Small letters
(a)–(d) represent GLEAM3.0a, EartH2Observe-En, GLDAS2.0-Noah, and MERRA-Land. The GIMMS NDVI data during 1982–2010 are
used here.

1. ET changes: Long-term trend in ET during 1980–2010
is evident globally, especially in Africa and South
America. A significant increase in ET is observed
in Eurasia, northern and central Australia, Northeast
Africa, eastern parts of South America, and eastern
parts of central North America. Decreasing ET is found
in the west of North and South America, northeast of
Africa, and the Arabian Peninsula. The MERRA-Land
has more significant ET changes when compared to the
other products.

2. Dominant factors: Precipitation, net radiation, VPD,
and wind speed are positively correlated to global ET
changes, while air temperature (T1) has contrasting in-
fluences on ET between the Dry zone and other regions.
Precipitation controls ET changes in Dry zone, includ-
ing north, central and southeastern regions of Eurasia,
most of Africa, central parts of western North America,
southern parts of South America, and almost the entire
Australia. Net radiation dominates the Tropical zone.
The VPD dominates ET in some high-latitude regions of
the Northern Hemisphere, such as eastern North Amer-
ica, the whole of Europe, and northeastern Asia.

3. Uncertainties of ET trends: Global ET trends among
the products are determined by their climate variables.
Different sources of forcing datasets result in different
magnitudes of ET trends, even the reversing signs. But
consistent attribution results in those products confirm
that ET mechanisms are robust.
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tive forcing climatic factors can be downloaded: GLEAM3.0a from
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