Articles | Volume 26, issue 9
https://doi.org/10.5194/hess-26-2319-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-26-2319-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Impact of bias nonstationarity on the performance of uni- and multivariate bias-adjusting methods: a case study on data from Uccle, Belgium
Jorn Van de Velde
CORRESPONDING AUTHOR
Department of Environment, Hydro-Climatic Extremes Lab, Ghent University, Ghent, Belgium
KERMIT, Department of Data Analysis and Mathematical Modelling, Ghent University, Ghent, Belgium
Matthias Demuzere
Department of Geography, Ruhr University Bochum, Bochum, Germany
Department of Environment, Hydro-Climatic Extremes Lab, Ghent University, Ghent, Belgium
Bernard De Baets
KERMIT, Department of Data Analysis and Mathematical Modelling, Ghent University, Ghent, Belgium
Niko E. C. Verhoest
Department of Environment, Hydro-Climatic Extremes Lab, Ghent University, Ghent, Belgium
Related authors
No articles found.
Lucas Boeykens, Devon Dunmire, Jonas-Frederik Jans, Willem Waegeman, Gabriëlle De Lannoy, Ezra Beernaert, Niko E. C. Verhoest, and Hans Lievens
EGUsphere, https://doi.org/10.5194/egusphere-2025-3327, https://doi.org/10.5194/egusphere-2025-3327, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
We used AI to better estimate the height of the snowpack present on the ground across the European Alps, by using novel satellite data, complemented by weather information or snow depth estimates from a computer model. We found that both combinations improve the accuracy of our AI-based snow depth estimates, performing almost equally well. This helps us better monitor how much water is stored as snow, which is vital for drinking water, farming, and clean energy production in Europe.
Kazeem Abiodun Ishola, Gerald Mills, Ankur Prabhat Sati, Benjamin Obe, Matthias Demuzere, Deepak Upreti, Gourav Misra, Paul Lewis, Daire Walsh, Tim McCarthy, and Rowan Fealy
Hydrol. Earth Syst. Sci., 29, 2551–2582, https://doi.org/10.5194/hess-29-2551-2025, https://doi.org/10.5194/hess-29-2551-2025, 2025
Short summary
Short summary
Global soil information introduces uncertainty into models that simulate soil hydrothermal changes. Using the Noah with Multiparameterization (Noah-MP) model with two different global soil datasets, we find under-represented soil properties in wet loam, causing a dry bias in soil moisture. This bias is more pronounced and drought categories are more severe in the SoilGrids dataset. We conclude that models should incorporate detailed, region-specific soil information to minimize model uncertainties.
Yifan Cheng, Lei Zhao, TC Chakraborty, Keith Oleson, Matthias Demuzere, Xiaoping Liu, Yangzi Che, Weilin Liao, Yuyu Zhou, and Xinchang “Cathy” Li
Earth Syst. Sci. Data, 17, 2147–2174, https://doi.org/10.5194/essd-17-2147-2025, https://doi.org/10.5194/essd-17-2147-2025, 2025
Short summary
Short summary
The absence of globally consistent and spatially continuous urban surface input has long hindered large-scale high-resolution urban climate modeling. Using remote sensing, cloud computing, and machine learning, we developed U-Surf, a 1 km dataset providing key urban surface properties worldwide. U-Surf enhances urban representation across scales and supports kilometer-scale urban-resolving Earth system modeling unprecedentedly, with broader applications in urban studies and beyond.
Baoying Shan, Niko E. C. Verhoest, and Bernard De Baets
Hydrol. Earth Syst. Sci., 28, 2065–2080, https://doi.org/10.5194/hess-28-2065-2024, https://doi.org/10.5194/hess-28-2065-2024, 2024
Short summary
Short summary
This study developed a convenient and new method to identify the occurrence of droughts, heatwaves, and co-occurring droughts and heatwaves (CDHW) across four seasons. Using this method, we could establish the start and/or end dates of drought (or heatwave) events. We found an increase in the frequency of heatwaves and CDHW events in Belgium caused by climate change. We also found that different months have different chances of CDHW events.
Matthias Demuzere, Jonas Kittner, Alberto Martilli, Gerald Mills, Christian Moede, Iain D. Stewart, Jasper van Vliet, and Benjamin Bechtel
Earth Syst. Sci. Data, 14, 3835–3873, https://doi.org/10.5194/essd-14-3835-2022, https://doi.org/10.5194/essd-14-3835-2022, 2022
Short summary
Short summary
Because urban areas are key contributors to climate change but are also susceptible to multiple hazards, one needs spatially detailed information on urban landscapes to support environmental services. This global local climate zone map describes this much-needed intra-urban heterogeneity across the whole surface of the earth in a universal language and can serve as a basic infrastructure to study e.g. environmental hazards, energy demand, and climate adaptation and mitigation solutions.
