Articles | Volume 26, issue 7
https://doi.org/10.5194/hess-26-1821-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-26-1821-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Drought impact links to meteorological drought indicators and predictability in Spain
Herminia Torelló-Sentelles
School of Integrated Climate System Science, Universität Hamburg, Hamburg 20148, Germany
Institute of Earth Surface Dynamics, University of Lausanne, Lausanne 1015, Switzerland
Christian L. E. Franzke
CORRESPONDING AUTHOR
Center for Climate Physics, Institute for Basic Science, Busan 46241, Republic of Korea
Pusan National University, Busan 46241, Republic of Korea
Related authors
No articles found.
Sun-Seon Lee, Sahil Sharma, Nan Rosenbloom, Keith B. Rodgers, Ji-Eun Kim, Eun Young Kwon, Christian L. E. Franzke, In-Won Kim, Mohanan Geethalekshmi Sreeush, and Karl Stein
Earth Syst. Dynam., 16, 1427–1451, https://doi.org/10.5194/esd-16-1427-2025, https://doi.org/10.5194/esd-16-1427-2025, 2025
Short summary
Short summary
A new 10-member ensemble simulation with the state-of-the-art Earth system model was employed to study the long-term climate response to sustained greenhouse warming through to the year 2500. The findings show that the projected changes in the forced mean state and internal variability during 2101–2500 differ substantially from the 21st-century projections, emphasizing the importance of multi-century perspectives for understanding future climate change and informing effective mitigation strategies.
Ja-Yeon Moon, Jan Streffing, Sun-Seon Lee, Tido Semmler, Miguel Andrés-Martínez, Jiao Chen, Eun-Byeoul Cho, Jung-Eun Chu, Christian L. E. Franzke, Jan P. Gärtner, Rohit Ghosh, Jan Hegewald, Songyee Hong, Dae-Won Kim, Nikolay Koldunov, June-Yi Lee, Zihao Lin, Chao Liu, Svetlana N. Loza, Wonsun Park, Woncheol Roh, Dmitry V. Sein, Sahil Sharma, Dmitry Sidorenko, Jun-Hyeok Son, Malte F. Stuecker, Qiang Wang, Gyuseok Yi, Martina Zapponini, Thomas Jung, and Axel Timmermann
Earth Syst. Dynam., 16, 1103–1134, https://doi.org/10.5194/esd-16-1103-2025, https://doi.org/10.5194/esd-16-1103-2025, 2025
Short summary
Short summary
Based on a series of storm-resolving greenhouse warming simulations conducted with the AWI-CM3 model at 9 km global atmosphere and 4–25 km ocean resolution, we present new projections of regional climate change, modes of climate variability, and extreme events. The 10-year-long high-resolution simulations for the 2000s, 2030s, 2060s, and 2090s were initialized from a coarser-resolution transient run (31 km atmosphere) which follows the SSP5-8.5 greenhouse gas emission scenario from 1950–2100 CE.
Luc Hallali, Eirik Myrvoll-Nilsen, and Christian L. E. Franzke
EGUsphere, https://doi.org/10.5194/egusphere-2025-2461, https://doi.org/10.5194/egusphere-2025-2461, 2025
Short summary
Short summary
We present an alternative statistical methodology to detect whether the Atlantic Ocean’s circulation system is approaching a tipping point. Our approach separates natural variability from real early warning signals of tipping, reducing false alarms. When applied to proxy of Atlantic Ocean’s circulation strength , we found significant signs that the system is ongoing destabilization . This suggests it may be approaching a tipping point, which could have major impacts on global climate patterns.
Vera Melinda Galfi, Tommaso Alberti, Lesley De Cruz, Christian L. E. Franzke, and Valerio Lembo
Nonlin. Processes Geophys., 31, 185–193, https://doi.org/10.5194/npg-31-185-2024, https://doi.org/10.5194/npg-31-185-2024, 2024
Short summary
Short summary
In the online seminar series "Perspectives on climate sciences: from historical developments to future frontiers" (2020–2021), well-known and established scientists from several fields – including mathematics, physics, climate science and ecology – presented their perspectives on the evolution of climate science and on relevant scientific concepts. In this paper, we first give an overview of the content of the seminar series, and then we introduce the written contributions to this special issue.
