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Abstract. Climate change is one of the biggest challenges
currently faced by society, with an impact on many systems,
such as the hydrological cycle. To assess this impact in a local
context, regional climate model (RCM) simulations are often
used as input for rainfall-runoff models. However, RCM re-
sults are still biased with respect to the observations. Many
methods have been developed to adjust these biases, but only
during the last few years, methods to adjust biases that ac-
count for the correlation between the variables have been
proposed. This correlation adjustment is especially impor-
tant for compound event impact analysis. As an illustration,
a hydrological impact assessment exercise is used here, as
hydrological models often need multiple locally unbiased in-
put variables to ensure an unbiased output. However, it has
been suggested that multivariate bias-adjusting methods may
perform poorly under climate change conditions because of
bias nonstationarity. In this study, two univariate and four
multivariate bias-adjusting methods are compared with re-
spect to their performance under climate change conditions.
To this end, a case study is performed using data from the
Royal Meteorological Institute of Belgium, located in Uccle.
The methods are calibrated in the late 20th century (1970–
1989) and validated in the early 21st century (1998–2017),
in which the effect of climate change is already visible. The
variables adjusted are precipitation, evaporation and temper-
ature, of which the former two are used as input for a rainfall-
runoff model, to allow for the validation of the methods on
discharge. Although not used for discharge modeling, tem-
perature is a commonly adjusted variable in both uni- and

multivariate settings and we therefore also included this vari-
able. The methods are evaluated using indices based on the
adjusted variables, the temporal structure, and the multivari-
ate correlation. The Perkins skill score is used to evaluate the
full probability density function (PDF). The results show a
clear impact of nonstationarity on the bias adjustment. How-
ever, the impact varies depending on season and variable: the
impact is most visible for precipitation in winter and sum-
mer. All methods respond similarly to the bias nonstation-
arity, with increased biases after adjustment in the validation
period in comparison with the calibration period. This should
be accounted for in impact models: incorrectly adjusted in-
puts or forcings will lead to predicted discharges that are bi-
ased as well.

1 Introduction

The influence of climate change is felt throughout many
regions of the world, as becomes evident from the higher
frequency or intensity of natural hazards, such as floods,
droughts, heatwaves and forest fires (IPCC, 2012). As these
intensified natural hazards threaten society, it is essential to
be prepared for them. Knowledge on future climate change
is obtained by running global climate models (GCMs), cre-
ating large ensemble outputs such as in the Climate Model
Intercomparison Project 6 (CMIP6) (Eyring et al., 2016). Al-
though they are informative on a global scale, the generated
data are too coarse for local climate change impact assess-
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ments. To bridge the gap from the global to the local scale,
regional climate models have become a standard application
(Jacob et al., 2014), using the output from GCMs as input or
boundary conditions.

Although the information provided by both GCMs and re-
gional climate models (RCMs) is valuable, both are biased
with respect to the observations, especially for precipitation
(Kotlarski et al., 2014). The biases can occur in any statis-
tic and are commonly defined as “a systematic difference
between a simulated climate statistic and the corresponding
real-world climate statistic” (Maraun, 2016). These biases
are caused by temporal or spatial discretization and unre-
solved or unrepresented physical processes (Teutschbein and
Seibert, 2012; Cannon, 2016). An important example of the
latter is convective precipitation, which can only be resolved
by very high resolution models. Although the further im-
provement of models is an important area of research (Prein
et al., 2015; Kendon et al., 2017; Helsen et al., 2019; Fosser
et al., 2020), such improved models are computationally ex-
pensive. As such, it is still necessary practice to statistically
adapt the climate model output to adjust the biases (Chris-
tensen et al., 2008; Teutschbein and Seibert, 2012; Maraun,
2016).

Many different bias-adjusting methods exist (Teutschbein
and Seibert, 2012; Gutiérrez et al., 2019). They all calibrate
a transfer function using the historical simulations and his-
torical observations and apply this transfer function to the
future simulations to generate future “observed values” or
an adjusted future. Of all the different methods, the quantile
mapping method (Panofsky et al., 1958) was shown to be the
generally best performing method (Rojas et al., 2011; Gud-
mundsson et al., 2012). Quantile mapping adjusts biases in
the full distribution, whereas most other methods only adjust
biases in the mean and/or variance.

An important problem with quantile mapping and most
other commonly used methods is that they are univariate and
do not adjust biases in the multivariate correlation. Although
quantile mapping can retain climate model multivariate cor-
relation (Wilcke et al., 2013), the ability of univariate meth-
ods to improve the climate model’s multivariate correlation
has been questioned (Hagemann et al., 2011; Ehret et al.,
2012; Hewitson et al., 2014). This is important for impact
assessment, as local impact models often need multiple input
variables and many high-impact events are caused by the co-
occurrence of multiple phenomena, the so-called “compound
events” (Zscheischler et al., 2018, 2020). For example, flood
magnitude can be projected by a rainfall-runoff model using
evaporation and precipitation time series as an input. If the
correlation between these variables is biased with respect to
the observations, then it can be expected that the model out-
put is biased as well, which can further propagate in the im-
pact models. During the past decade, multiple methods have
been developed to counter this problem. The first methods
focused on the adjustment of two jointly occurring variables,
most often precipitation and temperature, such as those by

Piani and Haerter (2012) and Li et al. (2014). However, it be-
came clear that adjusting only two variables would not suf-
fice; hence many more methods have been developed that
jointly adjust multiple variables, including those by Vrac and
Friederichs (2015), Cannon (2016), Mehrotra and Sharma
(2016), Dekens et al. (2017), Cannon (2018), Vrac (2018),
Nguyen et al. (2018), and Robin et al. (2019). Yet, the recent
growth in availability of such methods comes along with a
gap in the knowledge on their performance. In some studies,
these methods have been compared with one or two older
multivariate methods to reveal the improvements (Vrac and
Friederichs, 2015; Cannon, 2018) or with univariate meth-
ods (Räty et al., 2018; Zscheischler et al., 2019; Meyer et al.,
2019). Each of the latter three studies comparing uni- and
multivariate bias adjusting methods indicates that these lead
to different results, yet it is difficult to conclude whether uni-
or multivariate methods perform best. According to Zscheis-
chler et al. (2019) multivariate methods have an added value.
Räty et al. (2018) conclude that the multivariate methods
and univariate methods perform similarly, while Meyer et al.
(2019) could not draw definitive conclusions. These studies
vary in setup, adjusted variables and study area, which all
could have caused the difference in added value. In all three
studies, the same method, namely the “multivariate bias cor-
rection in n dimensions” (MBCn, Cannon, 2018) was the ba-
sis for comparison. Only recently, the first studies compar-
ing multiple multivariate bias-adjusting methods were pub-
lished (François et al., 2020; Guo et al., 2020). The study
by François et al. (2020) focused on the different principles
underlying the multivariate bias-adjusting methods and con-
cluded that the choice of method should be based on the
end user’s goal. Besides, they also noticed that all multivari-
ate methods studied fail in adjusting the temporal structure
of a time series. In contrast to the focus of François et al.
(2020), Guo et al. (2020) studied the performance of multi-
variate bias-adjusting methods for climate change impact as-
sessment and concluded that multivariate methods could be
interesting in this context. However, the performance of the
multivariate methods was lower in the validation period and
the authors suggested that this could be caused by bias non-
stationarity. As the use of multivariate bias-adjusting meth-
ods could be an important tool for climate change impact
assessment, this deserves more attention.

The bias stationarity – or bias time invariance – assump-
tion is the most important assumption for bias correction. It
implies that the bias is the same in the calibration and valida-
tion or future periods and that the transfer function based on
the calibration period can thus be used in the future period.
However, this assumption does not hold due to different types
of nonstationarity induced by climate change, which may
cause problems (Milly et al., 2008; Derbyshire, 2017). In the
context of bias adjustment, this problem has been known for
several years (Christensen et al., 2008; Ehret et al., 2012),
but it has not received a lot of attention. A few authors have
tried to propose new types of bias relationships (Buser et al.,
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2009; Ho et al., 2012; Sunyer et al., 2014; Kerkhoff et al.,
2014). Recently, it has been suggested that it is best to as-
sume a non-monotonic bias change (Van Schaeybroeck and
Vannitsem, 2016). Some authors suggested that bias nonsta-
tionarity could be an important source of uncertainty (Chen
et al., 2015; Velázquez et al., 2015; Wang et al., 2018; Hui
et al., 2019), but not all found clear indications of bias non-
stationarity (Maraun, 2012; Piani et al., 2010; Maurer et al.,
2013).

The availability of new methods and more data enables
a more coherent assessment of the bias (non)stationarity is-
sue. By comparing four bias-adjusting methods in a climate
change context with possible bias nonstationarity, some of
the remaining questions in François et al. (2020) and Guo
et al. (2020) can be answered. The four multivariate bias-
adjusting methods compared in this study are “multivari-
ate recursive quantile nesting bias correction” (MRQNBC,
Mehrotra and Sharma, 2016), MBCn (Cannon, 2018), “dy-
namical optimal transport correction” (dOTC, Robin et al.,
2019) and “rank resampling for distributions and depen-
dences” (R2D2, Vrac, 2018; Vrac and Thao, 2020b). These
four methods give a broad view of the different multivari-
ate bias adjustment principles, which we will elaborate on in
Sect. 3.3. As a baseline, two univariate bias-adjusting meth-
ods will be used: quantile delta mapping (QDM, Cannon
et al., 2015) and modified quantile delta mapping (mQDM,
Pham, 2016). QDM is a classical univariate bias-adjusting
method and is chosen for this analysis as it is a robust and rel-
atively common quantile mapping method, especially as one
of the subroutines in the multivariate bias-adjusting meth-
ods (Mehrotra and Sharma, 2016; Nguyen et al., 2016; Can-
non, 2018). mQDM, on the other hand, is one of the so-
called “delta change” methods, which are based on an ad-
justment of the historical time series. Using these univariate
bias-adjusting methods, we can assess whether multivariate
and univariate bias-adjusting methods differ in their response
to possible bias nonstationarity.