Dailé Avila-Alonso, Jan M. Baetens, Rolando Cardenas, and Bernard De Baets
Nat. Hazards Earth Syst. Sci., 21, 837–859, https://doi.org/10.5194/nhess-21-837-2021, https://doi.org/10.5194/nhess-21-837-2021, 2021
Short summary
Short summary
Hurricanes are extreme storms that induce substantial biophysical changes on oceans. We investigated the effects induced by consecutive Hurricanes Dorian and Humberto over the western Sargasso Sea in 2019 using satellite remote sensing and modelled data. These hurricanes superimposed effects on the upper-ocean response because of the strong induced mixing and upwelling. The sea surface cooling and phytoplankton bloom induced by these hurricanes were higher compared to climatological records.
Renaud Hostache, Dominik Rains, Kaniska Mallick, Marco Chini, Ramona Pelich, Hans Lievens, Fabrizio Fenicia, Giovanni Corato, Niko E. C. Verhoest, and Patrick Matgen
Hydrol. Earth Syst. Sci., 24, 4793–4812, https://doi.org/10.5194/hess-24-4793-2020, https://doi.org/10.5194/hess-24-4793-2020, 2020
Short summary
Short summary
Our objective is to investigate how satellite microwave sensors, particularly Soil Moisture and Ocean Salinity (SMOS), may help to reduce errors and uncertainties in soil moisture simulations with a large-scale conceptual hydro-meteorological model. We assimilated a long time series of SMOS observations into a hydro-meteorological model and showed that this helps to improve model predictions. This work therefore contributes to the development of faster and more accurate drought prediction tools.
Cited articles
Addor, N. and Fischer, E. M.: The influence of natural variability and
interpolation errors on bias characterization in RCM simulations, J. Geophys. Res.-Atmos., 120, 10–180, https://doi.org/10.1002/2014JD022824, 2015. a
Addor, N. and Seibert, J.: Bias correction for hydrological impact studies –
beyond the daily perspective, Hydrol. Process., 28, 4823–4828,
https://doi.org/10.1002/hyp.10238, 2014. a
Argüeso, D., Evans, J. P., and Fita, L.: Precipitation bias correction of very high resolution regional climate models, Hydrol. Earth Syst. Sci., 17, 4379–4388, https://doi.org/10.5194/hess-17-4379-2013, 2013. a
Bellprat, O., Kotlarski, S., Lüthi, D., and Schär, C.: Physical
constraints for temperature biases in climate models, Geophys. Res.
Lett., 40, 4042–4047, https://doi.org/10.1002/grl.50737, 2013. a
Berg, P., Feldmann, H., and Panitz, H.-J.: Bias correction of high resolution
regional climate model data, J. Hydrol., 448, 80–92,
https://doi.org/10.1016/j.jhydrol.2012.04.026, 2012. a
Buser, C. M., Künsch, H. R., Lüthi, D., Wild, M., and Schär, C.:
Bayesian multi-model projection of climate: bias assumptions and interannual
variability, Clim. Dynam., 33, 849–868, https://doi.org/10.1007/s00382-009-0588-6,
2009. a
Cabus, P.: River flow prediction through rainfall–runoff modelling
with a probability-distributed model (PDM) in Flanders, Belgium,
Agr. Water Manage., 95, 859–868,
https://doi.org/10.1016/j.agwat.2008.02.013, 2008. a
Cannon, A. J.: Multivariate bias correction of climate model output: Matching
marginal distributions and intervariable dependence structure, J.
Climate, 29, 7045–7064, https://doi.org/10.1175/JCLI-D-15-0679.1, 2016. a, b, c
Cannon, A. J., Sobie, S. R., and Murdock, T. Q.: Bias correction of GCM
precipitation by quantile mapping: How well do methods preserve changes in
quantiles and extremes?, J. Climate, 28, 6938–6959,
https://doi.org/10.1175/JCLI-D-14-00754.1, 2015. a, b
Chen, J., Brissette, F. P., and Lucas-Picher, P.: Assessing the limits of
bias-correcting climate model outputs for climate change impact studies,
J. Geophys. Res.-Atmos., 120, 1123–1136,
https://doi.org/10.1002/2014JD022635, 2015. a, b, c
Christensen, J. H., Boberg, F., Christensen, O. B., and Lucas-Picher, P.: On
the need for bias correction of regional climate change projections of
temperature and precipitation, Geophys. Res. Lett., 35, L20709,
https://doi.org/10.1029/2008GL035694, 2008. a, b
Clark, M., Gangopadhyay, S., Hay, L., Rajagopalan, B., and Wilby, R.: The
Schaake shuffle: A method for reconstructing space–time variability in
forecasted precipitation and temperature fields, J. Hydrometeorol.,
5, 243–262, https://doi.org/10.1175/1525-7541(2004)005<0243:TSSAMF>2.0.CO;2, 2004. a, b
De Jongh, I. L. M., Verhoest, N. E. C., and De Troch, F. P.: Analysis of a
