

Supplement of

Attribution of global evapotranspiration trends based on the Budyko framework

Shijie Li et al.

Correspondence to: Guojie Wang (gwang@nuist.edu.cn)

The copyright of individual parts of the supplement might differ from the article licence.

ET product		Landcover types data	Period
GLEAM3.0a		MOD44B	Static
GLDAS2.0-Noah		MCD12Q1	Static
MERRA-Land		Global Land Cover Characterization	Static
EartH2Observe-En	W3RA	MOD44B	Static
	HTESSEL-CaMa		Static
	JULES	Global Land Cover Characterization	Static
	PCR-GLOBWB		Static
	LISFLOOD	GlobCover2009	Static
	HBV-SIMREG	GiobCover2009	Static
	WaterGAP3	MOD12Q1	Static

TT 1 1 0 1	<u> </u>	C1 1	. 1. 11	
Table NL	Comparisons	orlandcover	tvnes data used n	y the four ET products
I uole DI.	comparisons	or fundeover	cypes adda abea b	y the rout br products

Note: However, regarding EartH2Observe-En, the LUC datasets used by seven (in this table) and two models (i.e., ORCHIDEE and SURFEX-TRIP) are available and unavailable, respectively; the LUC is not the necessary input for SWBM.

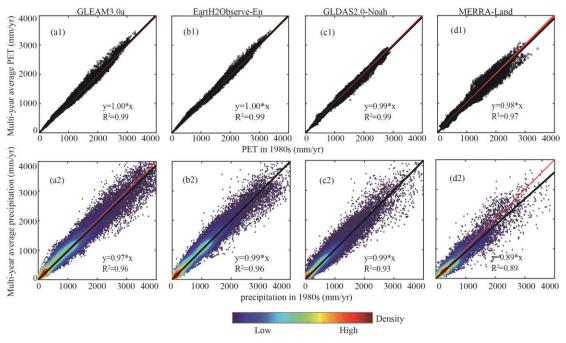


Figure S1. The pixel-wise scatterplots of PET in 1980s against multi-year average PET for GLEAM3.0a (a1), EartH2Observe-En (b1), GLDAS2.0-Noah (c1), and MERRA-Land (d1) and precipitation in 1980s against multi-year average precipitation for GLEAM3.0a (a2), EartH2Observe-En (b2), GLDAS2.0-Noah (c2), and MERRA-Land (d2).

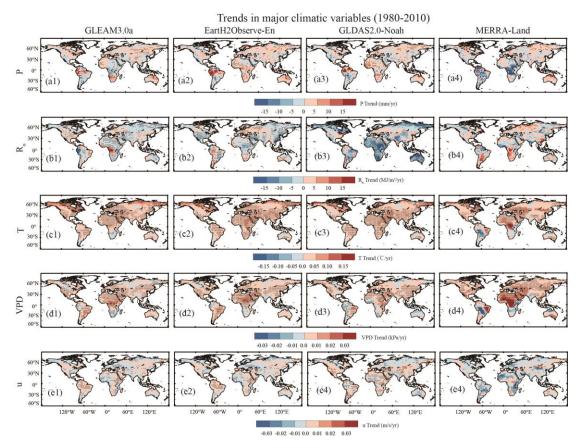


Figure S2. Spatial distribution of annual linear trend in each driving factor during 1980-2010. Small letters (a-e) respectively indicate P, R_n , T, VPD, and u and numbers (1-4) represent GLEAM3.0a, EartH2Observe-En, GLDAS2.0-Noah, and MERRA-Land. Dotted area indicates the trend passes significance level (p<0.05).

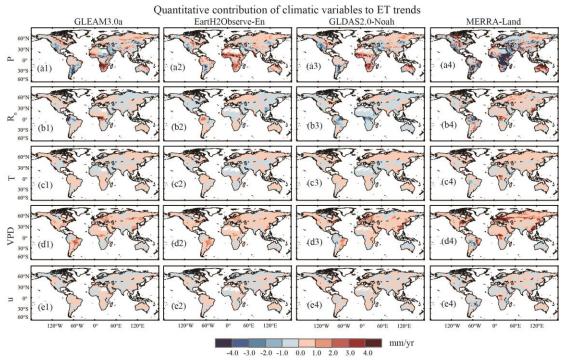


Figure S3. Attributions of the global long-term annual ET linear trend during 1980-2010. Small letters (a-e) indicate P, R_n , T, VPD and u respectively; and numbers (1-4) indicate the ET products of GLEAM3.0a, EartH2Observe-En, GLDAS2.0-Noah and MERRA-Land respectively.

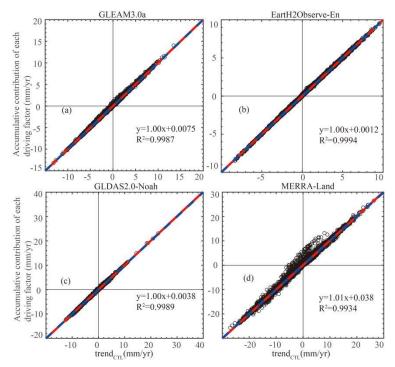


Figure S4. The pixel-wise scatterplots of the accumulative contributions of five selected driving factors against the control trend (trendCTL) in ET for GLEAM3.0a (a), EartH2Observe-En (b), GLDAS2.0-Noah (c), and MERRA-Land (d). The red line indicates a fitted line of the scatter points along with the 1:1 blue dotted line.

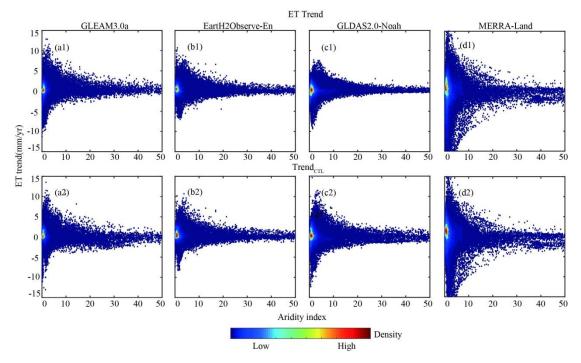


Figure S5. The pixel-wise scatterplots of multi-year average aridity index against actual ET annual values for GLEAM3.0a (a1), EartH2Observe-En (b1), GLDAS2.0-Noah (c1), and MERRA-Land (d1), the control ET trend (trendCTL) for GLEAM3.0a (a2), EartH2Observe-En (b2), GLDAS2.0-Noah (c2), and MERRA-Land (d2). Aridity index (PET/precipitation) in each product is calculated with respective precipitation and PET data.