The methods will be compared by applying them for the
bias adjustment of precipitation, potential evaporation and
temperature. The bias-adjusted time series will be used as
inputs for a hydrological model in order to simulate the dis-
charge. Discharge time series are the basis for flood hazard
calculation, but it can also be considered as an interesting
source of validation themselves (Hakala et al., 2018). Here,
we present a detailed case study. The bias adjustment and
discharge simulation are both assessed at one grid cell/lo-
cation only. Although this does not allow for investigating
the spatial extent and impact of nonstationarity, the focus on
one location gives information on the influence of possible
bias nonstationarity on local impact models and may hence
be a starting point for broader assessments. We will also not
account for the differences between models, as we only in-
vestigate a single GCM–RCM model chain. This allows for
a precise investigation of the possible effects of bias nonsta-
tionarity, although it does not allow for assessing other types

of uncertainty. The change of some biases from calibration to
validation time series will be calculated, to indicate the extent
of the bias nonstationarity. Maurer et al. (2013) proposed the
R index for this purpose. Calculating the bias nonstationarity
between both periods will give an indication of the impact of
a changing bias on climate impact studies for the end of the
21st century. As Chen et al. (2015) mentioned: “If biases are
not constant over two very close time periods, there is little
hope they will be stationary for periods separated by 50 to
100 years”.

2 Data and validation

2.1 Data

The observational data used were obtained from the Bel-
gian Royal Meteorological Institute (RMI) Uccle observa-
tory. The most important time series used is the 10 min pre-
cipitation amount, gauged with a Hellmann–Fuess pluvio-
graph, from 1898 to 2018. An earlier version of this precip-
itation data set was described by Demarée (2003) and ana-
lyzed in De Jongh et al. (2006). Multiple other studies have
used this time series (Verhoest et al., 1997; Verstraeten et al.,
2006; Vandenberghe et al., 2011; Willems, 2013). The 10 min
precipitation time series was aggregated to daily level to be
comparable with the other time series used.

For the multivariate methods, the precipitation time se-
ries was combined with a 2 m air temperature and poten-
tial evaporation time series. The daily potential evapora-
tion was calculated by the RMI from 1901 to 2019, us-
ing the Penman formula for a grass reference surface (Pen-
man, 1948) with variables measured at the Uccle observa-
tory. Daily average temperatures were obtained using mea-
surements from 1901 to 2019. As the last complete year
for precipitation was 2017, the data were used from 1901
to 2017, amounting to 117 years of daily data. As Uccle (near
Brussels) is situated in a region with small topographic dif-
ferences, it is assumed that the precipitation statistics within
the grid cell are uniform. Hence, the Uccle data can be used
for comparison with the gridded climate simulation data dis-
cussed below.

For the simulations, data from the EURO-CORDEX
project (Jacob et al., 2014) were used. The Rossby Centre
regional climate model RCA4 was used (Strandberg et al.,
2015) as it is one of the few RCMs with potential evapora-
tion as an output variable. This RCM was forced with bound-
ary conditions from the MPI-ESM-LR GCM (Popke et al.,
2013) and has a spatial resolution of 0.11◦, or 12.5 km. His-
torical data and scenario data for the grid cell comprising
Uccle were respectively obtained for 1970–2005 and 2006–
2100. The former time frame is limited by the earliest avail-
able data from the RCM. The latter time frame was only used
until 2017, in accordance with the observational data. As cli-
mate change scenario, an RCP4.5 forcing was used in this pa-
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per (van Vuuren et al., 2011). Since only “near future” (from
the model point of view) data were used, the choice of forc-
ing does not have a large impact. However, when studying
scenarios in a time frame further away from the present, us-
ing an ensemble of forcings is more relevant to be aware of
the uncertainty regarding future climate change impact.

2.2 Time frames

As mentioned in the introduction, it is important to assess
bias-adjusting methods in a context they will be used in,
i.e., under climate change conditions. The time series used
in this study were chosen accordingly: 1970–1989 was cho-
sen as the “historical” or calibration time period, and 1998–
2017 was chosen as the “future” or validation time period.
In this time frame, effects of climate change are already visi-
ble (IPCC, 2013). Time series of 20 years were chosen here,
although it is advised to use 30 years of data to have robust
calculations (Berg et al., 2012; Reiter et al., 2018). However,
as no climate model data prior to 1970 are available, using
30 years of data would have led to overlapping time series.

2.3 Validation framework

An important aspect in bias adjustment is the validation
of the methods. Different methods are available, of which
a pseudo-reality experiment (Maraun, 2012) is one of the
most-used ones. In this method, each member of a model en-
semble is in turn used as the reference in a cross-validation.
However, while such a setup is useful when comparing bias-
adjustment methods, it only mimics a real application con-
text. When sufficient observations are available, a “pseudo-
projection” setup (Li et al., 2010) can be used. This setup re-
sembles a “differential split-sample testing” (Klemeš, 1986)
and is more in agreement with a practical application of bias-
adjusting methods. Differential split-sample testing has been
used in a bias adjustment context by Teutschbein and Seibert
(2013), by constructing two time series with respectively the
driest and wettest years. In our case study, it is assumed that
the two time series differ enough because of climate change.
Consequently, the approach is simple, and as the validation
is not set in the future, it is considered a “pseudo-projection”.

Besides the choice of time frames and data, also the choice
of validation indices is of key importance. Maraun and Wid-
mann (2018a) stress that these indices should only be in-
directly affected by the bias adjustment, as only validating
on adjusted indices can be misleading. Such adjusted indices
are the precipitation intensity, temperature and evaporation,
which are used to build the transfer function in the historical
setting and should be corrected by construction. Under bias
stationarity, this correction will be carried over to the future,
possibly hiding small inconsistencies that may arise for ex-
treme values. If the bias is not stationary, the effect might
be different between adjusted and indirectly affected indices.
As such, besides the three adjusted variables (indices 1 to

3 in Table 1) and their correlations (indices 4 to 12, which
are directly adjusted by some of the methods), also indices
based on the precipitation occurrence and on the discharge Q

are used. The occurrence-based indices (13 to 16) allow for
assessing how the methods influence the precipitation time
series structure. The discharge-based indices (17 and 18) al-
low for the assessment of the impact of the different bias-
adjusting methods on simulated river flow. The discharge-
based indices combine the information of the other indices by
routing through the rainfall-runoff model. They are the most
important aspect of the assessment, as they indicate the nat-
ural hazard. As the percentiles focus mostly on the extremes,
the Perkins skill score (PSS) (Perkins et al., 2007) is used to
assess the adjustment of the full probability density function
(PDF) of the variables. All indices are calculated taking all
days into account, instead of only calculating them on wet
days, as some of the multivariate bias-adjusting methods do
not discriminate between wet or dry days in their adjustment.

The indices are all calculated on a seasonal basis for both
the calibration and validation period. By comparing over
these periods, we can relate the performance to either the
method itself or to bias (non)stationarity, on a seasonal basis.
The seasons were defined as follows: winter (DJF), spring
(MAM), summer (JJA) and autumn (SON).

2.4 Bias nonstationarity

In a study on possible changes in bias, Maurer et al. (2013)
proposed the R index:

R = 2
| biasf− biash |

| biasf | + | biash |
, (1)

where biasf and biash are the biases in respectively the future
and historical time series, calculated on the basis of the ob-
servations and raw climate simulations. The R index takes a
value between 0 and 2. If the index is greater than 1, the dif-
ference in bias between the two sets is larger than the aver-
age bias of the model and it is likely that the bias adjustment
would degrade the RCM output rather than improve it. The
index is calculated for the indices used for validation in or-
der to have an indication of the influence of bias nonstation-
arity on these indices. Besides for the indices, the R index
is also calculated for the average and standard deviation of
each variable, in order to be able to more easily visualize the
changes in distribution.

2.5 Hydrological model

Similar to Pham et al. (2018), we use the probability dis-
tributed model (PDM, Moore, 2007; Cabus, 2008), a lumped
conceptual rainfall-runoff model to calculate the discharge
for the Grote Nete watershed in Belgium. This model uses
precipitation and evaporation time series as inputs to gen-
erate a discharge time series. The PDM as used here was
calibrated (RMSE = 0.9 m3 h−1; see Pham et al. (2018) for
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Table 1. Overview of the indices used.

No. Index Name

1 Px Precipitation amount percentile values, with x the percentile considered
2 Tx Temperature percentile values, with x the percentile considered
3 Ex Evaporation percentile values, with x the percentile considered
4 corrP,E Spearman correlation between the time series of P and E

5 corrP,T Spearman correlation between the time series of P and T

6 corrE,T Spearman correlation between the time series of E and T

7 crosscorrP,E,0 Lag-0 crosscorrelation between the time series of P and E

8 crosscorrP,T ,0 Lag-0 crosscorrelation between the time series of P and T

9 crosscorrE,T ,0 Lag-0 crosscorrelation between the time series of E and T

10 crosscorrP,E,1 Lag-1 crosscorrelation between the time series of P and E

11 crosscorrP,T ,1 Lag-1 crosscorrelation between the time series of P and T

12 crosscorrE,T ,1 Lag-1 crosscorrelation between the time series of E and T

13 PP 00 Precipitation transition probability from a dry to a dry day
14 PP 10 Precipitation transition probability from a wet to a dry day
15 Ndry Number of dry days
16 Plag1 Precipitation lag-1 auto-correlation
17 Qx Discharge percentiles, with x the percentile considered
18 QT 20 20-year return period value of discharge

more details) using the particle swarm optimization algo-
rithm (PSO, Eberhart and Kennedy, 1995). As in Pham et al.
(2018), it was assumed that the differences between meteo-
rological conditions in the Grote Nete watershed and Uccle
are negligible, and thus the adjusted data for the Uccle grid
cell can be used as a forcing for the PDM. This assumption is
based on the limited distance of 50 km between the stations
used for the observations in Uccle and the gauging station
used for the PDM calibration. As mentioned before, the re-
gion has a flat topography and, hence, the climatology can
be considered to be similar. Furthermore, the goal is not to
make predictions, but to assess the impact of different bias
adjustment methods on the discharge values. To calculate the
bias on the indices, observed, raw and adjusted RCM time se-
ries were used as forcing for this model. The discharge time
series generated by the observations is considered to be the
“observed” discharge, and biases are calculated in compari-
son with this time series.