105-year time series of precipitation observed at Uccle, Belgium,
Int. J. Climatol., 26, 2023–2039, https://doi.org/10.1002/joc.1352,
2006. a
Dekens, L., Parey, S., Grandjacques, M., and Dacunha-Castelle, D.: Multivariate
distribution correction of climate model outputs: A generalization of
quantile mapping approaches, Environmetrics, 28, e2454,
https://doi.org/10.1002/env.2454, 2017. a, b
Demarée, G. R.: The centennial recording raingauge of the Uccle Plateau:
Its history, its data and its applications, Houille Blanche, 4, 95–102,
2003. a
Derbyshire, J.: The siren call of probability: Dangers associated with using
probability for consideration of the future, Futures, 88, 43–54,
https://doi.org/10.1016/j.futures.2017.03.011, 2017. a
Di Luca, A., de Elía, R., and Laprise, R.: Challenges in the quest for
added value of regional climate dynamical downscaling, Current Climate Change
Reports, 1, 10–21, https://doi.org/10.1007/s40641-015-0003-9, 2015. a
Eberhart, R. and Kennedy, J.: A new optimizer using Particle Swarm Theory, in: Proceedings of the Sixth International Symposium on Micro Machine and Human Science, IEEE, 39–43, https://doi.org/10.1109/MHS.1995.494215, 1995. a
Ehret, U., Zehe, E., Wulfmeyer, V., Warrach-Sagi, K., and Liebert, J.: HESS Opinions ”Should we apply bias correction to global and regional climate model data?”, Hydrol. Earth Syst. Sci., 16, 3391–3404, https://doi.org/10.5194/hess-16-3391-2012, 2012. a, b, c
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016. a
Fosser, G., Kendon, E. J., Stephenson, D., and Tucker, S.:
Convection-permitting models offer promise of more certain extreme rainfall
projections, Geophys. Res. Lett., 47, e2020GL088151, https://doi.org/10.1029/2020GL088151, 2020. a
François, B., Thao, S., and Vrac, M.: Adjusting spatial dependence of
climate model outputs with cycle-consistent adversarial networks, Clim. Dynam., 57, 3323–3353, https://doi.org/10.1007/s00382-021-05869-8,
2021. a
Gudmundsson, L., Bremnes, J. B., Haugen, J. E., and Engen-Skaugen, T.: Technical Note: Downscaling RCM precipitation to the station scale using statistical transformations – a comparison of methods, Hydrol. Earth Syst. Sci., 16, 3383–3390, https://doi.org/10.5194/hess-16-3383-2012, 2012. a, b
Guo, Q., Chen, J., Zhang, X. J., Xu, C.-Y., and Chen, H.: Impacts of using
state-of-the-art multivariate bias correction methods on hydrological
modeling over North America, Water Resour. Res., 56,
e2019WR026659, https://doi.org/10.1029/2019WR026659, 2020. a, b, c, d
Gutiérrez, J. M., Maraun, D., Widmann, M., Huth, R., Hertig, E.,
Benestad, R., Roessler, O., Wibig, J., Wilcke, R., Kotlarski, S.,
Martín, D. S., Herrera, S., Bedia, J., Casanueva, A., Manzanas, R.,
Iturbide, M., Vrac, M., Dubrovsky, M., Ribalaygua, J., Pórtoles, J.,
Räty, O., Räisänen, J., Hingray, B., Raynaud, D., Casado, M. J., Ramos,
P., Zerenner, T., Turco, M., Bosshard, T., Štěpánek, P.,
Bartholy, J., Pongracz, R., Keller, D. E., Fischer, A. M., Cardoso, R. M.,
Soares, P. M. M., Czernecki, B., and Pagé, C.: An intercomparison of a
large ensemble of statistical downscaling methods over Europe: results from
the VALUE perfect predictor cross-validation experiment, Int.
J. Climatol., 39, 3750–3785, https://doi.org/10.1002/joc.5462, 2019. a
Gutjahr, O. and Heinemann, G.: Comparing precipitation bias correction methods
for high-resolution regional climate simulations using COSMO-CLM,
Theor. Appl. Climatol., 114, 511–529,
https://doi.org/10.1007/s00704-013-0834-z, 2013. a
Gutowski, William J., J., Decker, S. G., Donavon, R. A., Pan, Z., Arritt,
R. W., and Takle, E. S.: Temporal–spatial scales of observed and simulated
precipitation in central US climate, J. Climate, 16, 3841–3847,
https://doi.org/10.1175/1520-0442(2003)016<3841:TSOOAS>2.0.CO;2, 2003. a
Haerter, J. O., Hagemann, S., Moseley, C., and Piani, C.: Climate model bias correction and the role of timescales, Hydrol. Earth Syst. Sci., 15, 1065–1079, https://doi.org/10.5194/hess-15-1065-2011, 2011. a
Hagemann, S., Chen, C., Haerter, J. O., Heinke, J., Gerten, D., and Piani, C.:
Impact of a statistical bias correction on the projected hydrological changes
obtained from three GCMs and two hydrology models, J.
Hydrometeorol., 12, 556–578, https://doi.org/10.1175/2011JHM1336.1, 2011. a
Hakala, K., Addor, N., and Seibert, J.: Hydrological modeling to evaluate
climate model simulations and their bias correction, J.