Daniel Gliksman, Paul Averbeck, Nico Becker, Barry Gardiner, Valeri Goldberg, Jens Grieger, Dörthe Handorf, Karsten Haustein, Alexia Karwat, Florian Knutzen, Hilke S. Lentink, Rike Lorenz, Deborah Niermann, Joaquim G. Pinto, Ronald Queck, Astrid Ziemann, and Christian L. E. Franzke
Nat. Hazards Earth Syst. Sci., 23, 2171–2201, https://doi.org/10.5194/nhess-23-2171-2023, https://doi.org/10.5194/nhess-23-2171-2023, 2023
Short summary
Short summary
Wind and storms are a major natural hazard and can cause severe economic damage and cost human lives. Hence, it is important to gauge the potential impact of using indices, which potentially enable us to estimate likely impacts of storms or other wind events. Here, we review basic aspects of wind and storm generation and provide an extensive overview of wind impacts and available indices. This is also important to better prepare for future climate change and corresponding changes to winds.
Thomas Önskog, Christian L. E. Franzke, and Abdel Hannachi
Adv. Stat. Clim. Meteorol. Oceanogr., 6, 141–157, https://doi.org/10.5194/ascmo-6-141-2020, https://doi.org/10.5194/ascmo-6-141-2020, 2020
Short summary
Short summary
The North Atlantic Oscillation (NAO) has a significant impact on seasonal climate and surface weather conditions throughout Europe, North America and the North Atlantic. In this paper, we study a number of linear and nonlinear models for a station-based time series of the daily winter NAO. We find that a class of nonlinear models, including both short and long lags, excellently reproduce the characteristic statistical properties of the NAO. These models can hence be used to simulate the NAO.
Cited articles
Austin, R., Cantero-Martínez, C., Arrúe, J., Playán, E., and
Cano-Marcellán, P.: Yield–rainfall relationships in cereal cropping
systems in the Ebro river valley of Spain, Eur. J. Agron., 8, 239–248,
https://doi.org/10.1016/S1161-0301(97)00063-4, 1998. a
Bachmair, S., Kohn, I., and Stahl, K.: Exploring the link between drought indicators and impacts, Nat. Hazards Earth Syst. Sci., 15, 1381–1397, https://doi.org/10.5194/nhess-15-1381-2015, 2015. a, b, c, d
Bachmair, S., Stahl, K., Collins, K., Hannaford, J., Acreman, M., Svoboda, M.,
Knutson, C., Smith, K. H., Wall, N., Fuchs, B., Crossman, N. D., and Overton,
I. C.: Drought indicators revisited: the need for a wider consideration of
environment and society: Drought indicators revisited, Wiley Interdiscip.
Rev.: Water, 3, 516–536, https://doi.org/10.1002/wat2.1154, 2016a. a, b, c, d
Bachmair, S., Svensson, C., Prosdocimi, I., Hannaford, J., and Stahl, K.: Developing drought impact functions for drought risk management, Nat. Hazards Earth Syst. Sci., 17, 1947–1960, https://doi.org/10.5194/nhess-17-1947-2017, 2017. a
Beguería, S., Vicente-Serrano, S. M., Reig, F., and Latorre, B.:
Standardized precipitation evapotranspiration index (SPEI) revisited:
parameter fitting, evapotranspiration models, tools, datasets and drought
monitoring, Int. J. Climatol., 34, 3001–3023, https://doi.org/10.1002/joc.3887, 2014. a
Beguería, S. and Vicente-Serrano, S. M.: Calculation of the
Standardised Precipitation-Evapotranspiratoin Index, CRAN [code], http://sac.csic.es/spei (last access: 5 April 2022), 2017. a
Blauhut, V.: The triple complexity of drought risk analysis and its
visualisation via mapping: a review across scales and sectors, Earth-Sci.