2.6 Validation metrics

The residual biases relative to the observations and to the
model bias are often used in this paper to graphically present
and interpret the results. These residual biases are based on
the “added value” concept (Di Luca et al., 2015) and enable
a comparison based on two aspects. The first aspect is the
extent of the bias removal relative to the original value for the
corresponding index for the observation time series, and the
second is the performance in removing the bias. The use of
the residual biases allows for a detailed study and comparison
of the effect of bias adjustment on the different indices.

The residual bias relative to the observations RBO for an
index k is calculated as follows:

RBO (k)= 1−
| biasraw(k) | − | biasadj(k) |

| obs(k) |
, (2)

with raw(k) the raw climate model simulations, adj(k) the
adjusted climate model simulations and obs(k) the observed
values for index k.

The residual bias relative to the model bias RBMB for an
index k is calculated as follows:

RBMB (k)= 1−
| biasraw(k) | − | biasadj(k) |

| biasraw(k) |
. (3)

Absolute values are used in Eqs. (2) and (3) to compute the
absolute difference between the raw and adjusted values, thus
neglecting a possible change of sign of the bias. If the values
of these residual biases are lower than 1 for an index, the
method performs better than the raw RCM for this index. The
best methods have low scores on both residual biases for as
many indices as possible. The low scores imply that the bias
adjustment is both effective and has a clear impact relative
to the observations. If only RBMB has a low value (< 0.5),
then the bias adjustment was effective, but it had a limited
impact relative to the observations. In contrast, if only RBO
has a low value, then the bias adjustment may be limited, but
even this limited bias adjustment had an impact relative to
the observations.
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3 Bias-adjusting methods

3.1 Occurrence-bias adjustment: thresholding

One of the deficiencies of RCMs, especially in northwest-
ern Europe, is the so-called “drizzle days” (Gutowski et al.,
2003; Themeßl et al., 2012; Argüeso et al., 2013), during
which small amounts of precipitation are simulated while
these days should have been dry. This has an influence on the
temporal structure of the simulated time series and should
thus be adjusted (Ines and Hansen, 2006). This is com-
monly done in an occurrence-bias-adjusting step before the
main step, the intensity-bias adjustment. In this study, we use
the thresholding occurrence-bias-adjusting method, which is
one of the most common occurrence-bias-adjusting methods
(e.g., Hay and Clark, 2003; Schmidli et al., 2006; Ines and
Hansen, 2006). This method is only applicable in regions
where the assumption holds that the simulated time series
has more wet days than the observed time series. This is the
case for northwestern Europe (Themeßl et al., 2012) and Bel-
gium in particular. An advanced version of the thresholding
method is used here. To adjust the number of wet days, the
number of dry days in both the observations and the sim-
ulations are calculated. The difference in dry days between
the two periods, 1N , is the number of days of the simu-
lated time series that have to be adapted. If 1N days have
to be converted to dry days, then the 1N days with the low-
est amounts of precipitation are changed to dry days. 1N is
computed for the past and applied in the future and conse-
quently relies on the bias stationarity assumption. However,
as thresholding is used prior to all methods, the influence of
possible bias nonstationarity on 1N is assumed to be neg-
ligible. Besides, as is shown in Sect. 4.1, the number of dry
days is stationary for the time frames studied in this paper.

In this advanced version of thresholding, some considera-
tions are made. First, a day is considered wet if its simulated
precipitation amount is above 0.1 mm, to account for mea-
surement errors in the observations. Second, the adjustment
is done on a monthly basis, to account for the temporal struc-
ture in the observed time series. Third, both historical and
future simulations are adjusted, to ensure that the bias can be
transferred from the historical to the future time period.

3.2 Univariate intensity-bias-adjusting methods

3.2.1 Quantile delta mapping

The “quantile delta mapping” (QDM) method was first pro-
posed by Li et al. (2010). Its main idea is to preserve
the climate simulation trends: it takes trend nonstationar-
ity (changes in the simulated distribution) into account to
a certain degree. Although it handles temperature adjust-
ments well, it gives unrealistic values for precipitation and
was therefore extended by Wang and Chen (2014) for pre-
cipitation adjustment. By combining the methods by Li et al.

(2010) (“equidistant CDF-matching”) and Wang and Chen
(2014) (“equiratio CDF-matching”), Cannon et al. (2015) de-
veloped the QDM method.

Mathematically, this method can be written as

xfa
i = xfs

i +F−1
xho

(
Fxfs

(
xfs

))
−F−1

xhs

(
Fxfs

(
xfs

))
(4)

in the additive case and

xfa
i = xfs

i

F−1
xho

(
Fxfs

(
xfs))

F−1
xhs

(
Fxfs

(
xfs

)) (5)

in the ratio or multiplicative case. The superscripts hs, ho,
fs and fa indicate respectively the historical simulations, the
historical observations, the future simulations and the ad-
justed future. In this paper, the additive version is used for
temperature time series and the multiplicative one for pre-
cipitation and evaporation time series. This choice is based
on the work of Wang and Chen (2014), who have shown
that using the additive adjustment for precipitation results in
unrealistic precipitation values and introduced a multiplica-
tive adjustment. For evaporation, we follow the few available
studies (e.g., Lenderink et al., 2007) in using the same ad-
justment as for precipitation.

For computational ease, an empirical CDF was used in
the QDM equations (as in Gudmundsson et al., 2012; Gut-
jahr and Heinemann, 2013 for other quantile mapping meth-
ods). It is also important to note that for precipitation, Eq. (5)
was applied only on the days considered wet, i.e., with a
precipitation higher than 0.1 mm. For consistency, a thresh-
old of 0.1 mm was also used for evaporation. It is impor-
tant to note that although QDM is only applied on wet
days, it can still transform low-precipitation wet days into
days that are considered to be dry (e.g., with a precipitation
amount < 0.1 mm) if the ratio in Eq. (5) is small enough.

3.2.2 Modified quantile delta mapping

Pham (2016) proposed another version of QDM, following
the delta change philosophy (Olsson et al., 2009; Willems
and Vrac, 2011): the trend established by the RCM is as-
sumed to be more thrust-worthy than the absolute value it-
self. When applying this type of methods, the simulated
change between the historical and the future is applied to the
observations. Thus, instead of the future simulations, the his-
torical observations are adjusted to the future “observations”.
As Johnson and Sharma (2011) mention, this workflow could
be problematic for future impact assessment, as it inherits
the temporal structure of the historical observations. This
method is mathematically very similar to the QDM method,
exchanging the roles of xfs and xho. Thus, it is named “mod-
ified quantile delta mapping” (mQDM) and can for the addi-
tive case be written as

xfa
i = xho

i +F−1
xfs

(
Fxho

(
xho

))
−F−1

xhs

(
Fxho

(
xho

))
. (6)
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The ratio version is given by

xfa
i = xho

i

F−1
xfs

(
Fxho

(
xho))

F−1
xhs

(
Fxho

(
xho

)) . (7)

For the implementation, the same principles were used as for
the QDM method: empirical CDFs and a minimum value of
0.1 mm d−1 to be considered a wet day.

3.3 Multivariate intensity-bias-adjusting methods

The increasing number of multivariate bias-adjusting meth-
ods throughout the 2010s urges the need to classify them ac-
cording to their properties. One possible classification was
done by Vrac (2018), who proposed the “marginal/depen-
dence” versus the “successive conditional” approach. The
former approach separately adjusts the 1D-marginal dis-
tributions and the dependence structure and is applied in,
e.g., Vrac and Friederichs (2015), Cannon (2018) and Vrac
(2018). These two components are then recombined to obtain
data that are close to the observations for both marginal and
multivariate aspects. The latter approach consists of adjust-
ing a variable conditionally on the variables already adjusted.
This procedure is applied successively to each variable. Ex-
amples can be found in, e.g., Piani and Haerter (2012), Li
et al. (2014) and Dekens et al. (2017). Vrac (2018) dis-
cusses the limitations of the “successive conditional” ap-
proach and advocates for the use of the more robust and
coherent “marginal/dependence” approach. Hence, “succes-
sive conditional” methods are not included in the present
paper. Robin et al. (2019) and François et al. (2020) ex-
tended the classification by introducing the “all-in-one” ap-
proach, which adjusts the marginal variables and the corre-
lations simultaneously, “dynamical optimal transport correc-
tion” (dOTC, Robin et al., 2019) being such a method.

Another perspective on the multivariate bias-adjusting
methods is to consider the amount of temporal adjustment
that is allowed or applied by the method. This is important,
as the amount of temporal adjustment is intrinsically linked
with the main goal, the adjustment of the multivariate dis-
tribution of the variables. This distribution, in which the de-
pendence is characterized by the underlying copula (Nelsen,
2006; Schölzel and Friederichs, 2008), can be estimated us-
ing the ranks. Thus, to adjust the multivariate distribution,
the ranks of the climate model are replaced by those of the
observations, using methods such as the “Schaake shuffle”
(Clark et al., 2004; Vrac and Friederichs, 2015). This im-
plies that the temporal structure and trends of the climate
model will be altered, which may have a considerable im-
pact (François et al., 2020). This impact is especially large
when multiday characteristics strongly matter, such as in ap-
plications as the hydrological example we use in this study
(Addor and Seibert, 2014). Vrac (2018) mentions this neces-
sity to modify the temporal structure and rank chronology of
the simulations. Yet, he also mentions that the extent of this

modification is still a matter of debate. Cannon (2016) de-
scribes this as the “knobs” that control whether marginal dis-
tributions, inter-variable or spatial dependence structure and
temporal structure are more informed by the climate model
or the observations. Thus, the choice between the tempo-
ral structure of the climate model and unbiased dependence
structures is a trade-off that has to be made. Some methods,
such as those by Vrac and Friederichs (2015), Mehrotra and
Sharma (2016) and Nguyen et al. (2018), rely on the observa-
tions for their temporal properties, while other methods try to
find the middle ground (e.g., Vrac, 2018 and Cannon, 2018).
A last perspective, which is not limited to multivariate meth-
ods, is that of trend preservation, i.e., the capacity of meth-
ods to preserve the changes simulated by the climate model,
such as changes in mean, extremes and temporal structure.
Although the amount of trend preservation or adjustment has
been a matter of debate (Ivanov et al., 2018), Maraun (2016)
argues that it is sensible to preserve the simulated changes
and hence the climate change signal, if the model simula-
tion is credible. As such, trend preservation interacts with
bias nonstationarity: non-stationarity can be seen as the di-
vergence between the observed and simulated trends. Hence,
in a nonstationary context, trend-preserving methods may be
disadvantaged, as they will assume that the simulated trend
is trustworthy. In the univariate setting, QDM is an example
of a trend-preserving method.