Hydrometeorol., 19, 1321–1337, https://doi.org/10.1175/JHM-D-17-0189.1, 2018. a
Hay, L. E. and Clark, M. P.: Use of statistically and dynamically downscaled
atmospheric model output for hydrologic simulations in three mountainous
basins in the western United States, J. Hydrol., 282, 56–75,
https://doi.org/10.1016/S0022-1694(03)00252-X, 2003. a
Helsen, S., van Lipzig, N. P. M., Demuzere, M., Vanden Broucke, S.,
Caluwaerts, S., De Cruz, L., De Troch, R., Hamdi, R., Termonia, P.,
Van Schaeybroeck, B., and Wouters, H.: Consistent scale-dependency of future
increases in hourly extreme precipitation in two convection-permitting
climate models, Clim. Dynam., 54, 1–14,
https://doi.org/10.1007/s00382-019-05056-w, 2019. a
Hewitson, B. C., Daron, J., Crane, R. G., Zermoglio, M. F., and Jack, C.:
Interrogating empirical-statistical downscaling, Climatic change, 122,
539–554, https://doi.org/10.1007/s10584-013-1021-z, 2014. a
Ho, C. K., Stephenson, D. B., Collins, M., Ferro, C. A. T., and Brown, S. J.:
Calibration strategies: a source of additional uncertainty in climate change
projections, B. Am. Meteorol. Soc., 93, 21–26,
https://doi.org/10.1175/2011BAMS3110.1, 2012. a
Hui, Y., Chen, J., Xu, C.-Y., Xiong, L., and Chen, H.: Bias nonstationarity of
global climate model outputs: The role of internal climate variability and
climate model sensitivity, Int. J. Climatol., 39,
2278–2294, https://doi.org/10.1002/joc.5950, 2019. a
Hui, Y., Xu, Y., Chen, J., Xu, C.-Y., and Chen, H.: Impacts of bias
nonstationarity of climate model outputs on hydrological simulations,
Hydrol. Res., 51, 925–941, https://doi.org/10.2166/nh.2020.254, 2020. a
Ines, A. V. M. and Hansen, J. W.: Bias correction of daily GCM rainfall for
crop simulation studies, Agr. Forest Meteorol., 138, 44–53,
https://doi.org/10.1016/j.agrformet.2006.03.009, 2006. a, b
IPCC: Managing the Risks of Extreme Events and Disasters to Advance Climate
Change Adaptation, in: A Special Report of Working Groups I and II of the
Intergovernmental Panel on Climate Change, edited by: Field, C. B., Barros, V., Stocker, T. F., Qin, D., Dokken, D. J., Ebi, K. L., Mastrandrea, M. D., Mach, K. J., Plattner, G.-K., Allen, S. K., Tignor, M., and Midgley, P. M., Cambridge University Press, Cambridge, UK, and New York, NY, USA, 582 pp., 2012. a
IPCC: Climate Change 2013: The Physical Science Basis, in: Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental
Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge, UK and New York, NY, USA, 1535 pp., 2013. a
Ivanov, M. A., Luterbacher, J., and Kotlarski, S.: Climate model biases and
modification of the climate change signal by intensity-dependent bias
correction, J. Climate, 31, 6591–6610,
https://doi.org/10.1175/JCLI-D-17-0765.1, 2018. a
Jacob, D., Petersen, J., Eggert, B., Alias, A., Christensen, O. B., Bouwer,
L. M., Braun, A., Colette, A., Déqué, M., Georgievski, G.,
Georgopoulou, E., Gobiet, A., Menut, L., Nikulin, G., Haensler, A.,
Hempelmann, N., Jones, C., Keuler, K., Kovats, S., Kröner, N., Kotlarski,
S., Kriegsmann, A., Martin, E., van Meijgaard, E., Moseley, C., Pfeifer, S.,
Preuschmann, S., Radermacher, C., Radtke, K., Rechid, D., Rounsevell, M.,
Samuelsson, P., Somot, S., Soussana, J.-F., Teichmann, C., Valentini, R.,
Vautard, R., Weber, B., and Yiou, P.: EURO-CORDEX: new high-resolution
climate change projections for European impact research, Reg.