Rev., 210, 103345, https://doi.org/10.1016/j.earscirev.2020.103345, 2020. a, b
Blauhut, V., Gudmundsson, L., and Stahl, K.: Towards pan-European drought
risk maps: quantifying the link between drought indices and reported drought impacts, Environ. Res. Lett., 10, 014008,
https://doi.org/10.1088/1748-9326/10/1/014008, 2015. a, b
Blauhut, V., Stahl, K., Stagge, J. H., Tallaksen, L. M., De Stefano, L., and Vogt, J.: Estimating drought risk across Europe from reported drought impacts, drought indices, and vulnerability factors, Hydrol. Earth Syst. Sci., 20, 2779–2800, https://doi.org/10.5194/hess-20-2779-2016, 2016. a, b, c, d, e, f
Boletín Oficial del Estado: Real Decreto 14/2009, de 5 de diciembre,
por el que se adoptan medidas urgentes para paliar los efectos producidos por
la sequía en determinadas cuencas hidrográficas, Boletín Oficial del Estado, 293, 103532–103544,
https://www.boe.es/boe/dias/2009/12/05/pdfs/BOE-A-2009-19563.pdf,
2009. a
Cardona, O. D., Van Aalst, M. K., Birkmann, J., Fordham, M., Mc Gregor,
G., Rosa, P., Pulwarty, R. S., Schipper, E. L. F., and Sinh, B. T.: Determinants of risk: exposure and
vulnerability, in: Managing the risks of extreme events and disasters to advance climate change
adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate
Change, IPCC, Cambridge University Press, 65–108, 2012. a
Cutler, A., Cutler, D. R., and Stevens, J. R.: Random Forests, in: Ensemble
Machine Learning: Methods and Applications, edited by Zhang, C. and
Ma, Y., Springer US, Boston, MA,, 157–175, https://doi.org/10.1007/978-1-4419-9326-7_5, 2012. a, b
Davis, J. and Goadrich, M.: The relationship between Precision-Recall and
ROC curves, in: Proceedings of the 23rd international conference on
Machine learning, Association for Computing Machinery,
Pittsburgh, Pennsylvania, USA, 15 June 2006, 233–240
https://doi.org/10.1145/1143844.1143874, 2006. a, b
del Moral, L. and Hernandez-Mora, N.: La experiencia de sequías en España:
inercias del pasado y nuevas tendencias en la gestión de riesgos, in: 5∘
Water Governance International Meeting, Water Governance Practices under
Water Scarcity, Universidade de São Paulo, São Paulo, Brazil, 10–13 November 2015, 2015. a
del Moral, L. and Saurí, D.: Changing Course: Water Policy in
Spain, Environment: Science and Policy for Sustainable Development, 41, 12–15,
https://doi.org/10.1080/00139159909604640, 1999. a
Estrela, T. and Vargas, E.: Drought Management Plans in the European
Union. The Case of Spain, Water Resour. Manage., 26, 1537–1553,
https://doi.org/10.1007/s11269-011-9971-2, 2012. a
European Environment Agency: CORINE Land Cover (CLC), Copernicus Services [data set],
https://land.copernicus.eu/pan-european/corine-land-cover (last access: 12 November 2021), 2022. a
Eurostat: https://ec.europa.eu/eurostat/web/nuts/background,
last access: 12 February 2020. a
Eurostat: Your key to European statistics, https://ec.europa.eu/eurostat/, last access: 5 April 2022a. a
Eurostat: Unemployment rates by sex, age, educational attainment level and NUTS 2 regions (%), eurostat Data Browser [data set], http://appsso.eurostat.ec.europa.eu/nui/show.do?lang=en&dataset=lfst_r_lfu3rt, last access: 5 April 2022b. a
Eurostat: Population density by NUTS3 region, eurostat Data Browser [data set],