Our choice of multivariate bias-adjusting methods takes
the above classification into account. The oldest method in
the comparison is “multivariate recursive quantile nesting
bias correction” (MRQNBC) (Mehrotra and Sharma, 2016).
This method replaces the simulated correlations by those
of the observations and is a “marginal/dependence” method
according to François et al. (2020). As QDM is used for
the marginal distributions, the latter are preserved. How-
ever, MRQNBC does not preserve the changes in depen-
dence. “Multivariate bias correction in n dimensions” (Can-
non, 2018) is both a “marginal/dependence” method and a
method that tries to combine information from the climate
model and the observations. Similar to MRQNBC, it explic-
itly preserves the simulated changes in the marginal distri-
butions by applying QDM for the marginal distributions. As
the simulated dependence structure is the basis for the adjust-
ment, it will be slightly preserved. The “rank resampling for
distributions and dependences” (R2D2, Vrac, 2018; Vrac and
Thao, 2020b) method preserves the rank correlation of the
observations, but it allows the climate model to have some in-
fluence on the temporal properties. It is also a “marginal/de-
pendence” method: in the present paper, QDM is used as its
univariate routine and thus the changes in marginal distri-
butions are preserved by R2D2. The last method, “dynami-
cal optimal transport correction” (Robin et al., 2019), differs
considerably from the other two methods: it generalizes the
“transfer function” principle using the “optimal transport”
paradigm (Villani, 2008), thereby defining a new category
of multivariate bias-adjusting methods: the above-mentioned

https://doi.org/10.5194/hess-26-2319-2022 Hydrol. Earth Syst. Sci., 26, 2319–2344, 2022



2326 J. Van de Velde et al.: Impact of bias nonstationarity on bias adjustment

all-in-one approach. It is the only method that explicitly pre-
serves the simulated changes in both the marginal distribu-
tions and the dependence structure. Although far from com-
plete, by comparing these four methods, a broad view of the
different approaches in multivariate bias adjustment can be
obtained. The main principles of the bias-adjusting methods
are summarized in Table 2.

3.3.1 Multivariate recursive quantile nesting bias
correction

In 2016, Mehrotra and Sharma (2016) proposed a new mul-
tivariate bias adjustment method, named “multivariate re-
cursive quantile nesting bias correction” (MRQNBC), based
on a combination of several older methods by Johnson and
Sharma (2012), Mehrotra and Sharma (2012) and Mehrotra
and Sharma (2015) and by incorporating QDM as the uni-
variate routine for adjusting the marginals. The underlying
idea of this method is to adjust on more than one timescale
and to nest the results of the different timescales within each
other. The adjustment on multiple timescales is rarely in-
corporated in bias-adjusting methods (Haerter et al., 2011).
On each timescale, the biases in lag-0 and lag-1 autocorre-
lation and lag-0 and lag-1 cross-correlation coefficients, i.e.,
the persistence attributes, are adjusted, instead of focusing
on the mean or the distribution. The biases are adjusted by
replacing the modeled persistence attributes with observed
persistence attributes, on the basis of autoregressive expres-
sions. Besides replacing the simulated temporal properties
with the observed ones, this implies that the simulated depen-
dence structure is also replaced with the observed structure.
As QDM is applied on each timescale, the marginal proper-
ties are preserved.

After adjusting all timescales, the final daily result is cal-
culated by weighing all timescales. However, as the nesting
method cannot fully remove biases at all timescales, Mehro-
tra and Sharma (2016) suggested to repeat the entire pro-
cedure multiple times. Yet, in our case multiple repetitions
exacerbated the results. Non-realistic outliers created by the
first repetition influenced the subsequent repetitions, creating
even more non-realistic values. This was most clearly seen
for precipitation. As a bounded variable, precipitation is most
sensitive for non-realistic values. Nonetheless, running the
method just once yielded satisfactory results for most vari-
ables. A full mathematical description of the method can be
found in Mehrotra and Sharma (2016).

3.3.2 Multivariate bias correction in n dimensions

In 2018, Cannon (2018) proposed the “multivariate bias cor-
rection in n dimensions” (MBCn) method as a flexible mul-
tivariate bias-adjusting method. The method’s flexibility has
attracted some attention, and it has already been used in mul-
tiple studies (Räty et al., 2018; Zscheischler et al., 2019;
Meyer et al., 2019; François et al., 2020). This method con-

sists of three steps. First, the multivariate data are rotated
using a randomly generated orthogonal rotation matrix, ad-
justed with the additive form of QDM, and rotated back until
the calibration period model simulations converge to the ob-
servations. This convergence is verified on the basis of the
energy distance (Rizzo and Székely, 2016). Second, the val-
idation period simulations are adjusted using QDM, as this
method preserves the simulated trends. As the last step, these
adjusted time series are shuffled using the Schaake shuffle
(Clark et al., 2004) based on the rank order of the rotated
data set. This shuffle can remove temporal structure in the
resulting time series. A full mathematical description of the
method can be found in Cannon (2018).

3.3.3 Rank resampling for distributions and
dependences

One of the most recent methods studied in this paper is the
“rank resampling for distributions and dependences” (R2D2)
method, which was designed by Vrac (2018) as an improve-
ment of the older EC–BC method (Vrac and Friederichs,
2015). Recently, R2D2 was further extended for better mul-
tisite and temporal representation by Vrac and Thao (2020b)
(R2D2 v2.0). This method is a marginal/dependence multi-
variate bias-adjusting method, which adjusts the simulated
climate dependence by resampling from the observed depen-
dence. The resampling is applied through the search for an
analogue for the ranks of a simulated reference dimension in
the observed time series, which makes this an application of
the analogue principle (Lorenz, 1969; Zorita and Von Storch,
1999) in bias adjustment. A detailed mathematical descrip-
tion can be found in Vrac (2018) and Vrac and Thao (2020b).

In the present application of R2D2, QDM was used as the
univariate bias-adjusting method to ensure consistency with
the other multivariate bias-adjusting methods. This ensures
the preservation of the changes in the marginal distribution.
Each variable (precipitation, evaporation and temperature)
was in turn used as the reference dimension. As the present
study was limited to a single grid cell, the use of additional
data was limited. However, to ensure that the selection of
analogues is diverse enough, five lags were used to search for
analogues, three of which were retained in the resampling.
Finally, the results for the three variables were averaged to
present the final R2D2 result.

3.3.4 Dynamical optimal transport correction

Recently, Robin et al. (2019) indicated that the notion of a
transfer function in quantile mapping can be generalized to
the theory of optimal transport. Optimal transport is a way
to measure the dissimilarity between two probability distri-
butions and to use this as a means for transforming the dis-
tributions in the most optimal way (Villani, 2008; Peyré and
Cuturi, 2019).
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Table 2. Overview of the multivariate bias-adjusting methods.

MBCn MRQNBC R2D2 dOTC

Category Marginal/dependence Marginal/dependence Marginal/dependence All-in-one

Statistical method Iterative partial matrix
recorrelation

Autoregressive model-
ing

Conditional resampling Optimal transport

Timescale Daily adjustment by
QDM+ seasonal
shuffle

Combination of daily,
monthly, seasonal and
yearly adjustment

Daily adjustment by
QDM+ seasonal
resampling

Seasonal adjustment

Trend preservation Marginal properties
by the application of
QDM, dependence
structure partly

Marginal properties by
the application of QDM

Marginal properties by
the application of QDM

Marginal properties and
dependence structure

Dependence structure Future, adjusted based
on observations

Observed Observed Future, adjusted

Temporal properties Rank-based shuffle Observed Analogue-based shuffle Future

Optimal transport was used by Robin et al. (2019) to ad-
just the bias of a multivariate data set in the “dynamical opti-
mal transport correction” method (dOTC), which extends the
“CDF-transform” (CDF-t) bias-adjusting method (Michelan-
geli et al., 2009) to the multivariate case. dOTC calculates the
optimal transport plans from Xho to Xhs (the bias between the
model and the simulations) and from Xhs to Xfs (the evolu-
tion of the model). The combination of both optimal transport
plans allows for bias adjustment while preserving the simu-
lated changes in both marginal properties and the dependence
structure. A full mathematical description of the method can
be found in Robin et al. (2019).

3.4 Experimental design

Prior to all intensity-bias-adjusting methods, the thresholding
occurrence-adjusting method was applied. In the intensity-
bias-adjustment step, a balance was sought between ran-
domness and computational power for the calculation of the
intensity-bias-adjusting methods. Methods with randomized
steps were repeated. As such, 10 calculations were made for
dOTC. The bias-adjustment methods were always applied
with seasonal input to ensure consistency among all meth-
ods. Only for MRQNBC, seasonal input was not considered,
as this method has a seasonal component. As MRQNBC is
developed to take multiple timescales into account, the com-
parison with the other multivariate bias-adjusting methods
allows one to discern whether fine-tuning for seasons or a
more general timescale-focused method is the best approach
to deal with seasonally varying biases.

The resulting values of each index were averaged for fur-
ther comparison. Biases on the indices were always calcu-
lated as raw or adjusted simulations minus observations, in-
dicating a positive bias if the raw or adjusted simulations are

larger than the observations and a negative bias if the simu-
lations are smaller.

4 Results

In this section, we will first discuss the R index calculations
for bias change. Next, we will discuss the validation indices.
For the validation indices, first the indices based on the ad-
justed variables are discussed, followed by an elaboration on
the indices based on the derived variables. As the effect on
discharge is the overarching goal of this paper and the dis-
charge indices are affected by all other indices, those will be
discussed last.