Environ. Change, 14, 563–578, https://doi.org/10.1007/s10113-013-0499-2, 2014. a, b
Johnson, F. and Sharma, A.: Accounting for interannual variability: A
comparison of options for water resources climate change impact assessments,
Water Resour. Res., 47, W04508, https://doi.org/10.1029/2010WR009272, 2011. a, b
Johnson, F. and Sharma, A.: A nesting model for bias correction of variability
at multiple time scales in general circulation model precipitation
simulations, Water Resour. Res., 48, W01504,
https://doi.org/10.1029/2011WR010464, 2012. a
Kendon, E. J., Ban, N., Roberts, N. M., Fowler, H. J., Roberts, M. J., Chan,
S. C., Evans, J. P., Fosser, G., and Wilkinson, J. M.: Do
convection-permitting regional climate models improve projections of future
precipitation change?, B. Am. Meteorol. Soc., 98,
79–93, https://doi.org/10.1175/BAMS-D-15-0004.1, 2017. a
Kerkhoff, C., Künsch, H. R., and Schär, C.: Assessment of bias
assumptions for climate models, J. Climate, 27, 6799–6818,
https://doi.org/10.1175/JCLI-D-13-00716.1, 2014. a, b
Klemeš, V.: Operational testing of hydrological simulation models,
Hydrolog. Sci. J., 31, 13–24, https://doi.org/10.1080/02626668609491024,
1986. a
Kotlarski, S., Keuler, K., Christensen, O. B., Colette, A., Déqué, M., Gobiet, A., Goergen, K., Jacob, D., Lüthi, D., van Meijgaard, E., Nikulin, G., Schär, C., Teichmann, C., Vautard, R., Warrach-Sagi, K., and Wulfmeyer, V.: Regional climate modeling on European scales: a joint standard evaluation of the EURO-CORDEX RCM ensemble, Geosci. Model Dev., 7, 1297–1333, https://doi.org/10.5194/gmd-7-1297-2014, 2014. a
Lenderink, G., Buishand, A., and van Deursen, W.: Estimates of future discharges of the river Rhine using two scenario methodologies: direct versus delta approach, Hydrol. Earth Syst. Sci., 11, 1145–1159, https://doi.org/10.5194/hess-11-1145-2007, 2007. a
Li, C., Sinha, E., Horton, D. E., Diffenbaugh, N. S., and Michalak, A. M.:
Joint bias correction of temperature and precipitation in climate model
simulations, J. Geophys. Res.-Atmos., 119, 13–153,
https://doi.org/10.1002/2014JD022514, 2014. a, b
Li, H., Sheffield, J., and Wood, E. F.: Bias correction of monthly
precipitation and temperature fields from Intergovernmental Panel on
Climate Change AR4 models using equidistant quantile matching, J. Geophys. Res.-Atmos., 115, D10101,
https://doi.org/10.1029/2009JD012882, 2010. a, b, c
Lorenz, E. N.: Atmospheric predictability as revealed by naturally occurring
analogues, J. Atmos. Sci., 26, 636–646,
https://doi.org/10.1175/1520-0469(1969)26<636:APARBN>2.0.CO;2, 1969. a
Maraun, D.: Nonstationarities of regional climate model biases in European
seasonal mean temperature and precipitation sums, Geophys. Res. Lett., 39, L06706, https://doi.org/10.1029/2012GL051210, 2012. a, b, c
Maraun, D.: Bias correcting climate change simulations-a critical review,
Current Climate Change Reports, 2, 211–220, https://doi.org/10.1007/s40641-016-0050-x,
2016. a, b, c, d
Maraun, D. and Widmann, M.: Cross-validation of bias-corrected climate simulations is misleading, Hydrol. Earth Syst. Sci., 22, 4867–4873, https://doi.org/10.5194/hess-22-4867-2018, 2018a. a, b
Maraun, D. and Widmann, M.: Statistical Downscaling and Bias Correction for
Climate Research, Cambridge University Press, https://doi.org/10.1017/9781107588783,
2018b. a
Maraun, D., Widmann, M., Gutiérrez, J. M., Kotlarski, S., Chandler, R. E.,
Hertig, E., Wibig, J., Huth, R., and Wilcke, R. A. I.: VALUE: A framework
to validate downscaling approaches for climate change studies, Earth's
Future, 3, 1–14, https://doi.org/10.1002/2014EF000259, 2015. a
Maurer, E. P., Das, T., and Cayan, D. R.: Errors in climate model daily precipitation and temperature output: time invariance and implications for bias correction, Hydrol. Earth Syst. Sci., 17, 2147–2159, https://doi.org/10.5194/hess-17-2147-2013, 2013. a, b, c, d
Mehrotra, R. and Sharma, A.: An improved standardization procedure to remove
systematic low frequency variability biases in GCM simulations, Water Resour. Res., 48, W12601, https://doi.org/10.1029/2012WR012446, 2012. a
Mehrotra, R. and Sharma, A.: Correcting for systematic biases in multiple raw