https://ec.europa.eu/eurostat/databrowser/view/DEMO_R_D3DENS/default/table?lang=en&category=reg.reg_dem.reg_dempoar, last access: 5 April 2022c. a
Eurostat: Gross value added at basic prices by NUTS 3 regions, eurostat Data Browser [data set],
http://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=nama_10r_3gva, last access: 5 April 2022d. a
Farahmand, A. and AghaKouchak, A.: A generalized framework for deriving
nonparametric standardized drought indicators, Adv. Water Resour., 76,
140–145, https://doi.org/10.1016/j.advwatres.2014.11.012, 2015a. a, b
Farahmand, A. and AghaKouchak, A.: Standardized Drought Analysis
Toolbox (SDAT) Software Package, [code], http://amir.eng.uci.edu/software.php (last access: 5 April 2022), 2015b. a
Feldstein, S. B. and Franzke, C.: Are the North Atlantic
Oscillation and the northern annular mode distinguishable?, J. Atmos. Sci., 63, 2915–2930, https://doi.org/10.1175/JA3798.1, 2006. a
Feldstein, S. B. and Franzke, C. L. E.: Atmospheric Teleconnection
Patterns, in: Nonlinear and Stochastic Climate Dynamics, edited by
Franzke, C. L. E. and O'Kane, T. J., Cambridge University Press,
Cambridge, 54–104, https://doi.org/10.1017/9781316339251.004, 2017. a
Gimeno, L., Ribera, P., Iglesias, R., de la Torre, L., García, R., and
Hernández, E.: Identification of empirical relationships between
indices of ENSO and NAO and agricultural yields in Spain, Clim. Res., 21,
165–172, https://doi.org/10.3354/cr021165, 2002. a
González-Hidalgo, J. C., Vicente-Serrano, S. M., Peña-Angulo, D.,
Salinas, C., Tomas-Burguera, M., and Beguería, S.: High-resolution
spatio-temporal analyses of drought episodes in the western Mediterranean
basin (Spanish mainland, Iberian Peninsula), Acta Geophys., 66,
381–392, https://doi.org/10.1007/s11600-018-0138-x, 2018. a, b, c, d
Gouveia, C., Trigo, R., Beguería, S., and Vicente-Serrano, S.: Drought impacts
on vegetation activity in the Mediterranean region: An assessment using
remote sensing data and multi-scale drought indicators, Global Planet.
Change, 151, 15–27, https://doi.org/10.1016/j.gloplacha.2016.06.011, 2017. a
Gudmundsson, L. and Seneviratne, S. I.: Anthropogenic climate change affects
meteorological drought risk in Europe, Environ. Res. Lett., 11, 044005,
https://doi.org/10.1088/1748-9326/11/4/044005, 2016. a
Gudmundsson, L., Rego, F. C., Rocha, M., and Seneviratne, S. I.: Predicting
above normal wildfire activity in southern Europe as a function of
meteorological drought, Environ. Res. Lett., 9, 084008,
https://doi.org/10.1088/1748-9326/9/8/084008, 2014. a
Guha-Sapir, D., Below, R., and Hoyois, P.: EM-DAT: the CRED/OFDA
international disaster database, Université Catholique de Louvain [data
set], https://www.emdat.be/ (last access: 1 April 2021), 2016. a
Gutiérrez, J. M., Herrera, S., Cardoso, R. M., Soares, P. M. M.,
Espírito-Santo, F., and Viterbo, P.: Iberia01: Daily gridded (0.1∘
resolution) dataset of precipitation and temperatures over the Iberian
Peninsula, DIGITAL.CSIC [data set], https://doi.org/10.20350/DIGITALCSIC/8641, http://hdl.handle.net/10261/183071 (last access: 5 March 2022), 2019. a, b
Guttman, N. B.: Accepting the Standardized Precipitation Index: a