4.1 Bias change

The results for the R index vary considerably depending
on the season: bias nonstationarity (R index values > 1) is
present for all variables, but the extent varies (Tables 3
and 4). For precipitation (Table 3), bias nonstationarity is
most clear in winter and summer for the highest percentiles
(P99 and P99.5). For temperature, winter, spring and summer
all show some high R index values, but while winter has
high R index values for all percentiles, the nonstationarity
is restricted to the lower to middle percentiles (T5, T25, T50
and T75) for spring and the lower percentiles (T5 and T25) for
summer. This is reflected in the mean and standard deviation:
both are nonstationary for winter, whereas only the mean is
nonstationary for spring and neither the mean nor the stan-
dard deviation is nonstationary for summer. In autumn, the
behavior is less clear: two percentiles (P50 and P95) have an
R index value of 2, but unlike the other seasons, there is no
apparent pattern as these values are far apart. However, the
standard deviation has an R index value higher than 1 for au-
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tumn temperatures, indicating that some bias nonstationarity
could be present. For evaporation, spring has the clearest bias
nonstationarity: almost all percentiles have an R index value
higher than 1. For the other seasons, the nonstationarity is
less striking, although present. For winter and autumn, E75
has an R index value of 1 or higher and a clearly nonstation-
ary standard deviation, while in summer, E25 and E50 have
an R index value higher than 1, although neither mean nor
standard deviation is clearly nonstationary.

Table 4 presents the R index values for occurrence and cor-
relation. For occurrence, the bias nonstationarity seems lim-
ited: only in spring and autumn, the R index value for precip-
itation lag-1 autocorrelation is higher than 1. For correlation,
the bias nonstationarity is also limited, although some of the
correlations of evaporation and either temperature or precip-
itation have an R index value higher than 1, but this depends
on the season (crosscorrE,T ,0 and crosscorrE,T ,1 in spring,
crosscorrE,T ,1 in winter, corrE,T in summer and corrP,E in
autumn).

Many of the R index values thus indicate that the bias
changes between the two periods considered here (1970–
1989 versus 1998–2017) might already be large enough to
have an effect on the bias adjustment. As these periods are
only separated by 10 years, this is an important indicator
for the bias adjustment of late 21st century data, just as
Chen et al. (2015) mentioned. The results vary substantially
among seasons, variables and distributions of the variables.
Although this could give an indication of the reason for poor
performance for some of these indices, it is impossible to
state exactly what causes the bias nonstationarities purely
based on these results. Possible causes could be that recent
trends such as those in precipitation extremes (Papalexiou
and Montanari, 2019) are poorly captured by the models
and that limiting mechanisms such as soil moisture deple-
tion (Bellprat et al., 2013) are poorly modeled or that natural
variability (Addor and Fischer, 2015) influences the biases.
However, discussing this in depth is out of the scope of the
present study and deserves a separate study. In what follows,
we will focus on the performance of the bias-adjusting meth-
ods and whether or not there is a link with these nonstation-
arities.

4.2 Precipitation amount

The Perkins skill score (PSS) for precipitation (Table 5) in-
dicates that the PDFs of the observations and adjusted sim-
ulations agree rather well. These scores are similar in the
calibration and validation period. Nonetheless, some aspects
deserve more attention. By focusing on the calibration pe-
riod, it is possible to understand the basic performance of the
methods. By construction, mQDM has a PSS of 100 %. A
more peculiar aspect is the slightly lower PSS of MRQNBC
and the clearly lower PSS of dOTC: this indicates that these
methods are harder to calibrate correctly and thus that the re-
sults might be influenced by a poor calibration. Lastly, the

Table 3. R index values for the variables for 1970–1989 as historical
period and 1998–2017 as future period.

Indices Winter Spring Summer Autumn

P25 0.22 0 0.67 0.67
P50 0.26 0.33 0.06 0.27
P75 0.45 0.33 0.26 0.09
P90 0.44 0.26 0.62 0.03
P95 0.94 0.05 0.92 0.21
P99 1.76 0.09 2 0.83
P99.5 1.59 0.27 2 0.46
PMean 0.46 0.20 0.49 0.09
PSD 1.76 0.05 1.56 0.07

T5 2 2 2 0.43
T25 2 2 1.42 0.30
T50 1.73 2 0.38 2
T75 2 2 0.19 0.72
T90 2 0.89 0.27 0.77
T95 1.38 0.94 0.14 2
T99 2 0.11 0.23 0.40
T99.5 2 0.35 0.45 0.16
TMean 2 2 0.42 0.63
TSD 2 0.38 0.73 1.27

E5 0.08 0.36 0.81 0.35
E25 0.51 1.37 1.17 0.19
E50 0.51 2 1.48 0.76
E75 1 2 0.86 1.54
E90 0.71 2 0.64 0.76
E95 0.72 1.97 0.56 0.79
E99 0.28 0.89 0.12 0.87
E99.5 0.05 2 0.18 0.85
EMean 0.51 2 0.93 0.56
ESD 2 0.13 0.02 2

Table 4. R index values for occurrence and correlation for 1970–
1989 as historical period and 1998–2017 as future period.

Indices Winter Spring Summer Autumn

Plag1 0.02 2 0.16 2
PP00 0.16 0.59 0.06 0.76
PP10 0.13 0.74 0.25 0.83
Ndry 0.12 0.71 0.17 0.50
corrE,T 0.21 0.11 2 0.05
corrP,E 0.02 0.08 0.32 1.60
corrP,T 0.39 0.01 0.35 0.24
crosscorrE,T ,0 0.95 2 0.62 0.33
crosscorrE,T ,1 1.38 1.44 0.06 0.48
crosscorrP,E,0 0.44 0.16 0.41 0.30
crosscorrP,E,1 0.09 0.08 0.08 0.35
crosscorrP,T ,0 0.03 0.17 0.13 0.19
crosscorrP,T ,1 0.28 0.23 0.12 0.16
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results for QDM and MBCn are the same. This corresponds
to the expectation, as the marginal aspects of both methods
are the same by construction. Moving on to the validation
period, it is clear that all methods generally perform worse
than in the calibration period. This has been reported before
(e.g., Guo et al., 2020). Based on the PSS values alone, it is
impossible to distinguish the cause of this decrease in perfor-
mance. Note that the performance of dOTC increases or is
rather stable, making it more difficult to discuss this method.

The relatively good performance for the full PDF contrasts
with the bias adjustment of the extreme values. Figures 1
and 2 present the RBO and RBMB values for the highest P

percentiles. The lowest percentiles are not included in these
plots, as their RBO or RBMB values are for most methods
lower than 0. In the calibration period (Fig. 1), all methods
perform relatively well. For QDM, mQDM and MBCn, the
adjustment is nearly perfect (as also indicated by the PSS val-
ues), but even for dOTC, the adjustment is acceptable, with
the RBO and RBMB values for many indices lower than 1.
The contrast with the validation period (Fig. 2) can be eas-
ily seen for QDM, mQDM and MBCn. Closer inspection
yields more details on differences among seasons. For winter
(blue) and summer (yellow), only P75 and P90 can be plotted
in the validation period, whereas for spring and autumn all
percentiles from P75 to P99.5 can be plotted for all methods.
In winter and summer, the highest percentiles have RBO or
RBMB values higher than 1. To enable comparison between
calibration and validation period and between different vari-
ables, all plots were chosen to have the same ranges; hence
the residual biases for these poorly adjusted variables can-
not be plotted. The poor adjustment of the high percentiles in
winter and summer is probably caused by bias nonstationar-
ity: the R index values for these percentiles are higher than 1,
in contrast with the low and well-adjusted higher percentiles
for spring and autumn precipitation. However, although P95
has an R index value lower than 1 for both winter and sum-
mer, it is also poorly adjusted. This illustrates that the R

index gives an indication of the nonstationarity, but it also
hides information on the size of the biases. For summer, the
bias for P95 changes from 5.09 mm in the calibration period
to 1.89 mm in the validation period, a change of over 3 mm.
For winter, the bias changes from 1.44 mm in the calibra-
tion period to 0.52 mm in the validation period, a change of
almost 1 mm. Yet, these differences have a very similar R

index value.
The nonstationarity seen in Figs. 1 and 2 is not apparent

from the PSS, as it only occurs in the tail of the distribution.
This also follows from the R index values for the mean and
standard deviation in winter and summer. Only for standard
deviation, the R index value indicates nonstationarity in win-
ter and summer: the values are respectively 1.79 and 1.56.
Thus, the nonstationarity of the extremes and the standard
deviation seem to be linked.

The methods seem to perform rather similarly within ev-
ery season. Although the RBMB values vary, indicating that

for some methods the bias is removed to a larger extent, the
RBO values are similar, indicating that relative to the obser-
vations, the influence of the difference in removed bias is low.
The similarity in RBO values is related to the observed val-
ues, which increase more than the biases with increasing per-
centiles. Hence, the RBO values are often higher for higher
percentiles. Although the methods perform similarly on a
seasonal basis, small differences may accumulate on a yearly
basis. For example, on a yearly basis, the mean number of
heavy precipitation days (R10, one of the ETCCDI indices
Zhang et al., 2011) is well presented by all adjusted simula-
tions (Fig. 3), but the yearly variance clearly depends on the
method: MRQNBC overestimates the variance, whereas the
other methods slightly underestimate it.

For precipitation, bias nonstationarity was present for
the highest percentiles in both winter and summer (P99
and P99.5), with R index values ≥ 2, the highest possi-
ble value. For these percentiles, the adjustment was clearly
poorer in the validation period than in the calibration period,
indicating that bias nonstationarity has an impact on bias ad-
justment. This implies that it is important to study the propa-
gation of bias nonstationarity towards discharge assessment.
This propagation will be further studied in Sect. 4.7, but a
first overview based on literature can already be given. Al-
though a high precipitation depth is not the main driver of
floods in northwestern Europe (Berghuijs et al., 2019), it can
act as a trigger, especially under climate change and for urban
catchments (Sharma et al., 2018). For the latter, the nonsta-
tionarity and poor adjustment in summer might be especially
relevant, as convective storms can easily cause pluvial floods.
However, the hydrological model applied in this study (i.e.,
PDM) is not meant to model this type of floods. The impact
on discharge might thus be more pronounced in winter.

4.3 Temperature

Table 6 displays the PSS values for temperature. In general,
the same conclusions can be drawn as for precipitation (Ta-
ble 5): QDM, mQDM and MBCn perform best in both the
calibration and the validation period, with R2D2 perform-
ing only slightly worse and all methods performing worse
in the calibration period. However, for temperature, dOTC
performs relatively well, and MRQNBC performs worst for
all seasons. Additionally, R2D2 shows the sharpest decrease
in performance throughout all seasons from the calibration
period to the validation period. This decrease is probably
caused by the analogue resampling, which does not fully re-
produce the original marginal distribution, although it should
approximate it.

