Articles | Volume 26, issue 11
https://doi.org/10.5194/hess-26-2899-2022
https://doi.org/10.5194/hess-26-2899-2022
Research article
 | 
13 Jun 2022
Research article |  | 13 Jun 2022

The role of multi-criteria decision analysis in a transdisciplinary process: co-developing a flood forecasting system in western Africa

Judit Lienert, Jafet C. M. Andersson, Daniel Hofmann, Francisco Silva Pinto, and Martijn Kuller

Related authors

Using Multi-Criteria Decision Analysis for transdisciplinary co-design of the FANFAR flood forecasting and alert system in West Africa
Judit Lienert, Jafet Andersson, Daniel Hofmann, Francisco Silva Pinto, and Martijn Kuller
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-177,https://doi.org/10.5194/hess-2021-177, 2021
Manuscript not accepted for further review
Short summary

Related subject area

Subject: Water Resources Management | Techniques and Approaches: Modelling approaches
The value of hydroclimatic teleconnections for snow-based seasonal streamflow forecasting in central Asia
Atabek Umirbekov, Mayra Daniela Peña-Guerrero, Iulii Didovets, Heiko Apel, Abror Gafurov, and Daniel Müller
Hydrol. Earth Syst. Sci., 29, 3055–3071, https://doi.org/10.5194/hess-29-3055-2025,https://doi.org/10.5194/hess-29-3055-2025, 2025
Short summary
Thirsty Earth: a game-based approach to interdisciplinary water resource education
Lauren McGiven, Kinsey Poland, Caleb Reinking, and Marc F. Müller
Hydrol. Earth Syst. Sci., 29, 2961–2974, https://doi.org/10.5194/hess-29-2961-2025,https://doi.org/10.5194/hess-29-2961-2025, 2025
Short summary
Is drought protection possible without compromising flood protection? Estimating the potential dual-use benefit of small flood reservoirs in southern Germany
Sarah Quỳnh-Giang Ho and Uwe Ehret
Hydrol. Earth Syst. Sci., 29, 2785–2810, https://doi.org/10.5194/hess-29-2785-2025,https://doi.org/10.5194/hess-29-2785-2025, 2025
Short summary
A multiagent socio-hydrologic framework for integrated green infrastructures and water resource management at various spatial scales
Mengxiang Zhang and Ting Fong May Chui
Hydrol. Earth Syst. Sci., 29, 2655–2695, https://doi.org/10.5194/hess-29-2655-2025,https://doi.org/10.5194/hess-29-2655-2025, 2025
Short summary
Data-driven scaling methods for soil moisture cosmic ray neutron sensors
Roland Baatz, Patrick Davies, Paolo Nasta, and Heye Bogena
Hydrol. Earth Syst. Sci., 29, 2583–2597, https://doi.org/10.5194/hess-29-2583-2025,https://doi.org/10.5194/hess-29-2583-2025, 2025
Short summary

Cited articles

Abdullah, M. F., Siraj, S., and Hodgett, R. E.: An overview of Multi-Criteria Decision Analysis (MCDA) application in managing water-related disaster events: Analyzing 20 years of literature for flood and drought events, Water, 13, 1358, https://doi.org/10.3390/w13101358, 2021. 
Aich, V., Liersch, S., Vetter, T., Fournet, S., Andersson, J. C. M., Calmanti, S., van Weert, F. H. A., Hattermann, F. F., and Paton, E. N.: Flood projections within the Niger River Basin under future land use and climate change, Sci. Total Environ., 562, 666–677, https://doi.org/10.1016/j.scitotenv.2016.04.021, 2016. 
Andersson, J. and Ibrahim, A.: Interview about the FANFAR project for the European Development Days (the Green Deal for a Sustainable Future; 15–16 June 2021, #edd21), https://youtu.be/OrrpG6wZmhI (last access: 9 June 2022), 2021. 
Andersson, J., Ali, A., Arheimer, B., Crochemore, L., Gbobaniyi, B., Gustafsson, D., Hamatan, M., Kuller, M., Lienert, J., Machefer, M., Magashi, U., Mathot, E., Minoungou, B., Naranjo, A., Ndayizigiye, T., Pacini, F., Silva Pinto, F., Santos, L., and Shuaib, A.: Flood forecasting and alerts in West Africa – experiences from co-developing a pre-operational system at regional scale, EGU General Assembly 2020, online, 4–8 May 2020, https://doi.org/10.5194/egusphere-egu2020-7660, 2020a. 
Andersson, J., Santos, L., Isberg, K., Gustafsson, D., Musuuza, J., Minoungou, B., and Crochemore, L.: Deliverable: D3.2. Report documenting and explaining the hydrological models, European Union, Horizon 2020, Innovation Action ICT programme, project 780118 FANFAR, https://doi.org/10.13140/RG.2.2.17369.85601, 41 pp., 2020b. 
Download
Short summary
Many western Africans encounter serious floods every year. The FANFAR project co-designed a pre-operational flood forecasting system (FEWS) with 50 key western African stakeholders. Participatory multi-criteria decision analysis (MCDA) helped prioritize a FEWS that meets their needs: it should provide accurate, clear, and timely flood risk information and work reliably in tough conditions. As a theoretical contribution, we propose an assessment framework for transdisciplinary hydrology research.
Share