GCM variables across a range of timescales, J. Hydrol., 520,
214–223, https://doi.org/10.1016/j.jhydrol.2014.11.037, 2015. a
Meyer, J., Kohn, I., Stahl, K., Hakala, K., Seibert, J., and Cannon, A. J.: Effects of univariate and multivariate bias correction on hydrological impact projections in alpine catchments, Hydrol. Earth Syst. Sci., 23, 1339–1354, https://doi.org/10.5194/hess-23-1339-2019, 2019. a, b, c
Michelangeli, P.-A., Vrac, M., and Loukos, H.: Probabilistic downscaling
approaches: Application to wind cumulative distribution functions,
Geophys. Res. Lett., 36, L11708, https://doi.org/10.1029/2009GL038401,
2009. a
Milly, P. C. D., Betancourt, J., Falkenmark, M., Hirsch, R. M., Kundzewicz,
Z. W., Lettenmaier, D. P., and Stouffer, R. J.: Stationarity is dead:
Whither water management?, Science, 319, 573–574,
https://doi.org/10.1126/science.1151915, 2008. a
Moore, R. J.: The PDM rainfall-runoff model, Hydrol. Earth Syst. Sci., 11, 483–499, https://doi.org/10.5194/hess-11-483-2007, 2007. a
Muñoz-Sabater, J., Dutra, E., Agustí-Panareda, A., Albergel, C., Arduini, G., Balsamo, G., Boussetta, S., Choulga, M., Harrigan, S., Hersbach, H., Martens, B., Miralles, D. G., Piles, M., Rodríguez-Fernández, N. J., Zsoter, E., Buontempo, C., and Thépaut, J.-N.: ERA5-Land: a state-of-the-art global reanalysis dataset for land applications, Earth Syst. Sci. Data, 13, 4349–4383, https://doi.org/10.5194/essd-13-4349-2021, 2021. a
Nahar, J., Johnson, F., and Sharma, A.: Assessing the extent of non-stationary
biases in GCMs, J. Hydrol., 549, 148–162,
https://doi.org/10.1016/j.jhydrol.2017.03.045, 2017. a
Nelsen, R. B.: An Introduction to Copulas, 2nd Edn., New York, Springer Science Business Media, ISBN 978-0387-28659-4, 2006. a
Nguyen, H., Mehrotra, R., and Sharma, A.: Correcting for systematic biases in
GCM simulations in the frequency domain, J. Hydrol., 538,
117–126, https://doi.org/10.1016/j.jhydrol.2016.04.018, 2016. a
Nguyen, H., Mehrotra, R., and Sharma, A.: Correcting systematic biases across
multiple atmospheric variables in the frequency domain, Clim. Dynam., 52,
1283–1298, https://doi.org/10.1007/s00382-018-4191-6, 2018. a, b
Olsson, J., Berggren, K., Olofsson, M., and Viklander, M.: Applying climate
model precipitation scenarios for urban hydrological assessment: A case
study in Kalmar City, Sweden, Atmos. Res., 92, 364–375,
https://doi.org/10.1016/j.atmosres.2009.01.015, 2009. a
Panofsky, H. A., Brier, G. W., and Best, W. H.: Some Application of Statistics to Meteorology, Earth and Mineral Sciences Continuing Education, College of Earth and Mineral Sciences, Pennsylvania State University, 1958. a
Papalexiou, S. M. and Montanari, A.: Global and regional increase of
precipitation extremes under global warming, Water Resour. Res., 55,
4901–4914, https://doi.org/10.1029/2018WR024067, 2019. a
Penman, H. L.: Natural evaporation from open water, bare soil and grass, P.
R. Soc. Lond. A, 193, 120–145, 1948. a
Perkins, S. E., Pitman, A. J., Holbrook, N. J., and McAneney, J.: Evaluation of
the AR4 climate models’ simulated daily maximum temperature, minimum
temperature, and precipitation over Australia using probability density
functions, J. Climate, 20, 4356–4376,
https://doi.org/10.1175/JCLI4253.1, 2007. a
Peyré, G. and Cuturi, M.: Computational Optimal Transport, vol. 11, Now Publishers, https://doi.org/10.1561/2200000073, 2019. a
Pham, M. T., Vernieuwe, H., De Baets, B., and Verhoest, N. E. C.: A coupled stochastic rainfall–evapotranspiration model for hydrological impact analysis, Hydrol. Earth Syst. Sci., 22, 1263–1283, https://doi.org/10.5194/hess-22-1263-2018, 2018. a, b, c
Piani, C. and Haerter, J. O.: Two dimensional bias correction of temperature
and precipitation copulas in climate models, Geophys. Res. Lett., 39, L20401, https://doi.org/10.1029/2012gl053839, 2012. a, b
Piani, C., Haerter, J. O., and Coppola, E.: Statistical bias correction for
daily precipitation in regional climate models over Europe, Theor. Appl. Climatol., 99, 187–192, https://doi.org/10.1007/s00704-009-0134-9, 2010. a
Popke, D., Stevens, B., and Voigt, A.: Climate and climate change in a
radiative-convective equilibrium version of ECHAM6, J. Adv.