Although the PDF of the adjusted simulations matches
the observed PDF relatively well, a comparison between the
RBMB and RBO values of the calibration (Fig. 4) and valida-
tion period (Fig. 5) shows some clear differences between the
seasonal bias adjustment. In the validation period, all meth-
ods perform poorly for winter (blue), whereas for the other
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Table 5. PSS values for precipitation in the calibration (Cal) and validation (Val) periods (%).

Winter Spring Summer Autumn

Cal Val Cal Val Cal Val Cal Val

QDM 98.4 92.3 99.0 94.1 99.2 96.7 98.5 95.2
mQDM 100.0 92.5 100.0 94.1 100.0 96.3 99.8 95.3
MBCn 98.4 92.3 99.0 94.1 99.2 96.7 98.5 95.2
MRQNBC 93.1 92.8 84.7 81.0 96.1 95.6 93.5 91.0
dOTC 85.7 92.4 86.4 81.8 86.0 93.9 85.2 84.8
R2D2 95.9 93.5 97.2 92.7 96.9 95.9 96.2 94.5

Figure 1. RBMB versus RB0 for the precipitation indices in the calibration period. (a) QDM, (b) mQDM, (c) MBCn, (d) MRQNBC,
(e) dOTC, (f) R2D2. Winter: blue, spring: ochre, summer: yellow, autumn: purple.

seasons, at least some methods are able to adjust the raw sim-
ulations. For winter, the R index values are high for all per-
centiles, which indicates that nonstationarity is the probable
cause for the poor performance. This is especially clear for
QDM, mQDM and MBCn (upper half of the figures). The
performance of MRQNBC, dOTC and R2D2 (lower half of
the figures) is poor in the calibration period as well. In the
calibration period, some percentiles have a larger bias af-
ter the adjustment for these three methods. This cannot be
observed for QDM, mQDM and MBCn, which illustrates
that even a relatively small difference in PSS value (92.9 for
R2D2 versus 97.5 for MBCn) can imply a poorer bias adjust-
ment. Nonetheless, even for these methods there is a clear
difference in visible winter markers, indicating a loss of per-
formance from calibration to validation period.

For spring (ochre), the performance also decreases from
calibration to validation period, although not as extensively
as for winter. For spring, T5, T25, T50 and T75 all have larger
biases after adjustment than before adjustment. In contrast, in
the calibration period, T5 in spring stands out as best adjusted
percentile for all methods (except dOTC; see panel e). The
poor performance for these lower T percentiles corresponds

to the high R index value (i.e., 2) for all of these percentiles
for spring. For summer, this is also observed, although to
a smaller extent: only T5 (with R index value 2) seems to
be affected. For autumn, the performance is generally worse
in the validation period than in the calibration period, with
some percentiles having a larger bias after adjustment. How-
ever, because of the limited nonstationarity, conclusions are
harder to draw. Nonetheless, it seems that the percentiles with
a high R index have the worst performance. As an example,
the RBMB for T95 (R index 2) is higher than 3 for all meth-
ods.

All temperature percentiles in winter and the lowest tem-
perature percentiles in spring and summer all have high R in-
dex values (an R index of 2 for most of these percentiles) and
are poorly adjusted in the validation period. This implies that
the lower temperature values are more susceptible to nonsta-
tionarity, which should certainly be accounted for when esti-
mating extremes such as cold spells. However, the impact
on discharge is expected to be limited. A possible impact
of temperature bias nonstationarity could be seen through
the generally high rank correlation with evaporation. As the
rank correlation is important in the multivariate methods, the
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Figure 2. RBMB versus RB0 for the precipitation in the validation period. (a) QDM, (b) mQDM, (c) MBCn, (d) MRQNBC, (e) dOTC,
(f) R2D2. Winter: blue, spring: ochre, summer: yellow, autumn: purple.

Table 6. PSS values for temperature in the calibration (Cal) and validation (Val) periods (%).

Winter Spring Summer Autumn

Cal Val Cal Val Cal Val Cal Val

QDM 97.5 91.7 96.7 87.9 97.2 89.0 98.0 91.8
mQDM 99.1 92.4 99.1 87.8 99.1 90.0 99.4 91.7
MBCn 97.5 91.7 96.7 87.9 97.2 89.0 98.0 91.8
MRQNBC 78.7 76.6 90.1 75.3 58.9 61.7 87.1 80.7
dOTC 92.6 89.1 90.1 85.0 86.6 82.0 91.7 88.9
R2D2 92.9 75.6 93.3 76.3 95.0 75.2 92.5 81.0

Figure 3. Box plot of the annual number of days with precipitation
higher than 10 mm (ETCCDI “heavy precipitation” days; see Zhang
et al., 2011) in the validation period. (a) Observations, (b) raw simu-
lations, (c) QDM, (d) mQDM, (e) MBCn, (f) MRQNBC, (g) dOTC,
(h) R2D2.

bias in temperature could thus propagate to discharge. How-
ever, the bias nonstationarity and its impact is mostly present
for lower temperature percentiles, which are correlated with
lower evaporation percentiles. As such, the poor adjustment
of temperature biases seen here will probably have a limited
impact on the discharge.

4.4 Potential evaporation

The PSS values for potential evaporation (Table 7) are similar
to those for temperature (Table 6) and precipitation (Table 5):
QDM, mQDM, MBCn and R2D2 all perform very well, but
they perform worse in the validation period than in the cal-
ibration period. However, in contrast with precipitation and
especially temperature, dOTC performs poorly in the cali-
bration period. Given the poor performance in the calibration
period, the results for the validation period for dOTC are less
interpretable than those for other variables. MRQNBC is in
between dOTC and the other methods, with the PSS values
depending heavily on the season. For spring and summer, the
change between the calibration and validation period is larger
than changes for precipitation or temperature, at least for the
four well-performing methods. As an example, for spring,
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Figure 4. RBMB versus RB0 for the temperature indices in the calibration period. (a) QDM, (b) mQDM, (c) MBCn, (d) MRQNBC, (e) dOTC,
(f) R2D2. Winter: blue, spring: ochre, summer: yellow, autumn: purple.

Figure 5. RBMB versus RB0 for the temperature indices in the validation period. (a) QDM, (b) mQDM, (c) MBCn, (d) MRQNBC, (e) dOTC,
(f) R2D2. Winter: blue, spring: ochre, summer: yellow, autumn: purple.

the PSS value changes for QDM from 99.2 to 83.4, while for
summer this change is from 98.7 to 85.5. Whereas the R in-
dex values for spring evaporation are generally high, with
only a few below 1, those for summer are less extreme.

The RBMB and RBO results for potential evaporation in
the validation period are displayed in Figs. 6 and 7. We will
focus here on QDM, mQDM, MBCn and R2D2, as the PSS
results for the calibration period indicate a generally poorer
performance for MRQNBC and dOTC. For every season, all
methods perform rather poorly in the validation period and
worse than in the calibration period, with QDM, mQDM,
MBCN and R2D2 performing similarly. Based on the R in-
dex values and Table 7, it would seem that spring is most
influenced by bias nonstationarity, as many percentiles have
an R index value higher than 1 and the PSS values differ

considerably for spring. Figure 7 shows that only E5 (for
QDM, mQDM, MBCn, MRQNBC and R2D2, respectively
panels a, b, d and f), E99 (for QDM, mQDM, MBCn and
R2D2, respectively panels a, b and f) and E99.5 (for QDM,
mQDM and MBCn, panels a, b and c) have RBMB and RBO
values lower than 1. Except for E99.5, this corresponds to the
percentiles that have an R index value lower than 1. How-
ever, the RBMB and RBO values for E99.5 are close to 1 for
the three methods mentioned here. The performance of the
bias adjustment methods for this percentile can thus not con-
sidered to be good, but at the least it is not worse than the raw
climate simulations.

For the other seasons some differences between the cali-
bration and validation period are worth discussing as well.
In winter (blue), where nonstationarity mostly affected the
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Table 7. PSS values for evaporation in the calibration (Cal) and validation (Val) periods (%).

Winter Spring Summer Autumn

Cal Val Cal Val Cal Val Cal Val

QDM 99.6 91.4 99.2 83.4 98.7 85.5 99.0 92.1
mQDM 100.0 91.1 100.0 82.7 100.0 87.0 100.0 92.5
MBCn 99.6 91.4 99.2 83.4 98.7 85.5 99.0 92.1
MRQNBC 89.1 84.5 91.4 74.1 80.2 78.0 85.1 88.6
dOTC 60.0 52.3 69.5 54.0 66.0 46.8 65.0 64.2
R2D2 96.4 83.1 96.0 71.0 95.3 72.0 95.2 76.3

Figure 6. RBMB versus RB0 for the potential evaporation indices in the calibration period. (a) QDM, (b) mQDM, (c) MBCn, (d) MRQNBC,
(e) dOTC, (f) R2D2. Winter: blue, spring: ochre, summer: yellow, autumn: purple.

standard deviation, the performance of all methods for all
indices is slightly worse in comparison with the calibration
period. Only the lower percentiles (E5 and E25) can be ad-
justed well by almost every method, although this cannot be
seen in the plot for E5 as this percentile corresponds with a
potential evaporation of 0 mm in winter. In summer (yellow),
where the R index values indicated some nonstationarity for
the lower E percentiles, the performance is poorer in the val-
idation period for most percentiles, with only E99 and E99.5
clearly performing well for all methods (except dOTC). In
autumn (purple), the R index values indicated the largest im-
pact on the standard deviation. As in winter, the best per-
formance is obtained for the lowest percentiles and for the
highest percentiles (E99 and E99.5).

For evaporation, bias nonstationarity was most obvious in
spring, with many percentiles having an R index value higher
than 1 or even 2. This seemed to have an impact on the bias
adjustment, as these percentiles were poorly adjusted in the
validation period. For other seasons, there was less nonsta-
tionarity; nevertheless, a small impact could be found. How-
ever, the results for potential evaporation have to be consid-
ered in comparison to the effective bias values for the original

simulations and the adjusted simulations: the original biases
were relatively small (not shown). This is reflected by the
RBO values. These are high, which indicates that the bias
adjustment is limited relative to the observations. Nonethe-
less, the bias and failure to adjust it could have an impact
on discharge. Evaporation is an input for the hydrological
model used in this paper and has an influence on soil mois-
ture storage representation. As soil moisture is a major driver
for floods in northwestern Europe (Berghuijs et al., 2019), it
is important to understand how evaporation biases propagate
to the impact model. Yet, the impact of soil moisture is most
important in winter, and thus the propagation of evaporation
nonstationarity in spring might be limited.