calculation algorithm, JAWRA J. Am. Water Resour. Assoc., 35, 311–322,
https://doi.org/10.1111/j.1752-1688.1999.tb03592.x, 1999. a
Hao, Z. and AghaKouchak, A.: A Nonparametric Multivariate Multi-Index
Drought Monitoring Framework, J. Hydrometeorol., 15, 89–101,
https://doi.org/10.1175/JHM-D-12-0160.1, 2014. a
Hao, Z., AghaKouchak, A., Nakhjiri, N., and Farahmand, A.: Global integrated
drought monitoring and prediction system, Sci. Data, 1, 140001,
https://doi.org/10.1038/sdata.2014.1, 2014. a
Hernández-Mora, N., Martínez Cortina, L., and Fornés, J.:
Intensive groundwater use in Spain, in: Intensive Use of Groundwater:
Challenges and Opportunities, edited by Llamas, M. and Custodio, E., Swets and Zeitlinger BV, The Netherlands, 387–414, 2003. a
Herrera, S., Cardoso, R. M., Soares, P. M., Espírito-Santo, F., Viterbo, P., and Gutiérrez, J. M.: Iberia01: a new gridded dataset of daily precipitation and temperatures over Iberia, Earth Syst. Sci. Data, 11, 1947–1956, https://doi.org/10.5194/essd-11-1947-2019, 2019. a, b
Hervás-Gámez, C. and Delgado-Ramos, F.: Drought Management
Planning Policy: From Europe to Spain, Sustainability, 11, 1862,
https://doi.org/10.3390/su11071862, 2019. a
Hripcsak, G. and Rothschild, A. S.: Agreement, the F-Measure, and
Reliability in Information Retrieval, J. Am. Med. Inf. Assoc., 12,
296–298, https://doi.org/10.1197/jamia.M1733, 2005. a
Iglesias, A., Moneo, M., Garrote, R., and Flores, F.: Drought and climate
risks, in: Water policy in Spain, edited by Garrido, A. and Llamas, R. M., 63–75, CRC Press, Cambridge, 2009. a
Iglesias, E., Garrido, A., and Gomez-Ramos, A.: Evaluation of drought
management in irrigated areas, Agric. Econ., 29, 211–229,
https://doi.org/10.1111/j.1574-0862.2003.tb00158.x, 2003. a
Instituto Nacional de Estadística: https://www.ine.es/, last access: 5 April 2022a. a
Instituto Nacional de Estadística: Estadística sobre el suministro y saneamiento del agua, Serie
2000–2018, INEbase [data set],
https://www.ine.es/jaxi/Datos.htm?path=/t26/p067/p01/serie/l0/&file=01003.px#!tabs-tabla, last access: 5 April 2022b. a
Instituto Nacional de Estadística: PIB y PIB per cápita, Serie 2000–2020, INEbase [data set],
https://www.ine.es/dyngs/INEbase/es/operacion.htm?c=Estadistica_C&cid=1254736167628&menu=resultados&idp=1254735576581#, last access: 5 April 2022c. a
Kingston, D. G., Stagge, J. H., Tallaksen, L. M., and Hannah, D. M.:
European-Scale Drought: Understanding Connections between Atmospheric
Circulation and Meteorological Drought Indices, J. Clim., 28, 505–516,
https://doi.org/10.1175/JCLI-D-14-00001.1, 2015. a
Kuhn, M.: Building Predictive Models in R using the caret Package,
CRAN [code], https://doi.org/10.18637/jss.v028.i05, 2008. a, b
Lorenzo-Lacruz, J., Vicente-Serrano, S., López-Moreno, J.,
Beguería, S., García-Ruiz, J., and Cuadrat, J.: The impact of
droughts and water management on various hydrological systems in the
headwaters of the Tagus River (central Spain), J. Hydrol., 386, 13–26,
https://doi.org/10.1016/j.jhydrol.2010.01.001, 2010. a
Manzano, A., Clemente, M. A., Morata, A., Luna, M. Y., Beguería, S.,
Vicente-Serrano, S. M., and Martín, M. L.: Analysis of the atmospheric
circulation pattern effects over SPEI drought index in Spain, Atmos.