Model. Earth Sy., 5, 1–14, https://doi.org/10.1029/2012MS000191, 2013. a
Prein, A. F., Langhans, W., Fosser, G., Ferrone, A., Ban, N., Goergen, K.,
Keller, M., Tölle, M., Gutjahr, O., Feser, F., Brisson, E., Kollet, S.,
Schmidli, J., Lipzig, N. P. M., and Leung, R.: A review on regional
convection-permitting climate modeling: Demonstrations, prospects, and
challenges, Rev. Geophys., 53, 323–361, https://doi.org/10.1002/2014RG000475,
2015. a
Räty, O., Räisänen, J., Bosshard, T., and Donnelly, C.:
Intercomparison of univariate and joint bias correction methods in changing
climate from a hydrological perspective, Climate, 6, 33,
https://doi.org/10.3390/cli6020033, 2018. a, b, c
R Core Team: R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, https://www.R-project.org/ (last access: 29 April 2022), 2021. a
Reiter, P., Gutjahr, O., Schefczyk, L., Heinemann, G., and Casper, M.: Does
applying quantile mapping to subsamples improve the bias correction of daily
precipitation?, Int. J. Climatol., 38, 1623–1633,
https://doi.org/10.1002/joc.5283, 2018. a
Rizzo, M. L. and Székely, G. J.: Energy distance, Wiley Interdisciplinary
Reviews: Computational Statistics, 8, 27–38, https://doi.org/10.1002/wics.1375, 2016. a
Rojas, R., Feyen, L., Dosio, A., and Bavera, D.: Improving pan-European hydrological simulation of extreme events through statistical bias correction of RCM-driven climate simulations, Hydrol. Earth Syst. Sci., 15, 2599–2620, https://doi.org/10.5194/hess-15-2599-2011, 2011. a
Schmidli, J., Frei, C., and Vidale, P. L.: Downscaling from GCM
precipitation: a benchmark for dynamical and statistical downscaling methods,
Int. J. Climatol., 26, 679–689, https://doi.org/10.1002/joc.1287,
2006. a
Schölzel, C. and Friederichs, P.: Multivariate non-normally distributed random variables in climate research – introduction to the copula approach, Nonlin. Processes Geophys., 15, 761–772, https://doi.org/10.5194/npg-15-761-2008, 2008. a
Sharma, A., Wasko, C., and Lettenmaier, D. P.: If precipitation extremes are
increasing, why aren't floods?, Water Resour. Res., 54, 8545–8551,
https://doi.org/10.1029/2018WR023749, 2018. a
Strandberg, G., Bärring, L., Hansson, U., Jansson, C., Jones, C.,
Kjellström, E., Kupiainen, M., Nikulin, G., Samuelsson, P., and
Ullerstig, A.: CORDEX scenarios for Europe from the Rossby Centre
regional climate model RCA4, Tech. rep., SMHI, https://www.diva-portal.org/smash/record.jsf?pid=diva2:948136&dswid=-7052 (last access: 29 April 2022), 2015. a
Sunyer, M. A., Madsen, H., Rosbjerg, D., and Arnbjerg-Nielsen, K.: A Bayesian
approach for uncertainty quantification of extreme precipitation projections
including climate model interdependency and nonstationary bias, J.
Climate, 27, 7113–7132, https://doi.org/10.1175/JCLI-D-13-00589.1, 2014. a
Teutschbein, C. and Seibert, J.: Bias correction of regional climate model
simulations for hydrological climate-change impact studies: Review and
evaluation of different methods, J. Hydrol., 456, 12–29,
https://doi.org/10.1016/j.jhydrol.2012.05.052, 2012. a, b, c
Teutschbein, C. and Seibert, J.: Is bias correction of regional climate model (RCM) simulations possible for non-stationary conditions?, Hydrol. Earth Syst. Sci., 17, 5061–5077, https://doi.org/10.5194/hess-17-5061-2013, 2013. a
Themeßl, M. J., Gobiet, A., and Heinrich, G.: Empirical-statistical
downscaling and error correction of regional climate models and its impact on
the climate change signal, Climatic Change, 112, 449–468,
https://doi.org/10.1007/s10584-011-0224-4, 2012. a, b
Vandenberghe, S., Verhoest, N. E. C., Onof, C., and De Baets, B.: A
comparative copula-based bivariate frequency analysis of observed and simulated storm events: A case study on Bartlett-Lewis modeled rainfall, Water Resour. Res., 47, W07529, https://doi.org/10.1029/2009WR008388, 2011. a
Van de Velde, J.: h-cel/ImpactofBiasNonstationarity: Impact of bias nonstationarity: calculations (2.0), Zenodo [code], https://doi.org/10.5281/zenodo.6501634, 2022. a
Van Schaeybroeck, B. and Vannitsem, S.: Assessment of calibration assumptions
under strong climate changes, Geophys. Res. Lett., 43, 1314–1322,
https://doi.org/10.1002/2016GL067721, 2016. a
van Vuuren, D. P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard,
K., Hurtt, G. C., Kram, T., Krey, V., Lamarque, J.-F., Masui, T., Meinshausen, M., Nakicenovic, N., Smith, S. J., and Rose, S. K.: The
representative concentration pathways: an overview, Climatic Change, 109, 5–31, https://doi.org/10.1007/s10584-011-0148-z, 2011. a