4.5 Correlation

For correlation (Fig. 8), all methods perform relatively
well in the validation period. The univariate methods will
adopt the dependence structure of either the raw simulations
(QDM) or the observations (mQDM), whereas the multivari-
ate methods are specifically designed to adjust the depen-
dence structure, and both strategies seem to work well. Al-
though the multivariate methods could not always be easily
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Figure 7. RBMB versus RB0 for the potential evaporation indices in the validation period. (a) QDM, (b) mQDM, (c) MBCn, (d) MRQNBC,
(e) dOTC, (f) R2D2. Winter: blue, spring: ochre, summer: yellow, autumn: purple.

calibrated for the variables under study, these results indicate
that they perform well for the correlation, which is their main
purpose. However, it should be noted that some of the bi-
ases in correlation are very small in the raw simulations (not
shown) and that, for those correlations, the good results for
QDM are trivial: this method will adopt the correlation of the
simulations. This is linked with an issue raised by Zscheis-
chler et al. (2019): in situations with low biases in the cor-
relation, the univariate methods will almost always outper-
form the multivariate bias-adjusting methods, as specifically
adjusting the dependence structure sometimes results in an
increase of the bias.

The good performance for the validation period indicates
that the impact of nonstationarity is limited, as was also
shown by the small R index values (Sect. 4.1). This is con-
firmed by the biases in the calibration period (not shown),
which are similar to those in the validation period. However,
for some values, the R index value was higher than 1; thus
it is important to know what caused this. For corrE,T in sum-
mer, the differences between the validation and calibration
period are limited, although only for dOTC this value is well
adjusted in both periods. However, the bias for the original
simulations is lower than 0.10 % in both the calibration and
validation period and switches in sign, which inflates the R

index value. For crosscorrE,T ,0 and crosscorrE,T ,1, the same
effect occurs. Besides, it seems that the bias of these three
correlations is too small to be corrected by any method and
that trying to adjust this automatically inflates the results. As
discussed earlier, this shows that while the R index can be a
valuable tool for some variables, it does not always tell the
full story.

The limited nonstationarity indicated by the R index val-
ues (most values lower than 1) and the generally good results
for correlation adjustment indicate that the biases in the vari-

ables, and especially those induced by nonstationarity, will
generally not propagate to the discharge by biases in the cor-
relation. If the correlation would be biased, there would be
multiple pathways for propagation: either the marginal dis-
tributions themselves (e.g., the biased large summer precip-
itation depth) or a mismatch between the variables (e.g., a
high precipitation depth in combination with an unrealisti-
cally high evaporation).

4.6 Precipitation occurrence

Figure 9 shows that the bias-adjusting methods are able to
adjust the precipitation occurrence well in most seasons. The
R index values indicated that there might be some nonsta-
tionarity in spring and autumn (Sect. 4.1): the value for Plag1
is 2, and for the other indices the values are clearly higher
than those in winter and summer. In contrast to other situ-
ations of bias nonstationarity, this results in a better perfor-
mance for these two seasons (calibration period not shown).
Winter and summer, for which no nonstationarity could be
detected, perform similarly in both the calibration and val-
idation period. However, in all seasons mQDM (panel b)
performs worse in the validation than in the calibration pe-
riod. As this method uses the observed structure, the tempo-
ral structure is by construction perfect in the calibration pe-
riod. The poorer result in the validation period might imply
that using the observed temporal structure does not suffice for
future impacts, which might be important when using delta
methods for impact assessment.

When comparing the methods, some differences related
to their structure can be noticed. In general, QDM (panel a,
mQDM (panel b) and R2D2 (panel f) perform best. These
three methods all have the same basic structure, but this
does not explain all differences with the other methods. Both
MBCn (panel c) and R2D2 are marginal/dependence multi-
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Figure 8. RBMB versus RB0 for the correlation indices in the validation period. (a) QDM, (b) mQDM, (c) MBCn, (d) MRQNBC, (e) dOTC,
(f) R2D2. Winter: blue, spring: ochre, summer: yellow, autumn: purple.

Figure 9. RBMB versus RB0 for the precipitation occurrence indices in the validation period. (a) QDM, (b) mQDM, (c) MBCn,
(d) MRQNBC, (e) dOTC, (f) R2D2. Winter: blue, spring: ochre, summer: yellow, autumn: purple.

variate bias-adjusting methods, but R2D2 clearly performs
better than MBCn for dry-to-dry transition probability. How-
ever, the methods to adjust the dependence differ: a rank-
based shuffle in MBCn versus an analogue-based shuffle in
R2D2. It seems here that the analogue-based shuffle performs
better for temporal properties. As a better temporal adjust-
ment was one of the goals of the analogue-based shuffle
(Vrac and Thao, 2020b), this is no surprise. The good perfor-
mance of mQDM implies that applying the temporal struc-
ture of the observations in general still works for the “future”
setting considered here. However, care should be taken when
applying delta change methods on settings that are more in-
fluenced by climate change, as illustrated by the poor per-
formance of MRQNBC. This method takes temporal aspects
on different time steps into account, and it seems that this

causes too much reliance on the observations. Lastly, dOTC
also performs relatively well, but it is not able to correctly
adjust the dry-to-dry transition probability. This poor adjust-
ment is probably linked with one of the deficiencies of dOTC:
it sometimes creates nonphysical precipitation values, which
have to be corrected by thresholding.

Although some apparent bias nonstationarity was present
for occurrence in spring and autumn (a high R index value for
Plag1), this did not lead to a poorer adjustment. Only some
of the multivariate methods adjust the dry-to-dry transition
probability poorly, but, in comparison with biases for the
variables, the impact is limited. However, Plag1 is adjusted
only indirectly by the intensity adjustment. Yet, in theory this
could still cause discrepancies. In general, a poor adjustment
of temporal properties might lead to discharge biases by in-
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creased or decreased precipitation over a period of time, but
this effect does not seem to appear in this study.

4.7 Discharge

The Perkins skill score values for discharge (Table 8) show
that the application of an impact model heavily affects the bi-
ases and that the impact of bias nonstationarity can be prop-
agated by the impact model. The general trends that were
present for the marginal aspects (Tables 5–7) can no longer
be distinguished. In general, the performance still decreases
between the calibration and validation period, but for both
winter and autumn, dOTC and R2D2 perform better in the
validation period than in the calibration period. Unexpect-
edly, MRQNBC performs best in winter and summer, but it
performs worst in spring and autumn. However, given all sea-
sons, QDM and mQDM perform best, with MBCn and R2D2

performing only slightly worse. The impact of bias nonsta-
tionarity seems to be the largest in spring. All methods per-
form poorly in the validation period, the largest PSS value
being only 65 %. In spring, evaporation was most affected by
bias nonstationarity, and this seems to be propagating to the
discharge PDF, despite the relatively small biases and lim-
ited influence of soil moisture on discharge in spring. The
decrease in PSS value is 15 % to 20 %, depending on the
method.

The RBO and RBMB values are shown in Figs. 10 and 11,
for respectively the calibration and the validation period. The
impact on the PDF for spring discharge is not clearly seen
when comparing these values: for all methods and seasons,
the bias adjustment seems to result in an agreeable represen-
tation of the discharge in the validation period. Yet, even a
small shift can result in a poorer performance, as indicated
by the PSS values.

Clearer decreases in performance can be found for sum-
mer and winter. When comparing the results for the vali-
dation period with the residual biases in the calibration pe-
riod (Fig. 10), it becomes clear that the results for winter
and summer are worse in the validation period. This corre-
sponds with the poor performance for precipitation adjust-
ment in these seasons, which was linked with bias nonsta-
tionarity. The bias-adjusting methods seem to respond simi-
larly to the nonstationarity. For winter, the RBO and RBMB
values are generally lower for all methods. However, only
for the highest discharge percentiles (Q99 and Q99.5) and
the 20-year return period index, the bias is worse after adjust-
ment than before adjustment. This can seem negligible, but
these discharge percentiles correspond with potential floods.
For summer, the bias after adjustment is still lower than that
of the raw climate simulations, but it has clearly increased
in comparison with the calibration method. As mentioned in
Sect. 4.2, it should be taken into account that the PDM cal-
culates river discharge. The nonstationarity in summer might
propagate differently when studying pluvial floods in, e.g.,
urban catchments. For all methods, the bias of the highest

discharge percentiles was completely adjusted in the calibra-
tion period and could no longer be plotted, but it has shifted
towards slightly higher RBO and RBMB values.

In general, the results for discharge illustrate that if an
important forcing variable for an impact model shows large
nonstationarity, this nonstationarity will propagate through
the model. There are various ways for this propagation. For
example, the impact of nonstationarity on potential evapora-
tion propagates as an influence on the PDF structure, but it
is less visible when focusing on the percentiles, whereas the
percentiles are more influenced by precipitation nonstation-
arity.

5 Discussion and conclusions

The goal of this paper was to assess how six bias-adjusting
methods handle a climate change context with possible bias
nonstationarity. What is presented here is only a case study
for Uccle, Belgium, but the framework provided yields re-
sults that can be expanded upon. Four of the bias-adjusting
methods were multivariate: MRQNBC, MBCn, dOTC and
R2D2. The two other ones were univariate: one was a tradi-
tional bias-adjusting method (QDM), while the other one was
almost the same method but modified according to the delta
change paradigm (mQDM). These univariate methods were
used as a baseline for comparison. The climate change con-
text, using 1970–1989 as calibration time period and 1998–
2017 as validation time period, allowed us to calculate the
change in bias between the periods, or the extent of bias non-
stationarity, using the R index. The results of all methods
were compared using different indices, for which the resid-
ual biases relative to the observations and model bias were
calculated. Although the study was limited in spatial scale
and climate models used, this yielded some results that could
be valuable starting points for future research.