Res., 230, 104630, https://doi.org/10.1016/j.atmosres.2019.104630, 2019. a
Martin-Vide, J. and Lopez-Bustins, J.-A.: The Western Mediterranean
Oscillation and rainfall in the Iberian Peninsula, Int. J. Climatol.,
26, 1455–1475, https://doi.org/10.1002/joc.1388, 2006. a, b
Martinez‐Artigas, J., Lemus‐Canovas, M., and Lopez‐Bustins, J. A.:
Precipitation in peninsular Spain: Influence of teleconnection indices
and spatial regionalisation, Int. J. Climatol., 41, E1320–E1335, https://doi.org/10.1002/joc.6770, 2021. a
Mason, S. J. and Graham, N. E.: Areas beneath the relative operating
characteristics (ROC) and relative operating levels (ROL) curves: Statistical
significance and interpretation, Q. J. Roy. Meteorol. Soc., 128, 2145–2166, https://doi.org/10.1256/003590002320603584, 2002. a
Ministerio de Agricultura, Pesca y Alimentación: Recurrencia y
Efectos de las Sequías, 2022. a
Ministerio de Medio Ambiente: A Preliminary Assessment of the Impacts
in Spain due to the Effects of Climate Change, 2005. a
Ministerio para la Transición Ecológica y el Reto
Demográfico: Plan Nacional de Adaptación al Cambio
Climático 2021–2030,
https://www.miteco.gob.es/es/cambio-climatico/temas/impactos-vulnerabilidad-y-adaptacion/plan-nacional-adaptacion-cambio-climatico/default.aspx, (last access: 5 April 2021), 2020. a
Muñoz Sabater, J.: ERA5-Land monthly averaged data from 1981 to present,
Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.68d2bb30, 2019. a, b
NOAA Climate Prediction Centre: Climate Indices: Monthly Atmospheric and Ocean Time-Series, Physical Sciences Laboratory [data set], https://psl.noaa.gov/data/climateindices/list/, last access: 2 August 2021a. a
NOAA Climate Prediction Centre: East Atlantic (EA), National Weather Service [data set],
https://www.cpc.ncep.noaa.gov/data/teledoc/ea.shtml, last access: 2 August 2021b. a
Ollero Lara, A., Crespo Vergara, S. I., and Pérez Cimas, M.: Las
sequías y España. La respuesta del seguro agrario a un problema
intermitente, Entidad Estatal de Seguros Agrarios (ENESA), Ministerio de Agricultura, Pesca y Alimentación, 2018. a
Páscoa, P., Gouveia, C. M., Russo, A., and Trigo, R. M.: The role of
drought on wheat yield interannual variability in the Iberian Peninsula
from 1929 to 2012, Int. J. Biometeorol., 61, 439–451,
https://doi.org/10.1007/s00484-016-1224-x, 2017. a
Pasho, E., Camarero, J. J., de Luis, M., and Vicente-Serrano, S. M.: Impacts
of drought at different time scales on forest growth across a wide climatic
gradient in north-eastern Spain, Agric. For. Meteorol., 151, 1800–1811,
https://doi.org/10.1016/j.agrformet.2011.07.018, 2011. a
Peña-Gallardo, M., Vicente-Serrano, S. M., Domínguez-Castro, F., and Beguería, S.: The impact of drought on the productivity of two rainfed crops in Spain, Nat. Hazards Earth Syst. Sci., 19, 1215–1234, https://doi.org/10.5194/nhess-19-1215-2019, 2019. a, b
Pozzi, W., Sheffield, J., Stefanski, R., Cripe, D., Pulwarty,