Vautard, R., Kadygrov, N., Iles, C., Boberg, F., Buonomo, E., Bülow, K.,
Coppola, E., Corre, L., Meijgaard, E., Nogherotto, R., Sandstad, M.,
Schwingshackl, C., Somot, S., Aalbers, E., Christensen, O. B., Ciarlo, J. M.,
Demory, M.-E., Giorgi, F., Jacob, D., Jones, R. G., Keuler, K., Kjellström,
E., Lenderink, G., Levavasseur, G., Nikulin, G., Sillmann, J., Solidoro, C.,
Sørland, S. L., Steger, C., Teichmann, C., Warrach-Sagi, K., and Wulfmeyer, V.: Evaluation of the large EURO-CORDEX regional climate model
ensemble, J. Geophys. Res.-Atmos., 126, e2019JD032344, https://doi.org/10.1029/2019JD032344, 2021. a, b, c
Velázquez, J. A., Troin, M., Caya, D., and Brissette, F.: Evaluating the
time-invariance hypothesis of climate model bias correction: implications for
hydrological impact studies, J. Hydrometeorol., 16, 2013–2026,
https://doi.org/10.1175/JHM-D-14-0159.1, 2015. a
Verhoest, N. E. C., Troch, P. A., and De Troch, F. P.: On the applicability of
Bartlett–Lewis rectangular pulses models in the modeling of design
storms at a point, J. Hydrol., 202, 108–120,
https://doi.org/10.1016/S0022-1694(97)00060-7, 1997. a
Verstraeten, G., Poesen, J., Demarée, G. R., and Salles, C.: Long-term
(105 years) variability in rain erosivity as derived from 10-min rainfall
depth data for Ukkel (Brussels, Belgium): Implications for assessing
soil erosion rates, J. Geophys. Res., 111, D22109,
https://doi.org/10.1029/2006jd007169, 2006. a
Vrac, M. and Thao, S.: R package R2D2, Zenodo [code], https://doi.org/10.5281/zenodo.4021981, 2020a. a
Wang, L. and Chen, W.: Equiratio cumulative distribution function matching as
an improvement to the equidistant approach in bias correction of
precipitation, Atmos. Sci. Lett., 15, 1–6, https://doi.org/10.1002/asl2.454,
2014. a, b, c
Wang, Y., Sivandran, G., and Bielicki, J. M.: The stationarity of two
statistical downscaling methods for precipitation under different choices of
cross-validation periods, Int. J. Climatol., 38,
e330–e348, https://doi.org/10.1002/joc.5375, 2018. a
Wilcke, R. A. I., Mendlik, T., and Gobiet, A.: Multi-variable error correction
of regional climate models, Climatic Change, 120, 871–887,
https://doi.org/10.1007/s10584-013-0845-x, 2013. a
Willems, P.: Revision of urban drainage design rules after assessment of
climate change impacts on precipitation extremes at Uccle, Belgium,
J. Hydrol., 496, 166–177, https://doi.org/10.1016/j.jhydrol.2013.05.037,
2013. a
Willems, P. and Vrac, M.: Statistical precipitation downscaling for small-scale
hydrological impact investigations of climate change, J. Hydrol.,
402, 193–205, https://doi.org/10.1016/j.jhydrol.2011.02.030, 2011.
a
Yang, W., Gardelin, M., Olsson, J., and Bosshard, T.: Multi-variable bias correction: application of forest fire risk in present and future climate in Sweden, Nat. Hazards Earth Syst. Sci., 15, 2037–2057, https://doi.org/10.5194/nhess-15-2037-2015, 2015. a
Zhang, X., Alexander, L., Hegerl, G. C., Jones, P., Tank, A. K., Peterson,
T. C., Trewin, B., and Zwiers, F. W.: Indices for monitoring changes in
extremes based on daily temperature and precipitation data, Wiley
Interdisciplinary Reviews: Climate Change, 2, 851–870,
https://doi.org/10.1002/wcc.147, 2011. a, b
Zorita, E. and Von Storch, H.: The analog method as a simple statistical
downscaling technique: Comparison with more complicated methods, J.
Climate, 12, 2474–2489,
https://doi.org/10.1175/1520-0442(1999)012<2474:TAMAAS>2.0.CO;2, 1999. a
Zscheischler, J., Westra, S., Hurk, B. J. J. M., Seneviratne, S. I., Ward,
P. J., Pitman, A., AghaKouchak, A., Bresch, D. N., Leonard, M., Wahl, T., and
Zhang, X.: Future climate risk from compound events, Nat. Clim. Change, 8,
469–477, https://doi.org/10.1038/s41558-018-0156-3, 2018. a
Zscheischler, J., Martius, O., Westra, S., Bevacqua, E., Raymond, C., Horton,
R. M., van den Hurk, B., AghaKouchak, A., Jézéquel, A., Mahecha,
M. D., Maraun, D., Ramos, A. M., Ridder, N. N., Thiery, W., and Vignotto, E.:
A typology of compound weather and climate events, Nature Reviews Earth &
Environment, https://doi.org/10.1038/s43017-020-0060-z, 2020. a
Short summary
An important step in projecting future climate is the bias adjustment of the climatological and hydrological variables. In this paper, we illustrate how bias adjustment can be impaired by bias nonstationarity. Two univariate and four multivariate methods are compared, and for both types bias nonstationarity can be linked with less robust adjustment.
An important step in projecting future climate is the bias adjustment of the climatological and...