The calculated R index values generally demonstrated that
the bias of some of these indices is not stationary under cli-
mate change conditions, although the extent of bias nonsta-
tionarity depended on the variable and index under consid-
eration. The bias nonstationarity, as indicated by the R in-
dex (higher than 1 and often close to 2), was largest for the
highest precipitation percentiles in winter and summer, for
all winter temperature percentiles and the lowest tempera-
ture percentiles in spring and summer, and for evaporation
percentiles in spring. The performance of all of these per-
centiles was clearly poorer in the validation period than in the
calibration period, indicating a clear link between bias non-
stationarity and poor bias adjustment performance. For both
precipitation and evaporation, it could be observed that the
nonstationarity propagated through the rainfall-runoff model
used for impact assessment, and that the propagation was
different for these variables. The precipitation nonstationar-
ity and biases mostly affected the high discharge percentiles,
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Table 8. PSS values for discharge in the calibration (Cal) and validation (Val) periods (%).

Winter Spring Summer Autumn

Cal Val Cal Val Cal Val Cal Val

QDM 90.0 87.5 88.6 63.0 90.9 80.0 94.3 88.2
mQDM 100.0 86.0 100.0 65.0 100.0 78.2 100.0 85.9
MBCn 85.1 80 89.6 58.4 84.6 71.9 87.6 88.4
MRQNBC 92.1 85.2 66.6 38.0 92.0 88.4 69.7 57.8
dOTC 81.9 90.9 78.1 46.7 78.9 86.1 77.1 77.7
R2D2 89.7 90.9 82.5 58.1 86.5 71.2 83.9 88.1

Figure 10. RBMB versus RB0 for the discharge percentiles and the 20-year return period value in the calibration period. (a) QDM,
(b) mQDM, (c) MBCn, (d) MRQNBC, (e) dOTC, (f) R2D2. Winter: blue, spring: ochre, summer: yellow, autumn: purple.

whereas the evaporation biases mostly affected the full dis-
tribution.

In the context of nonstationarity, it is important to discuss
how well the methods performed. Four observations could
be made. As a first observation, all methods perform rather
similarly, especially under nonstationarity. Although the gen-
eral performance for some methods was lower depending on
the studied aspect and season, as illustrated by MRQNBC
and dOTC, their response to bias nonstationarity was broadly
similar to other methods. That these two methods sometimes
performed worse than other methods depends on the spe-
cific case. Even within this study, MRQNBC proved to be
rather robust when considering discharge, although this was
season-dependent.

Second, when taking everything into account, the univari-
ate bias-adjusting methods performed best, although the dif-
ference with MBCn and R2D2 was small. This was clearly
illustrated by the PSS values. For the marginal aspects (P , T

and E), the performance of QDM and mQDM on the one
hand and MBCn and R2D2 on the other hand was simi-
lar. When taking occurrence, correlation and the resulting
discharge into account, the univariate methods performed

slightly better. However, the methods are specifically de-
signed to alter the marginal distributions. As already dis-
cussed in Sect. 4.5, it was pointed out by Zscheischler et al.
(2019) that the multivariate bias-adjusting methods were
made with other principal goals, such as spatial and depen-
dence adjustment. As it is not assessed in this study, we
cannot comment on the spatial adjustment. Nonetheless, the
study by François et al. (2020) illustrated that the multivari-
ate bias-adjusting methods can be very informative and ro-
bust for spatial adjustment. Concerning the dependence ad-
justment, it was shown in Sect. 4.5 that the multivariate meth-
ods all perform well for the area and model chain studied
here.

Third, although the MRQNBC method performed well
for dependence and precipitation, it often performed worst
for temperature, evaporation, occurrence and discharge in-
dices. MRQNBC adjusts on multiple timescales. Although
this method has value, it appears to be hard to calibrate cor-
rectly. In addition, the heavy reliance on observations might
exacerbate the results. This is an indication that assuming
that the temporal structure of the past can be used for the fu-
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Figure 11. RBMB versus RB0 for the discharge percentiles and the 20-year return period value in the validation period. (a) QDM, (b) mQDM,
(c) MBCn, (d) MRQNBC, (e) dOTC, (f) R2D2. Winter: blue, spring: ochre, summer: yellow, autumn: purple.

ture might be dangerous, as Johnson and Sharma (2011) and
Kerkhoff et al. (2014) already mentioned.

Last, although the differences between MBCn and R2D2

are small, the latter is better suited to take into account tem-
poral properties. This could be seen in Fig. 9 and suggests
that recent work to take into account temporal properties in
bias adjustment (e.g., François et al., 2021) is worth pursu-
ing.

The four observations listed in the previous paragraphs
suggest that the choice of method should be based on the
studied problem or impact type, as the impact of bias nonsta-
tionarity is much larger on the final result than differences be-
tween individual methods. The validation results could only
be obtained by analyzing and comparing a broad combina-
tion of indices. Considering only the mean or other standard
statistics would have hidden many of the results seen. For
example, in contrast to the results for the mean, the inclu-
sion of both high and low extremes highlighted some prob-
lems with bias nonstationarity for some variables. As such,
this study does not contradict earlier studies (e.g., Maraun,
2012), where the mean-based biases were found to be rather
stable. Thus, we echo the advice by Maraun and Widmann
(2018a) to use indices not directly affected by bias-adjusting
methods and to analyze the user needs before deciding upon
the bias adjustment validation method. However, the used in-
dices can still be improved. Although the R index provides a
lot of insight into the bias nonstationarity, it has been shown
to over- or underestimate the effect of bias nonstationarity
depending on the size and sometimes even the sign of the
original bias. Other criteria also exist, such as the “signal-to-
noise ratio” (SNR) used by Hui et al. (2020). The different
criteria or indices should be compared and maybe new tools
are needed, so that the issue of bias nonstationarity can be
more thoroughly explored.

An important limitation is that we only used one GCM–
RCM combination. Using a model ensemble would be more
informative but could hide a single model’s poor perfor-
mance, as the differences within GCM–RCM ensembles can
be large (Vautard et al., 2021). Nonetheless, this study has
value in illustrating possible impacts of bias nonstationarity.
To broaden the scope, it helps to compare the GCM–RCM
combination used in this study with the full range of EURO-
CORDEX model combinations (Vautard et al., 2021). For
winter temperatures, where the impact of bias nonstation-
arity was large, MPI-RCA4 is positively biased in the area
under study, but it is not the most biased EURO-CORDEX
model. In contrast, for both winter and summer precipita-
tion, the biases in MPI-RCA4 are among the largest within
the EURO-CORDEX ensemble. However, this only concerns
the mean bias and conclusions can thus not be easily general-
ized for the extremes, where the impact of bias nonstationar-
ity was largest. In general, the MPI-RCA4 combination does
not stand out in the study of Vautard et al. (2021): it shows
some biases and is thus not the best model combination, but
it can not be considered to be the worst. This allows one to
generalize the results seen here to other model combinations.
Yet, they should still be considered on a case-by-case basis,
taking into account the area under study, the studied impact,
and so on. The framework presented here could be used to
discard poor-performing models, based on the R index (also
suggested by Maurer et al., 2013) or the remaining bias after
adjustment.

To have a better view of how these results should be in-
terpreted for impacts and compound events, the perspective
of the end user should be considered (Maraun et al., 2015;
Maraun and Widmann, 2018b). We used discharge as an ex-
ample, using the relatively simple PDM. Even for this model,
it could be observed that bias nonstationarity can propagate
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in multiple ways. The influence of the nonstationarity in pre-
cipitation was most clear in summer and winter. As precip-
itation is the driving variable for the PDM, even the limited
nonstationarity, mostly in the precipitation extremes, had an
influence on the discharge simulation, as could be seen for
the discharge in winter and summer (Fig. 10, respectively
blue and yellow). In contrast, the nonstationarity in evapo-
ration propagated much less. However, it had an effect on
the full PDF in spring, as could be observed from the PSS
value for discharge (Table 8). In spring, no nonstationarity
could be observed for precipitation, which allowed the in-
fluence of evaporation to be larger, although it theoretically
has a smaller influence than precipitation on the discharge.
The different propagation of bias nonstationarity, observed
here for the extremes versus the full PDF, can be important
considering that bias adjustment can be applied for many dif-
ferent types of impact assessment. However, the assessment
in this study is relatively simple. For other impact studies,
the results may vary considerably. For example, forest fires
(a typical compound event, discussed in a bias adjustment
context in, e.g., Yang et al., 2015, Cannon, 2018, Zscheis-
chler et al., 2019) depend more heavily on T and E to simu-
late fire weather conditions. Besides such compound events,
other types of application can use a wide variety of variables
and, hence, the bias nonstationarity may differ. In all of these
studies, the propagation of bias nonstationarity will depend
on the timescales considered in the impact assessment, the
timescales on which nonstationarity is present, the variables
considered and the spatial scale. Although this last aspect is
limited in this study, it can be assumed that if bias nonsta-
tionarity is present in one grid cell, it will also be present
in neighboring grid cells with similar climatic conditions. To
better understand the impact of bias nonstationarity on spatial
adjustment, future work should systematically assess the per-
formance of bias-adjustment under bias nonstationarity on
a large scale. However, only a few observation-based data
sets have a resolution that is comparable with that of recent
RCMs, such as the ERA5-Land reanalysis (Muñoz-Sabater
et al., 2021).

To conclude, the results discussed in this paper indicate
that bias nonstationarity can have an important impact on the
bias adjustment and the propagation of biases in impact mod-
els. Depending on the extent of nonstationarity (spatial, tem-
poral and the variables affected), such propagation should be
taken into account far more when studying future impacts.
As authors have mentioned before (Ehret et al., 2012; Ma-
raun, 2016; Nahar et al., 2017), this foremost implies that
climate models have to become better at modeling the fu-
ture: we need to be able to trust them as fully as possible. As
long as this is not the case, bias adjustment methods have to
be developed that are more robust and that are able to help
us assess the future correctly. As was discussed in this paper,
all methods suffer from bias nonstationarity, increasing the
uncertainty of future impacts.

Code and data availability. The code for the computations is
publicly available at https://doi.org/10.5281/zenodo.6501634
(Van de Velde, 2022). All methods were implemented
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R Core Team, 2021), for which the R package “R2D2” was
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shared with third parties.
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