R., Vogt, J. V., Heim Jr., R. R., Brewer, M. J., Svoboda, M., Westerhoff, R., van Dijk, A. I. J. M.,
Lloyd-Hughes, B., Pappenberger, F., Werner, M., Dutra, E., Wetterhall, F., Wagner, W., Schubert, S.,
Mo, K., Nicholson, M., Bettio, L., Nunez, L., van Beek, R., Bierkens, M., de Goncalves, L. G. G., de
Mattos, J. G. Z., and Lawford, R.: Toward Global Drought Early Warning Capability: Expanding
International Cooperation for the Development of a Framework for Monitoring and Forecasting, B. Am. Meteorol., 94, 776–785, https://doi.org/10.1175/BAMS-D-11-00176.1, 2013. a
Ríos-Cornejo, D., Penas, Á., Álvarez-Esteban, R., and del
Río, S.: Links between teleconnection patterns and precipitation in
Spain, Atmos. Res., 156, 14–28, https://doi.org/10.1016/j.atmosres.2014.12.012,
2015. a
Rodó, X., Baert, E., and Comín, F. A.: Variations in seasonal
rainfall in Southern Europe during the present century: relationships
with the North Atlantic Oscillation and the El Niño-Southern
Oscillation, Clim. Dyn., 13, 275–284, https://doi.org/10.1007/s003820050165, 1997. a
Rossi, G. and Cancelliere, A.: Managing drought risk in water supply systems in Europe: a review, Int. J. Water Resour. Dev., 29, 272–289,
https://doi.org/10.1080/07900627.2012.713848, 2013. a
Russo, A., Gouveia, C. M., Páscoa, P., DaCamara, C. C., Sousa, P. M., and
Trigo, R. M.: Assessing the role of drought events on wildfires in the
Iberian Peninsula, Agric. For. Meteorol., 237–238, 50–59,
https://doi.org/10.1016/j.agrformet.2017.01.021, 2017. a
Sainz de la Maza, M. and Del Jesús, M.: Análisis de sequías
históricas a través de los impactos derivados, Ingeniería
del agua, 24, 141, https://doi.org/10.4995/ia.2020.12182, 2020. a, b, c
Salvador, C., Nieto, R., Linares, C., Díaz, J., and Gimeno, L.: Short-term
effects of drought on daily mortality in Spain from 2000 to 2009, Environ.
Res., 183, 109200, https://doi.org/10.1016/j.envres.2020.109200, 2020. a
Sivakumar, M. V., Motha, R., Wilhite, D., and Wood, D.: Agricultural Drought
Indices. Proceedings of an Expert Meeting, WMO, Murcia, Spain, 2–4 June 2010, 219 pp., 2011. a
Spearman, C.: The Proof and Measurement of Association Between Two
Things., in: Studies in individual differences: The search for
intelligence., edited by Jenkins, J. J. and Paterson, D. G.,
Appleton-Century-Crofts, East Norwalk, 45–58, https://doi.org/10.1037/11491-005, 1961. a
Stahl, K., Kohn, I., Blauhut, V., Urquijo, J., De Stefano, L., Acácio, V., Dias, S., Stagge, J. H., Tallaksen, L. M., Kampragou, E., Van Loon, A. F., Barker, L. J., Melsen, L. A., Bifulco, C., Musolino, D., de Carli, A., Massarutto, A., Assimacopoulos, D., and Van Lanen, H. A. J.: Impacts of European drought events: insights from an international database of text-based reports, Nat. Hazards Earth Syst. Sci., 16, 801–819, https://doi.org/10.5194/nhess-16-801-2016, 2016. a, b
Sutanto, S. J., van der Weert, M., Wanders, N., Blauhut, V., and Van Lanen, H.
A. J.: Moving from drought hazard to impact forecasts, Nat. Commun., 10,
4945, https://doi.org/10.1038/s41467-019-12840-z, 2019. a, b
Svoboda, M., Fuchs, B. A., Integrated Drought Management Programme, World
Meteorological Organization, Global Water Partnership, University of
Nebraska–Lincoln, and National Drought Mitigation Center: Handbook of
drought indicators and indices,
http://www.droughtmanagement.info/handbook-drought-indicators-and-indices/ (last access: 23 March 2021), 2016. a
Thornthwaite, C. W.: An Approach toward a Rational Classification of
Climate, Geographical Review, 38, 55, https://doi.org/10.2307/210739, 1948. a
Torelló-Sentelles, H.: herminiats/DroughtImpactsSpain: Drought impact links to
meteorological drought indicators and predictability in Spain, Zenodo [data
set], https://doi.org/10.5281/zenodo.6322803, 2022. a
Van Loon, A. and Laaha, G.: Hydrological drought severity explained by
climate and catchment characteristics, J. Hydrol., 526, 3–14,
https://doi.org/10.1016/j.jhydrol.2014.10.059, 2015. a
Vicente-Serrano, S. M. and López-Moreno, J. I.: Hydrological response to different time scales of climatological drought: an evaluation of the Standardized Precipitation Index in a mountainous Mediterranean basin, Hydrol. Earth Syst. Sci., 9, 523–533, https://doi.org/10.5194/hess-9-523-2005, 2005. a
Vicente-Serrano, S. M., Beguería, S., and López-Moreno, J. I.: A
Multiscalar Drought Index Sensitive to Global Warming: The
Standardized Precipitation Evapotranspiration Index, J. Clim., 23,
1696–1718, https://doi.org/10.1175/2009JCLI2909.1, 2010. a, b, c
Vicente-Serrano, S. M., López-Moreno, J. I., Lorenzo-Lacruz, J., Kenawy,
A. E., Azorin-Molina, C., Morán-Tejeda, E., Pasho, E., Zabalza, J.,
Beguería, S., and Angulo-Martínez, M.: The NAO Impact on Droughts in
the Mediterranean Region, Springer Netherlands, Dordrecht, 23–40,
https://doi.org/10.1007/978-94-007-1372-7_3, 2011. a
Vicente-Serrano, S. M., Azorin-Molina, C., Sanchez-Lorenzo, A., Revuelto, J.,
Morán-Tejeda, E., López-Moreno, J. I., and Espejo, F.:
Sensitivity of reference evapotranspiration to changes in meteorological
parameters in Spain (1961–2011), Water Resour. Res., 50, 8458–8480,
https://doi.org/10.1002/2014WR015427, 2014a. a
Vicente-Serrano, S. M., Lopez-Moreno, J.-I., Beguería, S.,
Lorenzo-Lacruz, J., Sanchez-Lorenzo, A., García-Ruiz, J. M.,
Azorin-Molina, C., Morán-Tejeda, E., Revuelto, J., Trigo, R., Coelho,
F., and Espejo, F.: Evidence of increasing drought severity caused by
temperature rise in southern Europe, Environ. Res. Lett., 9, 044001,
https://doi.org/10.1088/1748-9326/9/4/044001, 2014b. a, b
Vicente-Serrano, S. M., Azorin-Molina, C., Peña-Gallardo, M., Tomas-Burguera, M., Domínguez-Castro, F., Martín-Hernández, N., Beguería, S., El Kenawy, A., Noguera, I., and García, M.: A high-resolution spatial assessment of the impacts of drought variability on vegetation activity in Spain from 1981 to 2015, Nat. Hazards Earth Syst. Sci., 19, 1189–1213, https://doi.org/10.5194/nhess-19-1189-2019, 2019. a
Vide, J. M.: Diez características de la pluviometría española
decisivas en el control de la demanda y el uso del agua, Asoc. de Geogr.
Espanoles, 18, 9–16, 1994. a
Wilhite, D.: Drought as a Natural Hazard: Concepts and Definitions, in: Drought: A Global Assessment, edited by: Wilhite, D., Drought Mitigation Center Faculty Publications, London, 3–18 pp.,
https://digitalcommons.unl.edu/droughtfacpub/69/ (last access: 5 April 2022), 2000. a
Wilhite, D. A. and Glantz, M. H.: Understanding: the Drought Phenomenon:
The Role of Definitions, Water Int., 10, 111–120,
https://doi.org/10.1080/02508068508686328, 1985. a, b, c
Short summary
Drought affects many regions worldwide, and future climate projections imply that drought severity and frequency will increase. Hence, the impacts of drought on the environment and society will also increase considerably. Monitoring and early warning systems for drought rely on several indicators; however, assessments on how these indicators are linked to impacts are still lacking. Our results show that meteorological indices are best linked to impact occurrences.
Drought affects many regions worldwide, and future climate projections imply that drought...